Differentiation Capacity of Porcine Skeletal Muscle-Derived Stem Cells as Intermediate Species between Mice and Humans
Abstract
:1. Introduction
2. Results
2.1. Fractionation of Sk-34 and Sk-DN Cells
2.2. Expression of Skeletal Muscle, Peripheral Nerve, and Vascular Cell Lineage Specific mRNAs Immediately after Sorting
2.3. Distributions of Pax7 and MyoD Positive Cells after Culture
2.4. In Vivo Differentiation Capacity of Sk-DN Cells
2.5. In Vivo Differentiation Capacity of Sk-34 Cells
3. Discussion
4. Materials and Methods
4.1. Animal Usage
4.2. Cell Isolation and Sorting
4.3. Cell Sorting
4.4. RT-PCR
4.5. In Vitro Myogenic Differentiation Capacity of Pig Sk-34 and Sk-DN Cells
4.6. In Vivo Cell Differentiation Capacity and Recipient Animals
4.7. Immunohistochemistry and Immunoelectron Microscopy
4.8. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okabe, M.; Ikawa, M.; Kominami, K.; Nakanishi, T.; Nishimune, Y. Green mice’ as a source of ubiquitous green cells. FEBS Lett. 1997, 407, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ijiri, M.; Lai, Y.C.; Kawaguchi, H.; Fujimoto, Y.; Miura, N.; Matsuo, T.; Tanimoto, A. Nr6a1 allelic frequencies as an index for both miniaturizing and increasing pig body size. In Vivo 2021, 35, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, N.; Itoh, K.; Sugiyama, A.; Izumi, Y. Microminipig, a non-rodent experimental animal optimized for life science research: Preface. J. Pharmacol. Sci. 2011, 115, 112–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawaguchi, H.; Miyoshi, N.; Miura, N.; Fujiki, M.; Horiuchi, M.; Izumi, Y.; Miyajima, H.; Nagata, R.; Misumi, K.; Takeuchi, T.; et al. Microminipig, a non-rodent experimental animal optimized for life science research: Novel atherosclerosis model induced by high fat and cholesterol diet. J. Pharmacol. Sci. 2011, 115, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, A.; Nakamura, Y.; Akie, Y.; Saito, H.; Izumi, Y.; Yamazaki, H.; Kaneko, N.; Itoh, K. Microminipig, a non-rodent experimental animal optimized for life science research: In vivo proarrhythmia models of drug-induced long qt syndrome: Development of chronic atrioventricular block model of microminipig. J. Pharmacol. Sci. 2011, 115, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Kawarasaki, T.; Uchiyama, K.; Hirao, A.; Azuma, S.; Otake, M.; Shibata, M.; Tsuchiya, S.; Enosawa, S.; Takeuchi, K.; Konno, K.; et al. Profile of new green fluorescent protein transgenic jinhua pigs as an imaging source. J. Biomed. Opt. 2009, 14, 054017. [Google Scholar] [CrossRef]
- Shibata, M.E.S.; Yukiko Otsu, Y.; Kawarasaki, T. Development of gfp-transgenic mini-pig by backcrossing. Bull. Shizuoka Prifectural Res. Institiute Anim. Indaustry Swine Poult. Res. Cent. 2013, 6, 7–10. [Google Scholar]
- Tamaki, T.; Akatsuka, A.; Ando, K.; Nakamura, Y.; Matsuzawa, H.; Hotta, T.; Roy, R.R.; Edgerton, V.R. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J. Cell Biol. 2002, 157, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Tamaki, T.; Akatsuka, A.; Okada, Y.; Matsuzaki, Y.; Okano, H.; Kimura, M. Growth and differentiation potential of main- and side-population cells derived from murine skeletal muscle. Exp. Cell Res. 2003, 291, 83–90. [Google Scholar] [CrossRef]
- Tamaki, T.; Uchiyama, Y.; Okada, Y.; Ishikawa, T.; Sato, M.; Akatsuka, A.; Asahara, T. Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells. Circulation 2005, 112, 2857–2866. [Google Scholar] [CrossRef] [Green Version]
- Tamaki, T.; Okada, Y.; Uchiyama, Y.; Tono, K.; Masuda, M.; Wada, M.; Hoshi, A.; Akatsuka, A. Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived cd34(−)/45(−) cells. Histochem. Cell Biol. 2007, 128, 349–360. [Google Scholar] [CrossRef]
- Tamaki, T.; Okada, Y.; Uchiyama, Y.; Tono, K.; Masuda, M.; Wada, M.; Hoshi, A.; Ishikawa, T.; Akatsuka, A. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage. Stem. Cells 2007, 25, 2283–2290. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, T.; Okada, Y.; Uchiyama, Y.; Tono, K.; Masuda, M.; Nitta, M.; Hoshi, A.; Akatsuka, A. Skeletal muscle-derived cd34+/45- and cd34−/45− stem cells are situated hierarchically upstream of pax7+ cells. Stem. Cells Dev. 2008, 17, 653–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaki, T.; Uchiyama, Y.; Hirata, M.; Hashimoto, H.; Nakajima, N.; Saito, K.; Terachi, T.; Mochida, J. Therapeutic isolation and expansion of human skeletal muscle-derived stem cells for the use of muscle-nerve-blood vessel reconstitution. Front. Physiol. 2015, 6, 165. [Google Scholar] [CrossRef] [Green Version]
- Tamaki, T.; Akatsuka, A.; Okada, Y.; Uchiyama, Y.; Tono, K.; Wada, M.; Hoshi, A.; Iwaguro, H.; Iwasaki, H.; Oyamada, A.; et al. Cardiomyocyte formation by skeletal muscle-derived multi-myogenic stem cells after transplantation into infarcted myocardium. PLoS ONE 2008, 3, e1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaki, T.; Uchiyama, Y.; Okada, Y.; Tono, K.; Masuda, M.; Nitta, M.; Hoshi, A.; Akatsuka, A. Clonal differentiation of skeletal muscle-derived cd34(−)/45(−) stem cells into cardiomyocytes in vivo. Stem. Cells Dev. 2010, 19, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, T.; Hirata, M.; Soeda, S.; Nakajima, N.; Saito, K.; Nakazato, K.; Okada, Y.; Hashimoto, H.; Uchiyama, Y.; Mochida, J. Preferential and comprehensive reconstitution of severely damaged sciatic nerve using murine skeletal muscle-derived multipotent stem cells. PLoS ONE 2014, 9, e91257. [Google Scholar] [CrossRef] [Green Version]
- Tamaki, T.; Hirata, M.; Nakajima, N.; Saito, K.; Hashimoto, H.; Soeda, S.; Uchiyama, Y.; Watanabe, M. A long-gap peripheral nerve injury therapy using human skeletal muscle-derived stem cells (sk-scs): An achievement of significant morphological, numerical and functional recovery. PLoS ONE 2016, 11, e0166639. [Google Scholar] [CrossRef] [Green Version]
- Tamaki, T. Therapeutic capacities of human and mouse skeletal muscle-derived stem cells for a long gap peripheral nerve injury. Neural Regen. Res. 2017, 12, 1811–1813. [Google Scholar] [CrossRef]
- Alessandri, G.; Pagano, S.; Bez, A.; Benetti, A.; Pozzi, S.; Iannolo, G.; Baronio, M.; Invernici, G.; Caruso, A.; Muneretto, C.; et al. Isolation and culture of human muscle-derived stem cells able to differentiate into myogenic and neurogenic cell lineages. Lancet 2004, 364, 1872–1883. [Google Scholar] [CrossRef]
- Arriero, M.; Brodsky, S.V.; Gealekman, O.; Lucas, P.A.; Goligorsky, M.S. Adult skeletal muscle stem cells differentiate into endothelial lineage and ameliorate renal dysfunction after acute ischemia. Am. J. Physiol. Renal. Physiol. 2004, 287, F621–F627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshi, A.; Tamaki, T.; Tono, K.; Okada, Y.; Akatsuka, A.; Usui, Y.; Terachi, T. Reconstruction of radical prostatectomy-induced urethral damage using skeletal muscle-derived multipotent stem cells. Transplantation 2008, 85, 1617–1624. [Google Scholar] [CrossRef]
- Kazuno, A.; Maki, D.; Yamato, I.; Nakajima, N.; Seta, H.; Soeda, S.; Ozawa, S.; Uchiyama, Y.; Tamaki, T. Regeneration of transected recurrent laryngeal nerve using hybrid-transplantation of skeletal muscle-derived stem cells and bioabsorbable scaffold. J. Clin. Med. 2018, 7, 276. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, N.; Tamaki, T.; Hirata, M.; Soeda, S.; Nitta, M.; Hoshi, A.; Terachi, T. Purified human skeletal muscle-derived stem cells enhance the repair and regeneration in the damaged urethra. Transplantation 2017, 101, 2312–2320. [Google Scholar] [CrossRef] [Green Version]
- Qu-Petersen, Z.; Deasy, B.; Jankowski, R.; Ikezawa, M.; Cummins, J.; Pruchnic, R.; Mytinger, J.; Cao, B.; Gates, C.; Wernig, A.; et al. Identification of a novel population of muscle stem cells in mice: Potential for muscle regeneration. J. Cell Biol. 2002, 157, 851–864. [Google Scholar] [CrossRef]
- Zheng, B.; Chen, C.W.; Li, G.; Thompson, S.D.; Poddar, M.; Peault, B.; Huard, J. Isolation of myogenic stem cells from cultures of cryopreserved human skeletal muscle. Cell Transplant. 2012, 21, 1087–1093. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Cui, H.; Lu, H.; Xu, Z.; Feng, W.; Chen, L.; Jin, X.; Yang, X.; Qi, Z. Muscle-derived stem cells in peripheral nerve regeneration: Reality or illusion? Regen. Med. 2017, 12, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.S.; Rozkalne, A.; Colletta, A.; Spinazzola, J.M.; Johnson, S.; Rahimov, F.; Meng, H.; Lawlor, M.W.; Estrella, E.; Kunkel, L.M.; et al. Cd82 is a marker for prospective isolation of human muscle satellite cells and is linked to muscular dystrophies. Cell Stem. Cell 2016, 19, 800–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, K.J.; Pannerec, A.; Cadot, B.; Parlakian, A.; Besson, V.; Gomes, E.R.; Marazzi, G.; Sassoon, D.A. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat. Cell Biol. 2010, 12, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Pannerec, A.; Formicola, L.; Besson, V.; Marazzi, G.; Sassoon, D.A. Defining skeletal muscle resident progenitors and their cell fate potentials. Development 2013, 140, 2879–2891. [Google Scholar] [CrossRef] [Green Version]
- Sarig, R.; Baruchi, Z.; Fuchs, O.; Nudel, U.; Yaffe, D. Regeneration and transdifferentiation potential of muscle-derived stem cells propagated as myospheres. Stem. Cells 2006, 24, 1769–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitutsova, V.; Yeo, W.W.Y.; Davaze, R.; Franckhauser, C.; Hani, E.H.; Abdullah, S.; Mollard, P.; Schaeffer, M.; Fernandez, A.; Lamb, N.J.C. Adult muscle-derived stem cells engraft and differentiate into insulin-expressing cells in pancreatic islets of diabetic mice. Stem. Cell Res. Ther. 2017, 8, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Qu-Petersen, Z.; Cao, B.; Kimura, S.; Jankowski, R.; Cummins, J.; Usas, A.; Gates, C.; Robbins, P.; Wernig, A.; et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J. Cell Biol. 2000, 150, 1085–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikezawa, M.; Cao, B.; Qu, Z.; Peng, H.; Xiao, X.; Pruchnic, R.; Kimura, S.; Miike, T.; Huard, J. Dystrophin delivery in dystrophin-deficient dmdmdx skeletal muscle by isogenic muscle-derived stem cell transplantation. Hum. Gene Ther. 2003, 14, 1535–1546. [Google Scholar] [CrossRef]
- Angelino, E.; Reano, S.; Ferrara, M.; Agosti, E.; Sustova, H.; Malacarne, V.; Clerici, S.; Graziani, A.; Filigheddu, N. Mouse satellite cell isolation and transplantation. Bio Protoc. 2018, 8, e2696. [Google Scholar] [CrossRef]
- Carrero-Rojas, G.; Benitez-Temino, B.; Pastor, A.M.; de Carrizosa, M.A.D.L. Muscle progenitors derived from extraocular muscles express higher levels of neurotrophins and their receptors than other cranial and limb muscles. Cells 2020, 9, 747. [Google Scholar] [CrossRef] [Green Version]
- Messner, F.; Thurner, M.; Muller, J.; Blumer, M.; Hofmann, J.; Marksteiner, R.; Couillard-Despres, S.; Troppmair, J.; Ofner, D.; Schneeberger, S.; et al. Myogenic progenitor cell transplantation for muscle regeneration following hindlimb ischemia and reperfusion. Stem. Cell Res. Ther. 2021, 12, 146. [Google Scholar] [CrossRef]
- Mierzejewski, B.; Grabowska, I.; Jackowski, D.; Irhashava, A.; Michalska, Z.; Streminska, W.; Janczyk-Ilach, K.; Ciemerych, M.A.; Brzoska, E. Mouse cd146+ muscle interstitial progenitor cells differ from satellite cells and present myogenic potential. Stem. Cell Res. Ther. 2020, 11, 341. [Google Scholar] [CrossRef]
- Tamaki, T.; Uchiyama, Y.; Akatsuka, A. Plasticity and physiological role of stem cells derived from skeletal muscle interstitium: Contribution to muscle fiber hyperplasia and therapeutic use. Curr. Pharm. Des. 2010, 16, 956–967. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamaki, T.; Natsume, T.; Katoh, A.; Nakajima, N.; Saito, K.; Fukuzawa, T.; Otake, M.; Enya, S.; Kangawa, A.; Imai, T.; et al. Differentiation Capacity of Porcine Skeletal Muscle-Derived Stem Cells as Intermediate Species between Mice and Humans. Int. J. Mol. Sci. 2023, 24, 9862. https://doi.org/10.3390/ijms24129862
Tamaki T, Natsume T, Katoh A, Nakajima N, Saito K, Fukuzawa T, Otake M, Enya S, Kangawa A, Imai T, et al. Differentiation Capacity of Porcine Skeletal Muscle-Derived Stem Cells as Intermediate Species between Mice and Humans. International Journal of Molecular Sciences. 2023; 24(12):9862. https://doi.org/10.3390/ijms24129862
Chicago/Turabian StyleTamaki, Tetsuro, Toshiharu Natsume, Akira Katoh, Nobuyuki Nakajima, Kosuke Saito, Tsuyoshi Fukuzawa, Masayoshi Otake, Satoko Enya, Akihisa Kangawa, Takeshi Imai, and et al. 2023. "Differentiation Capacity of Porcine Skeletal Muscle-Derived Stem Cells as Intermediate Species between Mice and Humans" International Journal of Molecular Sciences 24, no. 12: 9862. https://doi.org/10.3390/ijms24129862
APA StyleTamaki, T., Natsume, T., Katoh, A., Nakajima, N., Saito, K., Fukuzawa, T., Otake, M., Enya, S., Kangawa, A., Imai, T., Tamaki, M., & Uchiyama, Y. (2023). Differentiation Capacity of Porcine Skeletal Muscle-Derived Stem Cells as Intermediate Species between Mice and Humans. International Journal of Molecular Sciences, 24(12), 9862. https://doi.org/10.3390/ijms24129862