Characterization and Comparative Analysis of Chloroplast Genomes of Medicinal Herb Scrophularia ningpoensis and Its Common Adulterants (Scrophulariaceae)
Abstract
:1. Introduction
2. Results
2.1. Morphological Comparison
2.2. Chloroplast Genome Structure and Characteristics Analyses
2.3. Contraction and Expansion of Inverted Repeats
2.4. Codon Usage Analysis
2.5. Repeat Sequence Analysis
2.6. Simple Sequence Repeat Analysis
2.7. Selective Pressure Analyses
2.8. Sequence Divergence Analysis
2.9. Phylogenetic Analysis
3. Discussion
4. Materials and Methods
4.1. Phenotype Observations and Plant Samples
4.2. Genomic DNA Extraction, Sequencing, Assembly, Annotation, and Submission to GenBank
4.3. Contraction and Expansion of Inverted Repeats
4.4. Codon Usage Bias Analysis
4.5. Repeat Sequence Analysis
4.6. Simple Sequence Repeat Analyses
4.7. Selective Pressure Analyses
4.8. Sequence Divergence Analysis and Nucleotide Diversity Analysis
4.9. Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, D.Y. The Distribution of Scrophulariaceae in the Holarctic with Special Reference to the Floristic Relationships between Eastern Asia and Eastern North America. Ann. Mo. Bot. Gard. 1983, 70, 701–712. [Google Scholar] [CrossRef]
- Fischer, E. Scrophulariaceae. In The Families and Genera of Vascular Plants; International Association for Plant Taxonomy; Springer: Berlin/Heidelberg, Germany, 2004; Volume 7. [Google Scholar]
- Scheunert, A.; Heubl, G. Against all odds: Reconstructing the evolutionary history of Scrophularia (Scrophulariaceae) despite high levels of incongruence and reticulate evolution. Org. Divers Evol. 2017, 17, 323–349. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, H.L.; Lee, D.R.; Choi, B.K.; Yang, S.H. Scrophulariae Radix: An Overview of Its Biological Activities and Nutraceutical and Pharmaceutical Applications. Molecules 2021, 26, 5250. [Google Scholar] [CrossRef]
- Lalabadi, M.A.; Ali, N.; Jelodar, B.; Bagheri, N. Effect of Plant Hormones on Micro-propagation of Tashnedari (Scrophularia striata) Medicinal plant. Bull. Environ. Pharmacol. Life Sci. 2014, 3, 250–253. [Google Scholar]
- Pirbalouti, A.G.; Azizi, S.; Koohpayeh, A. Healing potential of Iranian traditional medicinal plants on burn wounds in alloxan-induced diabetic rats. Rev. Bras. Farmacogn. 2012, 22, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Ozbilgin, A.; Durmuskahya, C.; Kayalar, H.; Ostan, I. Assessment of in vivo antimalarial activities of some selected medicinal plants from Turkey. Parasitol. Res. 2014, 113, 165–173. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, A.; Wang, Y.S. Scrophularia ningpoensis Hemsl: A review of its phytochemistry, pharmacology, quality control and pharmacokinetics. J. Pharm. Pharmacol. 2021, 73, 573–600. [Google Scholar] [CrossRef]
- Ren, D.; Shen, Z.Y.; Qin, L.P.; Zhu, B. Pharmacology, phytochemistry, and traditional uses of Scrophularia ningpoensis Hemsl. J. Ethnopharmacol. 2021, 269, 113688. [Google Scholar] [CrossRef]
- Lee, G.J.; Doh, E.J.; Lee, M.Y.; Ko, B.S.; Oh, S.E. Discrimination of three Scrophularia plants utilizing ‘Scrophularia Radix’ by DNA markers based on internal transcribed spacer (ITS) sequences. Genes Genom. 2010, 32, 181–189. [Google Scholar] [CrossRef]
- Song, H.J.; Shin, M.K.; Park, S.B.; Kim, T.H. A herbalogical study on the plants of Scrophulariaceae in Korea. Kor. J. Herb. 1998, 13, 241–270. [Google Scholar] [CrossRef]
- Chiu, N.Y.; Chang, K.H. The Illustrated Medicinal Plants of Taiwan; SMC Publishing: Taibei, Taiwan, 1986; Volume 1, p. 129. [Google Scholar]
- Manivannan, A.; Soundararajan, P.; Park, Y.G.; Jeong, B.R. Physiological and Proteomic Insights into Red and Blue Light-Mediated Enhancement of in vitro Growth in Scrophularia kakudensis-A Potential Medicinal Plant. Front. Plant Sci. 2020, 11, 607007. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.-H.; Lee, A.Y.; Seo, Y.-S.; Park, I.; Yang, S.; Chun, J.M.; Moon, B.C.; Song, J.-H.; Kim, J.-S. Three Scrophularia Species (Scrophularia buergeriana, S. koraiensis, and S. takesimensis) Inhibit RANKL-Induced Osteoclast Differentiation in Bone Marrow-Derived Macrophages. Plants 2020, 9, 1656. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Spandidos, D.A.; Tsatsakis, A.; Margina, D.; Izotov, B.N.; Yang, S.H. Neuroprotective effects of Scrophularia buergeriana extract against glutamate-induced toxicity in SH-SY5Y cells. Int. J. Mol. Med. 2019, 43, 2144–2152. [Google Scholar] [CrossRef] [Green Version]
- Sagare, A.P.; Kuo, C.L.; Chueh, F.S.; Tsay, H.S. De novo regeneration of Scrophularia yoshimurae Yamazaki (Scrophulariaceae) and quantitative analysis of harpagoside, an iridoid glucoside, formed in aerial and underground parts of in vitro propagated and wild plants by HPLC. Biol. Pharm. Bull. 2001, 24, 1311–1315. [Google Scholar] [CrossRef] [Green Version]
- Jeong, E.J.; Ma, C.J.; Lee, K.Y.; Kim, S.H.; Sung, S.H.; Kim, Y.C. KD-501, a standardized extract of Scrophularia buergeriana has both cognitive-enhancing and antioxidant activities in mice given scopolamine. J. Ethnopharmacol. 2009, 121, 98–105. [Google Scholar] [CrossRef]
- Manivannan, A.; Soundararajan, P.; Park, Y.G.; Jeong, B.R. Chemical Elicitor-Induced Modulation of Antioxidant Metabolism and Enhancement of Secondary Metabolite Accumulation in Cell Suspension Cultures of Scrophularia kakudensis Franch. Int. J. Mol. Sci. 2016, 17, 399. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.C.; Li, X.J.; Qu, Z.; Wang, H.R.; Cheng, Y.; Dong, S.J.; Zhao, H. Comparative proteomic analysis reveals novel insights into the continuous cropping induced response in Scrophularia ningpoensis. J. Sci. Food Agric. 2023, 103, 1832–1845. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.T.; Chen, C.; Zhao, Y.P.; Xi, W.; Zhou, X.L.; Chen, B.L.; Fu, C.X. Association between Chemical and Genetic Variation of Wild and Cultivated Populations of Scrophularia ningpoensis Hemsl. Planta Med. 2011, 77, 865–871. [Google Scholar] [CrossRef]
- Chen, C.; Li, P.; Wang, R.H.; Schaal, B.A.; Fu, C.X. The Population Genetics of Cultivation: Domestication of a Traditional Chinese Medicine, Scrophularia ningpoensis Hemsl. (Scrophulariaceae). PLoS ONE 2014, 9, e105064. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Sun, W.; Li, J.; Yao, H.; Shi, Y.; Wang, P.; Huang, B.; Shi, L.; Liu, D.; Hu, Z.; et al. Identifying the Species of Seeds in Traditional Chinese Medicine Using DNA Barcoding. Front. Pharmacol. 2018, 9, 701. [Google Scholar] [CrossRef]
- Jiao, J.; Huang, W.; Bai, Z.; Liu, F.; Ma, C.; Liang, Z. DNA barcoding for the efficient and accurate identification of medicinal polygonati rhizoma in China. PLoS ONE 2018, 13, e0201015. [Google Scholar] [CrossRef]
- Navarro-Perez, M.L.; Lopez, J.; Fernandez-Mazuecos, M.; Rodriguez-Riano, T.; Vargas, P.; Ortega-Olivencia, A. The role of birds and insects in pollination shifts of Scrophularia (Scrophulariaceae). Mol. Phylogenet. Evol. 2013, 69, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Scheunert, A.; Heubl, G. Diversification of Scrophularia (Scrophulariaceae) in the Western Mediterranean and Macaronesia--phylogenetic relationships, reticulate evolution and biogeographic patterns. Mol. Phylogenet. Evol. 2014, 70, 296–313. [Google Scholar] [CrossRef] [PubMed]
- Scheunert, A.; Heubl, G. Phylogenetic relationships among New World Scrophularia L. (Scrophulariaceae): New insights inferred from DNA sequence data. Plant Syst. Evol. 2010, 291, 69–89. [Google Scholar] [CrossRef]
- Chen, C.; LEE, P.; Lee, J.; Schaal, B.A.; Fu, C.X. Studies on Domestication & Phylogeography of Scrophularia ningpoensis Hemsley and Phylogeny of Eastern Asia Scrophularia. Ph.D. Dissertation, Zhejiang University, Hangzhou, China, 2011. [Google Scholar]
- Wang, R.H. Phylogeny and Biogeography of Scrophularia and Phylogeography of S. incisa Complex. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2015. [Google Scholar]
- Hajibabaei, M.; Singer, G.A.C.; Hebert, P.D.N.; Hickey, D.A. DNA barcoding: How it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 2007, 23, 167–172. [Google Scholar] [CrossRef]
- Feng, J.Y.; Jin, X.J.; Zhang, S.L.; Yang, J.W.; Fei, S.P.; Huang, Y.S.; Liu, Y.; Qi, Z.C.; Li, P. Smilax weniae, a New Species of Smilacaceae from Limestone Areas Bordering Guizhou and Guangxi, China. Plants 2022, 11, 1032. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Mesa-Valle, C.; Manzano-Agugliaro, F. Trends in plant research using molecular markers. Planta 2018, 247, 543–557. [Google Scholar] [CrossRef]
- Wang, R.H.; Gao, J.; Feng, J.Y.; Yang, Z.P.; Qi, Z.C.; Li, P.; Fu, C.X. Comparative and Phylogenetic Analyses of Complete Chloroplast Genomes of Scrophularia incisa Complex (Scrophulariaceae). Genes 2022, 13, 1691. [Google Scholar] [CrossRef]
- Lu, Q.X.; Chang, X.; Gao, J.; Wu, X.; Wu, J.; Qi, Z.C.; Wang, R.H.; Yan, X.L.; Li, P. Evolutionary Comparison of the Complete Chloroplast Genomes in Convallaria Species and Phylogenetic Study of Asparagaceae. Genes 2022, 13, 1724. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.M.; Zhang, M.; Liang, Z.S.; He, Q.L. Characterization and Comparative Analysis of Chloroplast Genomes in Five Uncaria Species Endemic to China. Int. J. Mol. Sci. 2022, 23, 11617. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.Y.; Yang, H.B.; Jin, C.L.; Holmgren, N.H. Scrophulariaceae. In Flora of China; Wu, Z.-Y., Ed.; Missouri Botanical Garden: St. Louis, MI, USA, 1998; Volume 18, 212p. [Google Scholar]
- Yang, J.B.; Yang, S.X.; Li, H.T.; Yang, J.; Li, D.Z. Comparative Chloroplast Genomes of Camellia Species. PLoS ONE 2013, 8, e73053. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.H.; Zhang, J.; Chen, H.T.; Ma, L.N.; Liu, Y.S. Analysis of synonymous codon usage in foot-and-mouth disease virus. Vet. Res. Commun. 2010, 34, 393–404. [Google Scholar] [CrossRef]
- Lu, R.S.; Li, P.; Qiu, Y.X. The Complete Chloroplast Genomes of Three Cardiocrinum (Liliaceae) Species:Comparative Genomic and Phylogenetic Analyses. Front. Plant Sci. 2017, 7, 2054. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Lu, R.S.; Xu, W.Q.; Ohi-Toma, T.; Cai, M.Q.; Qiu, Y.X.; Cameron, K.M.; Fu, C.X. Comparative Genomics and Phylogenomics of East Asian Tulips (Amana, Liliaceae). Front. Plant Sci. 2017, 8, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodin, S.S.; Kim, J.S.; Kim, J.-H. Complete Chloroplast Genome of Chionographis japonica (Willd.) Maxim. (Melanthiaceae): Comparative Genomics and Evaluation of Universal Primers for Liliales. Plant Mol. Biol. Report. 2013, 31, 1407–1421. [Google Scholar] [CrossRef]
- Zhao, Y.; Yin, J.; Guo, H.; Zhang, Y.; Xiao, W.; Sun, C.; Wu, J.; Qu, X.; Yu, J.; Wang, X.; et al. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Front. Plant Sci. 2014, 5, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruhlman, T.A.; Jansen, R.K. The plastid genomes of flowering plants. In Chloroplast Biotechnology; Humana Press: Totowa, NJ, USA, 2014; Volume 1132, pp. 3–38. [Google Scholar]
- Xiao, S.; Xu, P.; Deng, Y.; Dai, X.; Cao, Q. Comparative analysis of chloroplast genomes of cultivars and wild species of sweetpotato (Ipomoea batatas [L.] Lam). BMC Genom. 2021, 22, 368. [Google Scholar] [CrossRef]
- Xu, W.Q.; Losh, J.; Chen, C.; Li, P.; Wang, R.H.; Zhao, Y.P.; Qiu, Y.X.; Fu, C.X. Comparative genomics of figworts (Scrophularia, Scrophulariaceae), with implications for the evolution of Scrophularia and Lamiales. J. Syst. Evol. 2019, 57, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Tang, G.; Wang, X.; Zhang, J.; Chen, S.; Lu, C.; Zhang, D.; Li, Y. Micro-RNA-21 rs1292037 A>G polymorphism can predict hepatocellular carcinoma prognosis (HCC), and plays a key role in cell proliferation and ischemia-reperfusion injury (IRI) in HCC cell model of IRI. Saudi Med. J. 2020, 41, 383–392. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Yang, J.X.; Bai, M.Z.; Zhang, G.Q.; Liu, Z.J. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC Plant Biol. 2021, 21, 248. [Google Scholar] [CrossRef]
- Gastineau, R.; Davidovich, N.A.; Davidovich, O.I.; Lemieux, C.; Turmel, M.; Wrobel, R.J.; Witkowski, A. Extreme Enlargement of the Inverted Repeat Region in the Plastid Genomes of Diatoms from the Genus Climaconeis. Int. J. Mol. Sci. 2021, 22, 7155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, M.-M.; Zhang, X.-M.; Chen, S.-N.; Liang, Z.-S. The complete chloroplast genome sequence of traditional Chinese medicine Uncaria macrophylla (Rubiaceae). Mitochondrial DNA Part B 2022, 7, 694–695. [Google Scholar] [CrossRef]
- Zhu, A.D.; Guo, W.H.; Gupta, S.; Fan, W.S.; Mower, J.P. Evolutionary dynamics of the plastid inverted repeat: The effects of expansion, contraction, and loss on substitution rates. New Phytol. 2016, 209, 1747–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bock, R. Structure, function, and inheritance of plastid genomes. In Cell and Molecular Biology of Plastids; Bock, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 29–63. [Google Scholar] [CrossRef]
- Ruhlman, T.A.; Jansen, R.K.; Kuehl, J.V. Evolution and function of plastid genomes in higher plants. Annu. Rev. Plant Biol. 2019, 70, 395–420. [Google Scholar]
- Folk, R.A.; Sewnath, N.; Xiang, C.L.; Sinn, B.T.; Guralnick, R.P. Degradation of key photosynthetic genes in the critically endangered semi-aquatic flowering plant Saniculiphyllum guangxiense (Saxifragaceae). BMC Plant Biol. 2020, 20, 324. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.F.; Freudenstein, J.V.; Li, J.; Mayfield-Jones, D.R.; Perez, L.; Pires, J.C.; Santos, C. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Mol. Biol. Evol. 2014, 31, 3095–3112. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.S.; Chen, J.J.W.; Chiu, C.C.; Hsiao, H.C.W.; Yang, C.J.; Jin, X.H.; Leebens-Mack, J.; de Pamphilis, C.W.; Huang, Y.T.; Yang, L.H.; et al. Concomitant loss of NDH complex-related genes within chloroplast and nuclear genomes in some orchids. Plant J. 2017, 90, 994–1006. [Google Scholar] [CrossRef] [Green Version]
- Szmidt-Małyska, K.; Gabryś, H. The ycf gene family in Populus trichocarpa. Plant Mol. Biol. Report. 2016, 34, 561–572. [Google Scholar]
- Zhang, X.; Wessler, S.R. The roles of ycf15 and ycf68 in chloroplasts of Yucca filamentosa (Agavaceae). Curr. Genet. 2004, 45, 44–50. [Google Scholar]
- Wicke, S.; Naumann, J. Molecular Evolution of Plastid Genomes in Parasitic Flowering Plants. Adv. Bot. Res. 2018, 85, 315–347. [Google Scholar] [CrossRef]
- Szczecinska, M.; Sawicki, J. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae. Int. J. Mol. Sci. 2015, 16, 22258–22279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Yang, B.X.; Zhu, W.; Sun, L.L.; Tian, J.K.; Wang, X.M. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms. Gene 2013, 528, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Fujiwara, S.; Tsuzuki, M. Energy conservation in photosynthetic microorganisms. J. Gen. Appl. Microbiol. 2020, 66, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Q.X.; Gao, J.; Wu, J.J.; Zhou, X.; Wu, X.; Li, M.D.; Wei, Y.K.; Wang, R.H.; Qi, Z.C.; Li, P. Development of 19 novel microsatellite markers of lily-of-the-valley (Convallaria, Asparagaceae) from transcriptome sequencing. Mol. Biol. Rep. 2020, 47, 3041–3047. [Google Scholar] [CrossRef]
- Yang, Q.W.; Jiang, Y.J.; Wang, Y.P.; Han, R.L.; Liang, Z.S.; He, Q.L.; Jia, Q.J. SSR Loci Analysis in Transcriptome and Molecular Marker Development in Polygonatum sibiricum. Biomed Res. Int. 2022, 2022, 4237913. [Google Scholar] [CrossRef]
- Zalapa, J.E.; Cuevas, H.; Zhu, H.Y.; Steffan, S.; Senalik, D.; Zeldin, E.; McCown, B.; Harbut, R.; Simon, P. Using Next-Generation Sequencing Approaches to Isolate Simple Sequence Repeat (SSR) Loci in the Plant Sciences. Am. J. Bot. 2012, 99, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Mazumdar, P.; Othman, R.B.; Mebus, K.; Ramakrishnan, N.; Harikrishna, J.A. Codon usage and codon pair patterns in non-grass monocot genomes. Ann. Bot. 2017, 120, 893–909. [Google Scholar] [CrossRef] [Green Version]
- Ingvarsson, P.K. Molecular evolution of synonymous codon usage in Populus. BMC Evol. Biol. 2008, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon usage bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef]
- Llaurens, V.; Whibley, A.; Joron, M. Genetic architecture and balancing selection: The life and death of differentiated variants. Mol. Ecol. 2017, 26, 2430–2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herdegen-Radwan, M.; Phillips, K.P.; Babik, W.; Mohammed, R.S.; Radwan, J. Balancing selection versus allele and supertype turnover in MHC class II genes in guppies. Heredity 2021, 126, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Dong, W.P.; Li, W.Q.; Lu, Y.Z.; Xie, X.M.; Jin, X.B.; Shi, J.P.; He, K.H.; Suo, Z.L. Comparative Analysis of Six Lagerstroemia Complete Chloroplast Genomes. Front. Plant Sci. 2017, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.H. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [Green Version]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. Parsimony in systematics: Biological and Statistical issues. Ann. Rev. Ecol. Syst. 1983, 14, 313–333. [Google Scholar] [CrossRef]
- Delsuc, F.; Brinkmann, H.; Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 2005, 6, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Cronn, R.; Liston, A.; Parks, M.; Gernandt, D.S.; Shen, R.; Mockler, T. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res. 2008, 36, e122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Ni, Y.; Li, J.; Zhang, X.; Yang, H.; Chen, H.; Liu, C. CPGView: A package for visualizing detailed chloroplast genome structures. Mol. Ecol. Resour. 2023, 23, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Downie, S.R.; Jansen, R.K. A Comparative Analysis of Whole Plastid Genomes from the Apiales: Expansion and Contraction of the Inverted Repeat, Mitochondrial to Plastid Transfer of DNA, and Identification of Highly Divergent Noncoding Regions. Syst. Bot. 2015, 40, 336–351. [Google Scholar] [CrossRef]
- Lu, Q.; Ye, W.; Lu, R.; Xu, W.; Qiu, Y. Phylogenomic and Comparative Analyses of Complete Plastomes of Croomia and Stemona (Stemonaceae). Int. J. Mol. Sci. 2018, 19, 2383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef] [Green Version]
- Darling, A.C.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahiri-Elitzur, S.; Tuller, T. Codon-based indices for modeling gene expression and transcript evolution. Comput. Struct. Biotechnol. 2021, 19, 2646–2663. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Li, W.H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 1986, 24, 28–38. [Google Scholar] [CrossRef]
- Liu, X.S.; Zhang, Y.G.; Fang, Y.Z.; Wang, Y.L. Patterns and influencing factor of synonymous codon usage in porcine circovirus. Virol. J. 2012, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Lv, S.; Zhang, Y.; Du, X.; Wang, L.; Biradar, S.S.; Tan, X.; Wan, F.; Weining, S. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS ONE 2012, 7, e36869. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, S.; Schleiermacher, C. REPuter: Fast computation of maximal repeats in complete genomes. Bioinformatics 1999, 15, 426–427. [Google Scholar] [CrossRef] [Green Version]
- Beier, S.; Thiel, T.; Munch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, S.; He, F.; Zhu, J.; Hu, S.; Yu, J. How do variable substitution rates influence Ka and Ks calculations? Genom. Proteom. Bioinform. 2009, 7, 116–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
Characteristics | S. ningpoensis | S. buergeriana | S. kakudensis | S. yoshimurae | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GenBank Acc. No. | OQ633009 | NC_053823 | MN734369 | OQ633013 | NC_031437 | KP718626 | OQ633012 | OQ633011 | MN255822 | OQ633010 |
Total cpDNA size (bp) | 153,173 | 153,175 | 153,175 | 153,148 | 153,631 | 153,631 | 153,032 | 153,024 | 153,016 | 153,173 |
LSC length | 84,255 | 84,257 | 84,257 | 84,259 | 84,454 | 84,454 | 84,138 | 84,130 | 84,124 | 84,274 |
SSC length | 17,938 | 17,938 | 17,938 | 17,925 | 17,929 | 17,929 | 17,922 | 17,922 | 17,922 | 17,925 |
IR length | 25,490 | 25,490 | 25,490 | 25,482 | 25,624 | 25,624 | 25,486 | 25,486 | 25,485 | 25,487 |
Total GC content (%) | 37.99 | 37.99 | 37.99 | 37.98 | 37.99 | 37.99 | 37.98 | 37.98 | 37.98 | 37.98 |
LSC | 36.08 | 36.08 | 36.08 | 36.08 | 36.07 | 36.07 | 36.07 | 36.08 | 36.08 | 36.07 |
SSC | 32.18 | 32.18 | 32.18 | 32.17 | 32.17 | 32.17 | 32.15 | 32.16 | 32.17 | 32.18 |
IR | 43.19 | 43.19 | 43.19 | 43.18 | 43.18 | 43.18 | 43.16 | 43.17 | 43.17 | 43.17 |
Total number of genes | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 |
Protein-coding genes | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
rRNA genes | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
tRNA genes | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Duplicated genes | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Wang, X.; Wang, R.; Li, P. Characterization and Comparative Analysis of Chloroplast Genomes of Medicinal Herb Scrophularia ningpoensis and Its Common Adulterants (Scrophulariaceae). Int. J. Mol. Sci. 2023, 24, 10034. https://doi.org/10.3390/ijms241210034
Guo L, Wang X, Wang R, Li P. Characterization and Comparative Analysis of Chloroplast Genomes of Medicinal Herb Scrophularia ningpoensis and Its Common Adulterants (Scrophulariaceae). International Journal of Molecular Sciences. 2023; 24(12):10034. https://doi.org/10.3390/ijms241210034
Chicago/Turabian StyleGuo, Lei, Xia Wang, Ruihong Wang, and Pan Li. 2023. "Characterization and Comparative Analysis of Chloroplast Genomes of Medicinal Herb Scrophularia ningpoensis and Its Common Adulterants (Scrophulariaceae)" International Journal of Molecular Sciences 24, no. 12: 10034. https://doi.org/10.3390/ijms241210034
APA StyleGuo, L., Wang, X., Wang, R., & Li, P. (2023). Characterization and Comparative Analysis of Chloroplast Genomes of Medicinal Herb Scrophularia ningpoensis and Its Common Adulterants (Scrophulariaceae). International Journal of Molecular Sciences, 24(12), 10034. https://doi.org/10.3390/ijms241210034