Insights into Endothelin Receptors in Pulmonary Hypertension
Abstract
:1. Introduction
2. Background and Mechanism of PH
2.1. Pathological Process of PH
2.2. Signaling Pathways in PH
3. Endothelin Receptors and Their Pathway Mechanisms
3.1. Endothelin Subtypes and Distribution
3.2. Classification of Endothelin Receptors
3.3. Endothelin Synthesis
3.4. Regulation of the Endothelin Pathway
4. Mechanism of the Endothelin Pathway and Its Antagonists in PH
4.1. The Role of Endothelin in the Disease Process
4.2. ETA Receptor Antagonists
4.3. ETB Receptor Antagonists
5. Therapeutic Approaches
5.1. Treatments Targeting Endothelin Receptors
5.2. Drugs under Clinical Investigation
Drug | Dosage | Target | R&D Status | R&D Institutions | Country | Reference/Clinical Trial Identifier: |
---|---|---|---|---|---|---|
Macitentan | 10 mg qd p.o. | Non-selective | Approved | Actelion Pharmaceuticals Ltd. | Switzerland | [111] |
Ambrisentan | 5 mg qd p.o. 10 mg qd p.o. if tolerated | ETA | Approved | Abbott Laboratories | United States | [112] |
Bosentan | 62.5 mg bid p.o. (4w) 125 mg bid p.o. | Non-selective | Approved | F. Hoffmann-La Roche Ltd. | Switzerland | [113] |
Macitentan/Tadalafil | Macitentan 10 mg Tadalafil 20 mg | Non-selective PDE5A | Clinical Phase III | Actelion Pharmaceuticals Ltd. | Switzerland | NCT05236231 |
Ambrisentan/Tadalafil | Ambrisentan 10 mg Tadalafil 40 mg | ETA | Clinical Phase I | GSK Plc | United Kingdom | NCT02688387 |
Getagozumab | 300–1800 mg i.v. | ETA | Clinical Phase I | Gmax Biopharm LLC | China | NCT04503733 |
Recombinant anti-human ETA humanized monoclonal antibody | 1500–2000 mg i.v. | ETA | Clinical Phase I | Gmax Biopharm LLC | China | NCT04505137 |
SC-0062 | 50 mg qd p.o. | ETA | Clinical Phase I | Shijiazhuang Zhikang Hongren New Drug Development Co Ltd. | China | CTR20201868 |
Sitaxentan Sodium | 100 mg qd p.o. | ETA | Pre-clinical | Pfizer Inc. | United States | NCT01210443 |
Enrasentan | 60–90 mg qd p.o. | Non-selective | Terminated | GSK Plc | United Kingdom | [114] |
PD-156707 | 40 mg/kg qd p.o. for rats | ETA | Terminated | Pfizer Inc. | United States | [115] |
Tezosentan disodium | 5 mg/h i.v. | Non-selective | Terminated | F. Hoffmann-La Roche Ltd. | Switzerland | NCT01094067 |
ZD-1611 | 1–3 mg/kg qid p.o. | ETA | Terminated | AstraZeneca Pharmaceutical Co., Ltd. | China | [98] |
5.3. Problems and Prospects in Research and Development
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. Eur. Respir. J. 2023, 61, 2200879. [Google Scholar] [CrossRef]
- Galiè, N.; McLaughlin, V.V.; Rubin, L.J.; Simonneau, G. An Overview of the 6th World Symposium on Pulmonary Hypertension. Eur. Respir. J. 2019, 53, 1802148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poch, D.; Mandel, J. Pulmonary Hypertension. Ann. Intern. Med. 2021, 174, ITC49–ITC64. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic Definitions and Updated Clinical Classification of Pulmonary Hypertension. Eur. Respir. J. 2019, 53, 1801913. [Google Scholar] [CrossRef]
- Maron, B.A.; Kovacs, G.; Vaidya, A.; Bhatt, D.L.; Nishimura, R.A.; Mak, S.; Guazzi, M.; Tedford, R.J. Cardiopulmonary Hemodynamics in Pulmonary Hypertension and Heart Failure. J. Am. Coll. Cardiol. 2020, 76, 2671–2681. [Google Scholar] [CrossRef] [PubMed]
- Thenappan, T.; Ormiston, M.L.; Ryan, J.J.; Archer, S.L. Pulmonary Arterial Hypertension: Pathogenesis and Clinical Management. BMJ 2018, j5492. [Google Scholar] [CrossRef]
- Machado, R.D.; Eickelberg, O.; Elliott, C.G.; Geraci, M.W.; Hanaoka, M.; Loyd, J.E.; Newman, J.H.; Phillips, J.A.; Soubrier, F.; Trembath, R.C.; et al. Genetics and Genomics of Pulmonary Arterial Hypertension. J. Am. Coll. Cardiol. 2009, 54, S32–S42. [Google Scholar] [CrossRef] [Green Version]
- Sommer, N.; Ghofrani, H.A.; Pak, O.; Bonnet, S.; Provencher, S.; Sitbon, O.; Rosenkranz, S.; Hoeper, M.M.; Kiely, D.G. Current and Future Treatments of Pulmonary Arterial Hypertension. Br. J. Pharm. 2021, 178, 6–30. [Google Scholar] [CrossRef] [Green Version]
- Pullamsetti, S.S.; Savai, R.; Seeger, W.; Goncharova, E.A. From Cancer Biology to New Pulmonary Arterial Hypertension Therapeutics. Targeting Cell Growth and Proliferation Signaling Hubs. Am. J. Respir. Crit. Care Med. 2017, 195, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Sydykov, A.; Mamazhakypov, A.; Maripov, A.; Kosanovic, D.; Weissmann, N.; Ghofrani, H.A.; Sarybaev, A.S.; Schermuly, R.T. Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. Int. J. Envrion. Res. Public Health 2021, 18, 1692. [Google Scholar] [CrossRef]
- Naeije, R.; Richter, M.J.; Rubin, L.J. The Physiologic Basis of Pulmonary Arterial Hypertension. Eur. Respir. J. 2022, 59, 2102334. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Janocha, A.J.; Erzurum, S.C. Metabolism in Pulmonary Hypertension. Annu. Rev. Physiol. 2021, 83, 551–576. [Google Scholar] [CrossRef]
- Mandras, S.A.; Mehta, H.S.; Vaidya, A. Pulmonary Hypertension: A Brief Guide for Clinicians. Mayo Clin. Proc. 2020, 95, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Cassady, S.J.; Ramani, G.V. Right Heart Failure in Pulmonary Hypertension. Cardiol. Clin. 2020, 38, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Westerhof, B.E.; Saouti, N.; van der Laarse, W.J.; Westerhof, N.; Vonk Noordegraaf, A. Treatment Strategies for the Right Heart in Pulmonary Hypertension. Cardiovasc. Res. 2017, 113, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Vonk Noordegraaf, A.; Westerhof, B.E.; Westerhof, N. The Relationship Between the Right Ventricle and Its Load in Pulmonary Hypertension. J. Am. Coll. Cardiol. 2017, 69, 236–243. [Google Scholar] [CrossRef]
- Luks, A.M.; Swenson, E.R.; Bärtsch, P. Acute High-Altitude Sickness. Eur. Respir. Rev. 2017, 26, 160096. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Dasgupta, A.; Read, A.D.; Bentley, R.E.T.; Motamed, M.; Chen, K.-H.; Al-Qazazi, R.; Mewburn, J.D.; Dunham-Snary, K.J.; Alizadeh, E.; et al. Oxygen Sensing, Mitochondrial Biology and Experimental Therapeutics for Pulmonary Hypertension and Cancer. Free Radic. Biol. Med. 2021, 170, 150–178. [Google Scholar] [CrossRef]
- Rawat, M.; Lakshminrusimha, S.; Vento, M. Pulmonary Hypertension and Oxidative Stress: Where Is the Link? Semin. Fetal Neonatal Med. 2022, 27, 101347. [Google Scholar] [CrossRef]
- Huertas, A.; Guignabert, C.; Barberà, J.A.; Bärtsch, P.; Bhattacharya, J.; Bhattacharya, S.; Bonsignore, M.R.; Dewachter, L.; Dinh-Xuan, A.T.; Dorfmüller, P.; et al. Pulmonary Vascular Endothelium: The Orchestra Conductor in Respiratory Diseases: Highlights from Basic Research to Therapy. Eur. Respir. J. 2018, 51, 1700745. [Google Scholar] [CrossRef] [Green Version]
- Cai, A.; Li, L.; Zhou, Y. Pathophysiological Effects of RhoA and Rho-Associated Kinase on Cardiovascular System. J. Hypertens. 2016, 34, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-Z.; Li, S.-Y.; Tian, X.-Y.; Hong, Z.; Li, J.-X. Effect of Rho Kinase Inhibitor Fasudil on the Expression ET-1 and NO in Rats with Hypoxic Pulmonary Hypertension. Clin. Hemorheol. Microcirc. 2019, 71, 3–8. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, P.; Wang, J.; Xu, Q.; Fan, J.; Yan, L.; Ma, P.; Zhou, R. Betaine Alleviates Right Ventricular Failure via Regulation of Rho A/ROCK Signaling Pathway in Rats with Pulmonary Arterial Hypertension. Eur. J. Pharmacol. 2021, 910, 174311. [Google Scholar] [CrossRef] [PubMed]
- Morand, J.; Briançon-Marjollet, A.; Lemarie, E.; Gonthier, B.; Arnaud, J.; Korichneva, I.; Godin-Ribuot, D. Zinc Deficiency Promotes Endothelin Secretion and Endothelial Cell Migration through Nuclear Hypoxia-Inducible Factor-1 Translocation. Am. J. Physiol.-Cell Physiol. 2019, 317, C270–C276. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Jiao, Y.; Guo, L.; Ma, Y.; Zhao, R.; Li, X.; Shen, L.; Zhou, Z.; Kim, S.; Liu, J. Astragaloside IV Blocks Monocrotaline-induced Pulmonary Arterial Hypertension by Improving Inflammation and Pulmonary Artery Remodeling. Int. J. Mol. Med. 2020, 47, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Ji, Z.; Fu, J.; Wang, X.-F.; Zhang, L.-S. Endosulfan Induces Endothelial Inflammation and Dysfunction via IRE1α/NF-ΚB Signaling Pathway. Environ. Sci. Pollut. Res. 2020, 27, 26163–26171. [Google Scholar] [CrossRef]
- Barnes, E.A.; Chen, C.; Sedan, O.; Cornfield, D.N. Loss of Smooth Muscle Cell Hypoxia Inducible Factor-1α Underlies Increased Vascular Contractility in Pulmonary Hypertension. FASEB J. 2017, 31, 650–662. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.-J.; Poth, J.M.; Zhang, H.; Flockton, A.; Laux, A.; Kumar, S.; McKeon, B.; Frid, M.G.; Mouradian, G.; Li, M.; et al. Suppression of HIF2 Signalling Attenuates the Initiation of Hypoxia-Induced Pulmonary Hypertension. Eur. Respir. J. 2019, 54, 1900378. [Google Scholar] [CrossRef]
- Singh, N.; Dorfmüller, P.; Shlobin, O.A.; Ventetuolo, C.E. Group 3 Pulmonary Hypertension: From Bench to Bedside. Circ. Res. 2022, 130, 1404–1422. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, R.X.; Bao, D. TGF-Β1 Promotes Pulmonary Arterial Hypertension in Rats via Activating RhoA/ROCK Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4988–4996. [Google Scholar]
- Guo, M.; Zhang, M.; Cao, X.; Fang, X.; Li, K.; Qin, L.; He, Y.; Zhao, J.; Xu, Y.; Liu, X.; et al. Notch4 Mediates Vascular Remodeling via ERK/JNK/P38 MAPK Signaling Pathways in Hypoxic Pulmonary Hypertension. Respir. Res. 2022, 23, 6. [Google Scholar] [CrossRef]
- Morris, H.E.; Neves, K.B.; Montezano, A.C.; MacLean, M.R.; Touyz, R.M. Notch3 Signalling and Vascular Remodelling in Pulmonary Arterial Hypertension. Clin. Sci. 2019, 133, 2481–2498. [Google Scholar] [CrossRef] [PubMed]
- Carling, D. AMPK Signalling in Health and Disease. Curr. Opin. Cell Biol. 2017, 45, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Fang, X.; Guo, M.; Li, X.; He, Y.; Xie, M.; Xu, Y.; Liu, X. TRB3 Mediates Vascular Remodeling by Activating the MAPK Signaling Pathway in Hypoxic Pulmonary Hypertension. Respir. Res. 2021, 22, 312. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Liu, L.; Wu, Y.; Wang, R.; Jiang, Y.; Hu, R.; Zhu, L.; Li, L.; Fang, Y.; Yang, C.; et al. Resistin-like Molecule β Acts as a Mitogenic Factor in Hypoxic Pulmonary Hypertension via the Ca2+-Dependent PI3K/Akt/MTOR and PKC/MAPK Signaling Pathways. Respir. Res. 2021, 22, 8. [Google Scholar] [CrossRef]
- Coons, J.C.; Pogue, K.; Kolodziej, A.R.; Hirsch, G.A.; George, M.P. Pulmonary Arterial Hypertension: A Pharmacotherapeutic Update. Curr. Cardiol. Rep. 2019, 21, 141. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A Novel Potent Vasoconstrictor Peptide Produced by Vascular Endothelial Cells. Nature 1988, 332, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Inoue, A.; Yanagisawa, M.; Kimura, S.; Kasuya, Y.; Miyauchi, T.; Goto, K.; Masaki, T. The Human Endothelin Family: Three Structurally and Pharmacologically Distinct Isopeptides Predicted by Three Separate Genes. Proc. Natl. Acad. Sci. USA 1989, 86, 2863–2867. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, T.; Yanagisawa, M.; Takuwat, Y.; Miyazakit, H.; Kimura, S.; Goto, K.; Masaki, T. Cloning of a CDNA Encoding a Non-Isopeptide-Selective Subtype of the Endothelin Receptor. Nature 1990, 348, 732–735. [Google Scholar] [CrossRef] [Green Version]
- Mouchtouri, E.-T.; Konstantinou, T.; Lekkas, P.; Kolettis, T.M. Endothelin System and Ischemia-Induced Ventricular Tachyarrhythmias. Life 2022, 12, 1627. [Google Scholar] [CrossRef]
- Raevens, S.; Boret, M.; Fallon, M.B. Hepatopulmonary Syndrome. JHEP Rep. 2022, 4, 100527. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.J.; Cho, Y.M.; Ham, E.; Cacioppo, J.A.; Park, C.J. Endothelin 2: A Key Player in Ovulation and Fertility. Reproduction 2022, 163, R71–R80. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.; Bramall, A.N.; Baynash, A.G.; Rattner, A.; Rakheja, D.; Post, M.; Joza, S.; McKerlie, C.; Stewart, D.J.; McInnes, R.R.; et al. Endothelin-2 Deficiency Causes Growth Retardation, Hypothermia, and Emphysema in Mice. J. Clin. Investig. 2013, 123, 2643–2653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siao, A.-C.; Shih, L.-J.; Lin, Y.-Y.; Tsuei, Y.-W.; Kuo, Y.-C.; Ku, H.-C.; Chuu, C.-P.; Hsiao, P.-J.; Kao, Y.-H. Investigation of the Molecular Mechanisms by Which Endothelin-3 Stimulates Preadipocyte Growth. Front. Endocrinol. 2021, 12, 661828. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, T.; Sakai, S. Endothelin and the Heart in Health and Diseases. Peptides 2019, 111, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Maguire, J.J.; Davenport, A.P. Endothelin-2, the Forgotten Isoform: Emerging Role in the Cardiovascular System, Ovarian Development, Immunology and Cancer: Emerging Role of ET-2. Br. J. Pharm. 2013, 168, 283–295. [Google Scholar] [CrossRef] [Green Version]
- Czopek, A.; Moorhouse, R.; Webb, D.J.; Dhaun, N. Therapeutic Potential of Endothelin Receptor Antagonism in Kidney Disease. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2016, 310, R388–R397. [Google Scholar] [CrossRef] [Green Version]
- Lüscher, T.F.; Barton, M. Endothelins and Endothelin Receptor Antagonists: Therapeutic Considerations for a Novel Class of Cardiovascular Drugs. Circulation 2000, 102, 2434–2440. [Google Scholar] [CrossRef] [Green Version]
- Maguire, J.J.; Davenport, A.P. Endothelin@25—New Agonists, Antagonists, Inhibitors and Emerging Research Frontiers: IUPHAR Review 12. Br. J. Pharm. 2014, 171, 5555–5572. [Google Scholar] [CrossRef] [Green Version]
- Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. Pharm. Rev. 2016, 68, 357–418. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, C.-B. The Roles of Endothelin and Its Receptors in Cigarette Smoke-Associated Pulmonary Hypertension with Chronic Lung Disease. Pathol.-Res. Pract. 2020, 216, 153083. [Google Scholar] [CrossRef]
- Ziegler, J.W.; Ivy, D.D.; Kinsella, J.P.; Abman, S.H. The Role of Nitric Oxide, Endothelin, and Prostaglandins in the Transition of the Pulmonary Circulation. Clin. Perinatol. 1995, 22, 387–403. [Google Scholar] [CrossRef]
- Bremnes, T.; Paasche, J.D.; Mehlum, A.; Sandberg, C.; Bremnes, B.; Attramadal, H. Regulation and Intracellular Trafficking Pathways of the Endothelin Receptors. J. Biol. Chem. 2000, 275, 17596–17604. [Google Scholar] [CrossRef] [Green Version]
- Shihoya, W.; Nishizawa, T.; Okuta, A.; Tani, K.; Dohmae, N.; Fujiyoshi, Y.; Nureki, O.; Doi, T. Activation Mechanism of Endothelin ETB Receptor by Endothelin-1. Nature 2016, 537, 363–368. [Google Scholar] [CrossRef]
- Barton, M.; Yanagisawa, M. Endothelin: 30 Years from Discovery to Therapy. Hypertension 2019, 74, 1232–1265. [Google Scholar] [CrossRef]
- Lerman, A.; Hildebrand, F.L.; Margulies, K.B.; O’Murchu, B.; Perrella, M.A.; Heublein, D.M.; Schwab, T.R.; Burnett, J.C. Endothelin: A New Cardiovascular Regulatory Peptide. Mayo Clin. Proc. 1990, 65, 1441–1455. [Google Scholar] [CrossRef] [Green Version]
- Inoue, A.; Yanagisawa, M.; Takuwa, Y.; Mitsui, Y.; Kobayashi, M.; Masaki, T. The Human Preproendothelin-1 Gene. J. Biol. Chem. 1989, 264, 14954–14959. [Google Scholar] [CrossRef]
- Khimji, A.; Rockey, D.C. Endothelin—Biology and Disease. Cell. Signal. 2010, 22, 1615–1625. [Google Scholar] [CrossRef]
- Feng, M.; Wang, D.; Wang, X.; Yang, Y.; Zhang, S. Bai-Hu-Tang Regulates Endothelin-1 and Its Signalling Pathway in Vascular Endothelial Cells. J. Ethnopharmacol. 2022, 284, 114812. [Google Scholar] [CrossRef]
- Kedzierski, R.M.; Yanagisawa, M. Endothelin System: The Double-Edged Sword in Health and Disease. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 851–876. [Google Scholar] [CrossRef]
- Almikhlafi, M.A.; Haghayeghi, K.; Gardner, A. Endothelin A (ETA) and Endothelin B (ETB) Receptor Subtypes Potentiate Epidermal Growth Factor (EGF)-Mediated Proliferation in Human Asthmatic Bronchial Airway Smooth Muscle. Cureus 2022. [Google Scholar] [CrossRef]
- Marsden, P.A.; Raju Danthuluri, N.; Brenner, B.M.; Ballermann, B.J.; Brock, T.A. Endothelin Action on Vascular Smooth Muscle Involves Inositol Trisphosphate and Calcium Mobilization. Biochem. Biophys. Res. Commun. 1989, 158, 86–93. [Google Scholar] [CrossRef]
- Christou, H.; Khalil, R.A. Mechanisms of Pulmonary Vascular Dysfunction in Pulmonary Hypertension and Implications for Novel Therapies. Am. J. Physiol.-Heart Circ. Physiol. 2022, 322, H702–H724. [Google Scholar] [CrossRef]
- Simonson, M.S.; Wann, S.; Mené, P.; Dubyak, G.R.; Kester, M.; Nakazato, Y.; Sedor, J.R.; Dunn, M.J. Endothelin Stimulates Phospholipase C, Na+/H+ Exchange, c-Fos Expression, and Mitogenesis in Rat Mesangial Cells. J. Clin. Investig. 1989, 83, 708–712. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Wang, T.; Yao, D.; Shi, Y.; Liu, J.; Wang, B.; Wei, H.; Liu, W.; Xu, C.; et al. DMSO-Soluble Smoking Particles up-Regulate the Vascular Endothelin Receptors through AMPK-SIRT1 and MAPK Pathways. Chem.-Biol. Interact. 2022, 368, 110203. [Google Scholar] [CrossRef]
- Stenmark, K.R.; Fagan, K.A.; Frid, M.G. Hypoxia-Induced Pulmonary Vascular Remodeling: Cellular and Molecular Mechanisms. Circ. Res. 2006, 99, 675–691. [Google Scholar] [CrossRef] [Green Version]
- Arleth, J.; Storer, L.; Ohlstein, H. Angiotensin Type 1 Receptors Mediate Smooth Muscle Proliferation and Endothelin Biosynthesis in Rat Vascular Smooth Muscle. J. Pharmacol. Exp. Ther. 1994, 271, 9. [Google Scholar]
- Speck, D.; Kleinau, G.; Szczepek, M.; Kwiatkowski, D.; Catar, R.; Philippe, A.; Scheerer, P. Angiotensin and Endothelin Receptor Structures with Implications for Signaling Regulation and Pharmacological Targeting. Front. Endocrinol. 2022, 13, 880002. [Google Scholar] [CrossRef]
- Bellaye, P.-S.; Yanagihara, T.; Granton, E.; Sato, S.; Shimbori, C.; Upagupta, C.; Imani, J.; Hambly, N.; Ask, K.; Gauldie, J.; et al. Macitentan Reduces Progression of TGF-Β1-Induced Pulmonary Fibrosis and Pulmonary Hypertension. Eur. Respir. J. 2018, 52, 1701857. [Google Scholar] [CrossRef] [Green Version]
- Kemp, S.S.; Aguera, K.N.; Cha, B.; Davis, G.E. Defining Endothelial Cell-Derived Factors That Promote Pericyte Recruitment and Capillary Network Assembly. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2632–2648. [Google Scholar] [CrossRef]
- Masaki, T. Endothelin in Vascular Biology. Ann. N. Y. Acad. Sci. 1994, 714, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Bofarid, S.; Hosman, A.E.; Mager, J.J.; Snijder, R.J.; Post, M.C. Pulmonary Vascular Complications in Hereditary Hemorrhagic Telangiectasia and the Underlying Pathophysiology. Int. J. Mol. Sci. 2021, 22, 3471. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, K.; Inamura, H.; Sugaya, T.; Matsuoka, M. Blockade of ALK4/5 Signaling Suppresses Cadmium- and Erastin-Induced Cell Death in Renal Proximal Tubular Epithelial Cells via Distinct Signaling Mechanisms. Cell Death Differ. 2019, 26, 2371–2385. [Google Scholar] [CrossRef] [PubMed]
- Gore, B.; Izikki, M.; Mercier, O.; Dewachter, L.; Fadel, E.; Humbert, M.; Dartevelle, P.; Simonneau, G.; Naeije, R.; Lebrin, F.; et al. Key Role of the Endothelial TGF-β/ALK1/Endoglin Signaling Pathway in Humans and Rodents Pulmonary Hypertension. PLoS ONE 2014, 9, e100310. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Inoue, A.; Ishikawa, T.; Kasuya, Y.; Kimura, S.; Kumagaye, S.; Nakajima, K.; Watanabe, T.X.; Sakakibara, S.; Goto, K. Primary Structure, Synthesis, and Biological Activity of Rat Endothelin, an Endothelium-Derived Vasoconstrictor Peptide. Proc. Natl. Acad. Sci. USA 1988, 85, 6964–6967. [Google Scholar] [CrossRef] [Green Version]
- Dhaun, N.; Webb, D.J. Endothelins in Cardiovascular Biology and Therapeutics. Nat. Rev. Cardiol. 2019, 16, 491–502. [Google Scholar] [CrossRef]
- Brewster, L.M.; Garcia, V.P.; Levy, M.V.; Stockelman, K.A.; Goulding, A.; DeSouza, N.M.; Greiner, J.J.; Hijmans, J.G.; DeSouza, C.A. Endothelin-1-Induced Endothelial Microvesicles Impair Endothelial Cell Function. J. Appl. Physiol. 2020, 128, 1497–1505. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Asadikaram, G.; Mohammadi, A.; Jahani, Y.; Moridi, M.; Masoumi, M. The Association of Endothelin-1 Gene Polymorphism and Its Plasma Levels with Hypertension and Coronary Atherosclerosis. Arch. Med. Sci. 2021, 17, 613–620. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Bai, Y.; Li, X.; Gao, X.; Li, C.; Guo, G.; Chen, S.; Sun, M.; Liu, K.; et al. Pipersentan: A De Novo Synthetic Endothelin Receptor Antagonist That Inhibits Monocrotaline- and Hypoxia-Induced Pulmonary Hypertension. Front. Pharmacol. 2022, 13, 920222. [Google Scholar] [CrossRef]
- Tilton, R.G.; Munsch, C.L.; Sherwood, S.J.; Chen, S.-J.; Chen, Y.-F.; Wu, C.; Block, N.; Dixon, R.A.F.; Brock, T.A. Attenuation of Pulmonary Vascular Hypertension and Cardiac Hypertrophy with Sitaxsentan Sodium, an Orally Active ETAreceptor Antagonist. Pulm. Pharmacol. Ther. 2000, 13, 87–97. [Google Scholar] [CrossRef]
- Ban, Y.; Liu, Y.; Li, Y.; Zhang, Y.; Xiao, L.; Gu, Y.; Chen, S.; Zhao, B.; Chen, C.; Wang, N. S-Nitrosation Impairs KLF4 Activity and Instigates Endothelial Dysfunction in Pulmonary Arterial Hypertension. Redox. Biol. 2019, 21, 101099. [Google Scholar] [CrossRef] [PubMed]
- Shatat, M.A.; Tian, H.; Zhang, R.; Tandon, G.; Hale, A.; Fritz, J.S.; Zhou, G.; Martínez-González, J.; Rodríguez, C.; Champion, H.C.; et al. Endothelial Krüppel-Like Factor 4 Modulates Pulmonary Arterial Hypertension. Am. J. Respir. Cell Mol. Biol. 2014, 50, 647–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nava, E.; Llorens, S. The Local Regulation of Vascular Function: From an Inside-Outside to an Outside-Inside Model. Front. Physiol. 2019, 10, 729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambalavanan, N.; Philips, J.B.; Bulger, A.; Oparil, S.; Chen, Y.-F. Endothelin-A Receptor Blockade in Porcine Pulmonary Hypertension. Pediatr. Res. 2002, 52, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Benamou, A.E.; Marlin, D.J.; Lekeux, P. Endothelin in the Equine Hypoxic Pulmonary Vasoconstrictive Response to Acute Hypoxia. Equine Vet. J. 2010, 33, 345–353. [Google Scholar] [CrossRef]
- Pearl, J.M.; Wellmann, S.A.; McNamara, J.L.; Lombardi, J.P.; Wagner, C.J.; Raake, J.L.; Nelson, D.P. Bosentan Prevents Hypoxia-Reoxygenation–Induced Pulmonary Hypertension and Improves Pulmonary Function. Ann. Thorac. Surg. 1999, 68, 1714–1721. [Google Scholar] [CrossRef]
- Itoh, H.; Yokochi, A.; Yamauchi-Kohno, R.; Maruyama, K. Effects of the Endothelin ETA Receptor Antagonist, TA-0201, on Pulmonary Arteries Isolated from Hypoxic Rats. Eur. J. Pharmacol. 1999, 376, 233–238. [Google Scholar] [CrossRef]
- Tabeling, C.; González Calera, C.R.; Lienau, J.; Höppner, J.; Tschernig, T.; Kershaw, O.; Gutbier, B.; Naujoks, J.; Herbert, J.; Opitz, B.; et al. Endothelin B Receptor Immunodynamics in Pulmonary Arterial Hypertension. Front. Immunol. 2022, 13, 895501. [Google Scholar] [CrossRef]
- Green, D.S.; Rupasinghe, C.; Warburton, R.; Wilson, J.L.; Sallum, C.O.; Taylor, L.; Yatawara, A.; Mierke, D.; Polgar, P.; Hill, N. A Cell Permeable Peptide Targeting the Intracellular Loop 2 of Endothelin B Receptor Reduces Pulmonary Hypertension in a Hypoxic Rat Model. PLoS ONE 2013, 8, e81309. [Google Scholar] [CrossRef]
- Kelland, N.F.; Bagnall, A.J.; Morecroft, I.; Gulliver-Sloan, F.H.; Dempsie, Y.; Nilsen, M.; Yanagisawa, M.; MacLean, M.R.; Kotelevtsev, Y.V.; Webb, D.J. Endothelial ETB Limits Vascular Remodelling and Development of Pulmonary Hypertension during Hypoxia. J. Vasc. Res. 2010, 47, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Naomi, S.; Iwaoka, T.; Disashi, T.; Inoue, J.; Kanesaka, Y.; Tokunaga, H.; Tomita, K. Endothelin-1 Inhibits Endothelin-Converting Enzyme-1 Expression in Cultured Rat Pulmonary Endothelial Cells. Circulation 1998, 97, 234–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zolty, R. Pulmonary Arterial Hypertension Specific Therapy: The Old and the New. Pharmacol. Ther. 2020, 214, 107576. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wu, H.-W.; Li, Z.-G. The Effect of Sildenafil Combined with Inhalational Nitric Oxide Therapy in Neonatal Pulmonary Hypertension. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 4683–4690. [Google Scholar] [PubMed]
- Kuntz, M.; Leiva-Juarez, M.M.; Luthra, S. Systematic Review of Randomized Controlled Trials of Endothelin Receptor Antagonists for Pulmonary Arterial Hypertension. Lung 2016, 194, 723–732. [Google Scholar] [CrossRef]
- Liu, C.; Chen, J.; Gao, Y.; Deng, B.; Liu, K. Endothelin Receptor Antagonists for Pulmonary Arterial Hypertension. Cochrane Database Syst. Rev. 2021, 2021, CD004434. [Google Scholar] [CrossRef]
- Humbert, M.; Lau, E.M.T.; Montani, D.; Jaïs, X.; Sitbon, O.; Simonneau, G. Advances in Therapeutic Interventions for Patients with Pulmonary Arterial Hypertension. Circulation 2014, 130, 2189–2208. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.J.; Chen, Y.F.; Meng, Q.C.; Durand, J.; Dicarlo, V.S.; Oparil, S. Endothelin-Receptor Antagonist Bosentan Prevents and Reverses Hypoxic Pulmonary Hypertension in Rats. J. Appl. Physiol. 1995, 79, 2122–2131. [Google Scholar] [CrossRef]
- Bialecki, R.A.; Fisher, C.S.; Abbott, B.M.; Barthlow, H.G.; Caccese, R.G.; Stow, R.B.; Rumsey, J.; Rumsey, W. ZD1611, an Orally Active Endothelin-A Receptor Antagonist, Prevents Chronic Hypoxia-Induced Pulmonary Hypertension in the Rat. Pulm. Pharmacol. Ther. 1999, 12, 303–312. [Google Scholar] [CrossRef]
- Galiè, N.; Olschewski, H.; Oudiz, R.J.; Torres, F.; Frost, A.; Ghofrani, H.A.; Badesch, D.B.; McGoon, M.D.; McLaughlin, V.V.; Roecker, E.B.; et al. Ambrisentan for the Treatment of Pulmonary Arterial Hypertension: Results of the Ambrisentan in Pulmonary Arterial Hypertension, Randomized, Double-Blind, Placebo-Controlled, Multicenter, Efficacy (ARIES) Study 1 and 2. Circulation 2008, 117, 3010–3019. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Guo, N.; Chen, J.; Parks, D.; Tian, Z. Comparative Assessment of Efficacy and Safety of Ambrisentan and Bosentan in Patients with Pulmonary Arterial Hypertension: A Meta-analysis. Clin. Pharm. Ther. 2022, 47, 146–156. [Google Scholar] [CrossRef]
- Vizza, C.D.; Fedele, F.; Pezzuto, B.; Rubin, L.J. Safety and Efficacy Evaluation of Ambrisentan in Pulmonary Hypertension. Expert Opin. Drug Saf. 2012, 11, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Iglarz, M.; Binkert, C.; Morrison, K.; Fischli, W.; Gatfield, J.; Treiber, A.; Weller, T.; Bolli, M.H.; Boss, C.; Buchmann, S.; et al. Pharmacology of Macitentan, an Orally Active Tissue-Targeting Dual Endothelin Receptor Antagonist. J. Pharm. Exp. Ther. 2008, 327, 736–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, V.; Bhardwaj, A.; Nair, A. Pharmacotherapy for Pulmonary Arterial Hypertension. J. Thorac. Dis. 2019, 11, S1767–S1781. [Google Scholar] [CrossRef] [PubMed]
- Bedan, M.; Grimm, D.; Wehland, M.; Simonsen, U.; Infanger, M.; Krüger, M. A Focus on Macitentan in the Treatment of Pulmonary Arterial Hypertension. Basic Clin. Pharm. Toxicol. 2018, 123, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kummer, O.; Haschke, M.; Hammann, F.; Bodmer, M.; Bruderer, S.; Regnault, Y.; Dingemanse, J.; Krähenbühl, S. Comparison of the Dissolution and Pharmacokinetic Profiles of Two Galenical Formulations of the Endothelin Receptor Antagonist Macitentan. Eur. J. Pharm. Sci. 2009, 38, 384–388. [Google Scholar] [CrossRef]
- Lavelle, A.; Sugrue, R.; Lawler, G.; Mulligan, N.; Kelleher, B.; Murphy, D.M.; Gaine, S.P. Sitaxentan-Induced Hepatic Failure in Two Patients with Pulmonary Arterial Hypertension. Eur. Respir. J. 2009, 34, 770–771. [Google Scholar] [CrossRef]
- Tsang, J.Y.C.; Lamm, W.J.E.; Neradilek, B.; Polissar, N.L.; Hlastala, M.P. Endothelin Receptor Blockade Does Not Improve Hypoxemia Following Acute Pulmonary Thromboembolism. J. Appl. Physiol. 2007, 102, 762–771. [Google Scholar] [CrossRef]
- Humbert, M.; Segal, E.S.; Kiely, D.G.; Carlsen, J.; Schwierin, B.; Hoeper, M.M. Results of European Post-Marketing Surveillance of Bosentan in Pulmonary Hypertension. Eur. Respir. J. 2007, 30, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Pulido, T.; Adzerikho, I.; Channick, R.N.; Delcroix, M.; Galiè, N.; Ghofrani, H.-A.; Jansa, P.; Jing, Z.-C.; Le Brun, F.-O.; Mehta, S.; et al. Macitentan and Morbidity and Mortality in Pulmonary Arterial Hypertension. N. Engl. J. Med. 2013, 369, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, X.; Zhang, H.; Yao, C.; Pan, H.; Guo, Y.; Fan, K.; Jing, S. Therapeutic Monoclonal Antibody Antagonizing Endothelin Receptor A for Pulmonary Arterial Hypertension. J. Pharm. Exp. Ther. 2019, 370, 54–61. [Google Scholar] [CrossRef]
- Krause, A.; Zisowsky, J.; Dingemanse, J. Modeling of Pharmacokinetics, Efficacy, and Hemodynamic Effects of Macitentan in Patients with Pulmonary Arterial Hypertension. Pulm. Pharmacol. Ther. 2018, 49, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, S.; Kingman, M.; Duncan, M.; Berngard, S.C.; Fernandes, T. Titration of Pulmonary Arterial Hypertension Therapeutics: Experience-Based Recommendations. Respir. Med. 2018, 143, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Li, D.; Hui, Z.; McLachlan, C.S.; Zhang, Y. Chronic Dosing with Metformin plus Bosentan Decreases in Vitro Pulmonary Artery Contraction from Isolated Arteries in Adults with Pulmonary Hypertension. J. Cardiovasc. Thorac. Res. 2019, 11, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.K. Comparison of the Dual Receptor Endothelin Antagonist Enrasentan with Enalapril in Asymptomatic Left Ventricular Systolic Dysfunction: A Cardiovascular Magnetic Resonance Study. Heart 2005, 92, 798–803. [Google Scholar] [CrossRef] [Green Version]
- Haleen, S.; Schroeder, R.; Walker, D.; Quenby-Brown, E.; Welch, K.; Hallak, H.; Uprichard, A.; Keiser, J. Efficacy of CI-1020, an Endothelin-A Receptor Antagonist, in Hypoxic Pulmonary Hypertension. J. Cardiovasc. Pharmacol. 1998, 31, S331–S335. [Google Scholar] [CrossRef]
- Cai, J.; Liu, L.; Hong, K.H.; Wang, P.; Li, L.; Cao, M.; Sun, C.; Wu, X.; Zong, X.; Chen, J.; et al. Discovery of Phenoxybutanoic Acid Derivatives as Potent Endothelin Antagonists with Antihypertensive Activity. Bioorganic Med. Chem. 2015, 23, 657–667. [Google Scholar] [CrossRef]
- Davenport, A.P.; Kuc, R.E.; Southan, C.; Maguire, J.J. New Drugs and Emerging Therapeutic Targets in the Endothelin Signaling Pathway and Prospects for Personalized Precision Medicine. Physiol. Res. 2018, S37–S54. [Google Scholar] [CrossRef]
- Erzurum, S.; Rounds, S.I.; Stevens, T.; Aldred, M.; Aliotta, J.; Archer, S.L.; Asosingh, K.; Balaban, R.; Bauer, N.; Bhattacharya, J.; et al. Strategic Plan for Lung Vascular Research: An NHLBI-ORDR Workshop Report. Am. J. Respir. Crit. Care Med. 2010, 182, 1554–1562. [Google Scholar] [CrossRef] [Green Version]
- Van der Feen, D.E.; Kurakula, K.; Tremblay, E.; Boucherat, O.; Bossers, G.P.L.; Szulcek, R.; Bourgeois, A.; Lampron, M.-C.; Habbout, K.; Martineau, S.; et al. Multicenter Preclinical Validation of BET Inhibition for the Treatment of Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2019, 200, 910–920. [Google Scholar] [CrossRef]
- Churko, J.M.; Garg, P.; Treutlein, B.; Venkatasubramanian, M.; Wu, H.; Lee, J.; Wessells, Q.N.; Chen, S.-Y.; Chen, W.-Y.; Chetal, K.; et al. Defining Human Cardiac Transcription Factor Hierarchies Using Integrated Single-Cell Heterogeneity Analysis. Nat. Commun. 2018, 9, 4906. [Google Scholar] [CrossRef] [Green Version]
- Sung, Y.K.; Yuan, K.; de Jesus Perez, V.A. Novel Approaches to Pulmonary Arterial Hypertension Drug Discovery. Expert Opin. Drug Discov. 2016, 11, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, M.P.; Gladwin, M.T.; Graham, B.B. Exploring New Therapeutic Pathways in Pulmonary Hypertension. Metabolism, Proliferation, and Personalized Medicine. Am. J. Respir. Cell Mol. Biol. 2020, 63, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.M.; Hadaya, J.; Trehan, A.; Zekavat, S.M.; Roselli, C.; Klarin, D.; Emdin, C.A.; Hilvering, C.R.E.; Bianchi, V.; Mueller, C.; et al. A Genetic Variant Associated with Five Vascular Diseases Is a Distal Regulator of Endothelin-1 Gene Expression. Cell 2017, 170, 522–533.e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Yuan, T.; Wang, R.; Gong, D.; Wang, S.; Du, G.; Fang, L. Insights into Endothelin Receptors in Pulmonary Hypertension. Int. J. Mol. Sci. 2023, 24, 10206. https://doi.org/10.3390/ijms241210206
Liu R, Yuan T, Wang R, Gong D, Wang S, Du G, Fang L. Insights into Endothelin Receptors in Pulmonary Hypertension. International Journal of Molecular Sciences. 2023; 24(12):10206. https://doi.org/10.3390/ijms241210206
Chicago/Turabian StyleLiu, Ruiqi, Tianyi Yuan, Ranran Wang, Difei Gong, Shoubao Wang, Guanhua Du, and Lianhua Fang. 2023. "Insights into Endothelin Receptors in Pulmonary Hypertension" International Journal of Molecular Sciences 24, no. 12: 10206. https://doi.org/10.3390/ijms241210206
APA StyleLiu, R., Yuan, T., Wang, R., Gong, D., Wang, S., Du, G., & Fang, L. (2023). Insights into Endothelin Receptors in Pulmonary Hypertension. International Journal of Molecular Sciences, 24(12), 10206. https://doi.org/10.3390/ijms241210206