Sarcopenic Obesity in People with Alcoholic Use Disorder: Relation with Inflammation, Vascular Risk Factors and Serum Vitamin D Levels
Abstract
:1. Introduction
2. Results
2.1. Liver Function and Amount of Ethanol Consumption
2.1.1. OSO Osteoporosis/Osteopenia
2.1.2. OSO Obesity
2.1.3. OSO Handgrip
2.1.4. OSO Lean Mass
2.1.5. Overall OSO
2.2. Inflammatory Cytokines and Vitamin D
OSO Handgrip
2.3. Relationships with Hypertension, Diabetes, and Vascular Calcifications
3. Discussion
4. Materials and Methods
4.1. Body Composition
4.2. Laboratory Evaluation
4.3. Statistics
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilich, J.Z.; Kelly, O.J.; Inglis, J.E.; Panton, L.B.; Duque, G.; Ormsbee, M.J. Interrelationship among Muscle, Fat, and Bone: Connecting the Dots on Cellular, Hormonal, and Whole Body Levels. Ageing Res. Rev. 2014, 15, 51–60. [Google Scholar] [CrossRef]
- Cleasby, M.E.; Jamieson, P.M.; Atherton, P.J. Insulin Resistance and Sarcopenia: Mechanistic Links between Common Co-Morbidities. J. Endocrinol. 2016, 229, R67–R81. [Google Scholar] [CrossRef]
- Curtis, E.; Litwic, A.; Cooper, C.; Dennison, E. Determinants of Muscle and Bone Aging. J. Cell. Physiol. 2015, 230, 2618–2625. [Google Scholar] [CrossRef] [Green Version]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Sarcopenic Obesity and Risk of Cardiovascular Disease and Mortality: A Population-Based Cohort Study of Older Men. J. Am. Geriatr. Soc. 2014, 62, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, Y.; Kye, S.; Chung, Y.S.; Lee, O. Association of Serum Vitamin D with Osteosarcopenic Obesity: Korea National Health and Nutrition Examination Survey 2008-2010. J. Cachexia Sarcopenia Muscle 2017, 8, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Anker, S.D.; von Haehling, S. Prevalence, Incidence, and Clinical Impact of Sarcopenia: Facts, Numbers, and Epidemiology-Update 2014. J. Cachexia Sarcopenia Muscle 2014, 5, 253–259. [Google Scholar] [CrossRef]
- De Jaeger, C.; Voronska, E.; Lamberti, C.; Saskia, K.; Cherin, P. Prevalence of Osteo-Sarcopenia and Osteosarcopenic Obesity in Healthy Ambulatory Subjects Older than 45 Years in France. Am. J. Clin. Case Rep. 2021, 2, 1023. [Google Scholar]
- Liu, Y.; Song, Y.; Hao, Q.; Wu, J. Global Prevalence of Osteosarcopenic Obesity amongst Middle Aged and Older Adults: A Systematic Review and Meta-Analysis. Arch. Osteoporos. 2023, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Stefanaki, C.; Peppa, M.; Boschiero, D.; Chrousos, G.P. Healthy Overweight/Obese Youth: Early Osteosarcopenic Obesity Features. Eur. J. Clin. Investig. 2016, 46, 767–778. [Google Scholar] [CrossRef]
- Coppack, S.W. Pro-Inflammatory Cytokines and Adipose Tissue. Proc. Nutr. Soc. 2001, 60, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leigh, S.J.; Morris, M.J. Diet, Inflammation and the Gut Microbiome: Mechanisms for Obesity-Associated Cognitive Impairment. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165767. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kong, C.; Yu, H.; Gong, J.; Lan, L.; Zhou, L.; Gong, J.; Liu, P.; Xu, L.; Deng, Q. Association between Osteosarcopenic Obesity and Hypertension among Four Minority Populations in China: A Cross-Sectional Study. BMJ Open 2019, 9, e026818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuriyan, R. Body Composition Techniques. Indian J. Med. Res. 2018, 148, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body Composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Chen, Y. Prognosis-Related Nutritional Score for Cancer Patients (PRNS): A Clinical Nutritional Score Derived from a Retrospective Cohort Study. J. Transl. Med. 2022, 20, 477. [Google Scholar] [CrossRef]
- Rennie, M.J.; Bohé, J.; Smith, K.; Wackerhage, H.; Greenhaff, P. Branched-Chain Amino Acids as Fuels and Anabolic Signals in Human Muscle. J. Nutr. 2006, 136, 264S–268S. [Google Scholar] [CrossRef] [Green Version]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- González-Reimers, E.; Santolaria-Fernández, F.; Martín-González, M.C.; Fernández-Rodríguez, C.M.; Quintero-Platt, G. Alcoholism: A Systemic Proinflammatory Condition. World J. Gastroenterol. 2014, 20, 14660–14671. [Google Scholar] [CrossRef]
- Santolaria, F.; Pérez-Manzano, J.L.; Milena, A.; González-Reimers, E.; Gómez-Rodríguez, M.A.; Martínez-Riera, A.; Alemán-Valls, M.R.; De La Vega-Prieto, M.J. Nutritional Assessment in Alcoholic Patients. Its Relationship with Alcoholic Intake, Feeding Habits, Organic Complications and Social Problems. Drug Alcohol Depend. 2000, 59, 295–304. [Google Scholar] [CrossRef]
- Kasicka-Jonderko, A.; Jonderko, K.; Bozek, M.; Kamińska, M.; Mgłosiek, P. Potent Inhibitory Effect of Alcoholic Beverages upon Gastrointestinal Passage of Food and Gallbladder Emptying. J. Gastroenterol. 2013, 48, 1311–1323. [Google Scholar] [CrossRef] [Green Version]
- Majumder, S.; Chari, S.T. Chronic Pancreatitis. Lancet 2016, 387, 1957–1966. [Google Scholar] [CrossRef]
- Nelson, S.; Kolls, J.K. Alcohol, Host Defence and Society. Nat. Rev. Immunol. 2002, 2, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Xiao, W.; Xie, W.; Fu, X.; Pan, L.; Jin, H.; Yu, Y.; Zhang, Y.; Li, Y. The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects. Front. Cell Dev. Biol. 2021, 9, 735374. [Google Scholar] [CrossRef]
- Bilski, J.; Pierzchalski, P.; Szczepanik, M.; Bonior, J.; Zoladz, J.A. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022, 11, 160. [Google Scholar] [CrossRef]
- Di Filippo, L.; De Lorenzo, R.; Giustina, A.; Rovere-Querini, P.; Conte, C. Vitamin D in Osteosarcopenic Obesity. Nutrients 2022, 14, 1816. [Google Scholar] [CrossRef] [PubMed]
- Tandon, P.; Montano-Loza, A.J.; Lai, J.C.; Dasarathy, S.; Merli, M. Sarcopenia and Frailty in Decompensated Cirrhosis. J. Hepatol. 2021, 75 (Suppl. S1), S147–S162. [Google Scholar] [CrossRef]
- Husain, K.; Ansari, R.A.; Ferder, L. Alcohol-Induced Hypertension: Mechanism and Prevention. World J. Cardiol. 2014, 6, 245. [Google Scholar] [CrossRef] [PubMed]
- Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and Cancer: Epidemiology and Biological Mechanisms. Nutrients 2021, 13, 3173. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, H.; Choo, J.; Masaki, K.; Fujiyoshi, A.; Guo, J.; Hisamatsu, T.; Evans, R.; Shangguan, S.; Willcox, B.; Okamura, T.; et al. Association of Alcohol Consumption and Aortic Calcification in Healthy Men Aged 40–49 Years for the ERA JUMP Study. Atherosclerosis 2018, 268, 84–91. [Google Scholar] [CrossRef]
- Bennour, I.; Haroun, N.; Sicard, F.; Mounien, L.; Landrier, J.F. Vitamin D and Obesity/Adiposity-A Brief Overview of Recent Studies. Nutrients 2022, 14, 2049. [Google Scholar] [CrossRef]
- Demer, L.L.; Tintut, Y. Vascular Calcification: Pathobiology of a Multifaceted Disease. Circulation 2008, 117, 2938–2948. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.B.; Zhang, W.S.; Jiang, C.Q.; Liu, X.Y.; Jin, Y.L.; Lam, T.H.; Cheng, K.K.; Xu, L. Aortic Arch Calcification and Risk of All-Cause Mortality and Cardiovascular Disease: The Guangzhou Biobank Cohort Study. Lancet Reg. Health West. Pac. 2022, 23, 100460. [Google Scholar] [CrossRef]
- Fernandez-Solà, J.; Preedy, V.R.; Lang, C.H.; Gonzalez-Reimers, E.; Arno, M.; Lin, J.C.I.; Wiseman, H.; Zhou, S.; Emery, P.W.; Nakahara, T.; et al. Molecular and Cellular Events in Alcohol-Induced Muscle Disease. Alcohol. Clin. Exp. Res. 2007, 31, 1953–1962. [Google Scholar] [CrossRef] [PubMed]
- Thapaliya, S.; Runkana, A.; McMullen, M.R.; Nagy, L.E.; McDonald, C.; Prasad, S.V.N.; Dasarathy, S. Alcohol-Induced Autophagy Contributes to Loss in Skeletal Muscle Mass. Autophagy 2014, 10, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.C. Nutrition and Muscle in Cirrhosis. J. Clin. Exp. Hepatol. 2017, 7, 340–357. [Google Scholar] [CrossRef]
- Hanai, T.; Shiraki, M.; Ohnishi, S.; Miyazaki, T.; Ideta, T.; Kochi, T.; Imai, K.; Suetsugu, A.; Takai, K.; Moriwaki, H.; et al. Rapid Skeletal Muscle Wasting Predicts Worse Survival in Patients with Liver Cirrhosis. Hepatol. Res. 2016, 46, 743–751. [Google Scholar] [CrossRef]
- Allen, S.L.; Quinlan, J.I.; Dhaliwal, A.; Armstrong, M.J.; Elsharkawy, A.M.; Greig, C.A.; Lord, J.M.; Lavery, G.G.; Breen, L. Sarcopenia in Chronic Liver Disease: Mechanisms and Countermeasures. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G241–G257. [Google Scholar] [CrossRef]
- Peters, T.J.; Preedy, V.R. Chronic Alcoholic Skeletal Myopathy: An Overview. Alcoholism 1991, 206, 317–324. [Google Scholar] [CrossRef]
- Steffl, M.; Bohannon, R.W.; Petr, M.; Kohlikova, E.; Holmerova, I. Alcohol Consumption as a Risk Factor for Sarcopenia—A Meta-Analysis. BMC Geriatr. 2016, 16, 99. [Google Scholar] [CrossRef] [Green Version]
- Steiner, J.L.; Gordon, B.S.; Lang, C.H. Moderate Alcohol Consumption Does Not Impair Overload-Induced Muscle Hypertrophy and Protein Synthesis. Physiol. Rep. 2015, 3, e12333. [Google Scholar] [CrossRef]
- Preedy, V.R.; Peters, T.J. Alcohol and Skeletal Muscle Disease. Alcohol Alcohol. 1990, 25, 177–187. [Google Scholar] [CrossRef]
- Romero, J.C.; Santolaria, F.; González-Reimers, E.; Dìaz-Flores, L.; Conde, A.; Rodriguez-Moreno, F.; Batista, N. Chronic Alcoholic Myopathy and Nutritional Status. Alcohol 1994, 11, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Sacanella, E.; Fernández-Solà, J.; Cofan, M.; Nicolás, J.M.; Estruch, R.; Antúnez, E.; Urbano-Márquez, A. Chronic Alcoholic Myopathy: Diagnostic Clues and Relationship with Other Ethanol-Related Diseases. QJM 1995, 88, 811–817. [Google Scholar] [PubMed]
- Shelmet, J.J.; Reichard, G.A.; Skutches, C.L.; Hoeldtke, R.D.; Owen, O.E.; Boden, G. Ethanol Causes Acute Inhibition of Carbohydrate, Fat, and Protein Oxidation and Insulin Resistance. J. Clin. Investig. 1988, 81, 1137–1145. [Google Scholar] [CrossRef]
- Traversy, G.; Chaput, J.P. Alcohol Consumption and Obesity: An Update. Curr. Obes. Rep. 2015, 4, 122–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrinelli, V.; Rouault, C.; Rodriguez-Cuenca, S.; Albert, V.; Edom-Vovard, F.; Vidal-Puig, A.; Clément, K.; Butler-Browne, G.S.; Lacasa, D. Human Adipocytes Induce Inflammation and Atrophy in Muscle Cells During Obesity. Diabetes 2015, 64, 3121–3134. [Google Scholar] [CrossRef] [Green Version]
- Hube, F.; Hauner, H. The Role of TNF-Alpha in Human Adipose Tissue: Prevention of Weight Gain at the Expense of Insulin Resistance? Horm. Metab. Res. 1999, 31, 626–631. [Google Scholar] [CrossRef]
- Remels, A.H.V.; Gosker, H.R.; Verhees, K.J.P.; Langen, R.C.J.; Schols, A.M.W.J. TNF-α-Induced NF-ΚB Activation Stimulates Skeletal Muscle Glycolytic Metabolism through Activation of HIF-1α. Endocrinology 2015, 156, 1770–1781. [Google Scholar] [CrossRef]
- Chen, S.E.; Jin, B.; Li, Y.P. TNF-Alpha Regulates Myogenesis and Muscle Regeneration by Activating P38 MAPK. Am. J. Physiol. Cell. Physiol. 2007, 292, C1660–C1671. [Google Scholar] [CrossRef] [Green Version]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef]
- Beenakker, K.G.M.; Westendorp, R.G.J.; De Craen, A.J.M.; Slagboom, P.E.; Van Heemst, D.; Maier, A.B. Pro-Inflammatory Capacity of Classically Activated Monocytes Relates Positively to Muscle Mass and Strength. Aging Cell 2013, 12, 682–689. [Google Scholar] [CrossRef]
- Muñoz-Cánoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 Myokine Signaling in Skeletal Muscle: A Double-Edged Sword? FEBS J. 2013, 280, 4131–4148. [Google Scholar] [CrossRef]
- Milewska, M.; Domoradzki, T.; Majewska, A.; Błaszczyk, M.; Gajewska, M.; Hulanicka, M.; Ciecierska, A.; Grzelkowska-Kowalczyk, K. Interleukin-8 Enhances Myocilin Expression, Akt-FoxO3 Signaling and Myogenic Differentiation in Rat Skeletal Muscle Cells. J. Cell. Physiol. 2019, 234, 19675–19690. [Google Scholar] [CrossRef]
- Saeki, C.; Tsubota, A. Influencing Factors and Molecular Pathogenesis of Sarcopenia and Osteosarcopenia in Chronic Liver Disease. Life 2021, 11, 899. [Google Scholar] [CrossRef] [PubMed]
- Sahota, O. Understanding Vitamin D Deficiency. Age Ageing 2014, 43, 589–591. [Google Scholar] [CrossRef] [Green Version]
- Di Minno, M.N.D.; Poggio, P.; Conte, E.; Myasoedova, V.; Songia, P.; Mushtaq, S.; Cavallotti, L.; Moschetta, D.; Di Minno, A.; Spadarella, G.; et al. Cardiovascular Morbidity and Mortality in Patients with Aortic Valve Calcification: A Systematic Review and Meta-Analysis. J. Cardiovasc. Comput. Tomogr. 2019, 13, 190–195. [Google Scholar] [CrossRef]
- Sánchez-Duffhues, G.; García de Vinuesa, A.; van de Pol, V.; Geerts, M.E.; de Vries, M.R.; Janson, S.G.T.; van Dam, H.; Lindeman, J.H.; Goumans, M.J.; ten Dijke, P. Inflammation Induces Endothelial-to-Mesenchymal Transition and Promotes Vascular Calcification through Downregulation of BMPR2. J. Pathol. 2019, 247, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.H.; Jeong, W.K.; Baik, S.K.; Cha, S.H.; Kim, M.Y. Impact of Sarcopenia on Prognostic Value of Cirrhosis: Going beyond the Hepatic Venous Pressure Gradient and MELD Score. J. Cachexia Sarcopenia Muscle 2018, 9, 860–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, T.; Shirabe, K.; Ikegami, T.; Harimoto, N.; Yoshizumi, T.; Soejima, Y.; Uchiyama, H.; Ikeda, T.; Baba, H.; Maehara, Y. Sarcopenia Is a Prognostic Factor in Living Donor Liver Transplantation. Liver Transpl. 2014, 20, 401–407. [Google Scholar] [CrossRef]
- Yang, Y.J.; Kim, D.J. An Overview of the Molecular Mechanisms Contributing to Musculoskeletal Disorders in Chronic Liver Disease: Osteoporosis, Sarcopenia, and Osteoporotic Sarcopenia. Int. J. Mol. Sci. 2021, 22, 2604. [Google Scholar] [CrossRef] [PubMed]
- Clayton, Z.S.; Hauffe, L.; Liu, C.; Kern, M.; Hong, M.Y.; Brasser, S.M.; Hooshmand, S. Chronic Ethanol Consumption Does Not Reduce True Bone Density in Male Wistar Rats. Alcohol 2021, 93, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Spencer, H.; Rubio, N.; Rubio, E.; Indreika, M.; Seitam, A. Chronic Alcoholism. Frequently Overlooked Cause of Osteoporosis in Men. Am. J. Med. 1986, 80, 393–397. [Google Scholar] [CrossRef]
- Klein, R.F.; Fausti, K.A.; Carlos, A.S. Ethanol Inhibits Human Osteoblastic Cell Proliferation. Alcohol. Clin. Exp. Res. 1996, 20, 572–578. [Google Scholar] [CrossRef]
- Guo, M.; Huang, Y.L.; Wu, Q.; Chai, L.; Jiang, Z.Z.; Zeng, Y.; Wan, S.R.; Tan, X.Z.; Long, Y.; Gu, J.L.; et al. Chronic Ethanol Consumption Induces Osteopenia via Activation of Osteoblast Necroptosis. Oxid. Med. Cell. Longev. 2021, 2021, 3027954. [Google Scholar] [CrossRef]
- Pop, T.L.; Sîrbe, C.; Benţa, G.; Mititelu, A.; Grama, A. The Role of Vitamin D and Vitamin D Binding Protein in Chronic Liver Diseases. Int. J. Mol. Sci. 2022, 23, 705. [Google Scholar] [CrossRef]
- Malik, P.; Gasser, R.W.; Kemmler, G.; Moncayo, R.; Finkenstedt, G.; Kurz, M.; Fleischhacker, W.W. Low Bone Mineral Density and Impaired Bone Metabolism in Young Alcoholic Patients without Liver Cirrhosis: A Cross-Sectional Study. Alcohol. Clin. Exp. Res. 2009, 33, 375–381. [Google Scholar] [CrossRef]
- Duan, P.; Bonewald, L.F. The Role of the Wnt/β-Catenin Signaling Pathway in Formation and Maintenance of Bone and Teeth. Int. J. Biochem. Cell Biol. 2016, 77, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Child, C.G.; Turcotte, J.G. Surgery and Portal Hypertension. Major Probl. Clin. Surg. 1964, 1, 1–85. [Google Scholar]
- Pugh, R.N.H.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the Oesophagus for Bleeding Oesophageal Varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Imboden, M.T.; Swartz, A.M.; Finch, H.W.; Harber, M.P.; Kaminsky, L.A. Reference Standards for Lean Mass Measures Using GE Dual Energy X-Ray Absorptiometry in Caucasian Adults. PLoS ONE 2017, 12, e0176161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Y.-Z.; Yan, Z.-Q.; Yin, H.; Shan, L.-H.; Wang, J.-H.; Wu, Q.-H. Osteosarcopenic Obesity and Its Components-Osteoporosis, Sarcopenia, and Obesity-Are Associated with Blood Cell Count-Derived Inflammation Indices in Older Chinese People. BMC Geriatr. 2022, 22, 532. [Google Scholar] [CrossRef] [PubMed]
- Kelly, O.J.; Gilman, J.C.; Boschiero, D.; Ilich, J.Z. Osteosarcopenic Obesity: Current Knowledge, Revised Identification Criteria and Treatment Principles. Nutrients 2019, 11, 747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cirrhotics (n = 56) | Non Cirrhotics (n = 59) | ||
---|---|---|---|
OSO osteopenia | 35/56 (62.5%) | 29/59 (49.2%) | χ2 = 1.57; p = 0.21 |
OSO osteoporosis | 15/56 (26.8%) | 7/59 (11.9%) | χ2 = 3.23; p = 0.07 |
OSO obesity | 30/56 (53.6%) | 39/59 (66.1%) | χ2 = 1.39; p = 0.24 |
OSO handgrip | 20/56 (35.7%) | 19/59 (32.2%) | χ2 = 0.04; p = 0.84 |
OSO lean mass | 35/54 (64.8%) | 33/59 (55.9%) | χ2 = 0.60; p = 0.44 |
0 or 1 OSO Criteria (n = 30) | 2 or 3 OSO Criteria (n = 68) | 4 or 5 OSO Criteria (n = 15) | ||
---|---|---|---|---|
Total hip T-score | −0.46 ± 0.95 −0.47 (−0.94–0.02) | −0.89 ± 1.32 −1.03 (−1.75–0.30) | −1.98 ± 0.67 −1.99 (−2.50–1.60) | KW = 21.11; p < 0.001 |
Proportion of fat | 23.25 ± 7.23 22.17 (17.66–29.41) | 28.95 ± 8.98 29.37 (23.02–36.20) | 30.54 ± 8.13 31.60 (25.77–34.46) | KW = 11.46; p = 0.003 |
Handgrip strength | 137.33 ± 80.50 140.00 (73.75–190.00) | 80.53 ± 73.97 60.00 (16.50–127.50) | 42.73 ± 80.84 14.00 (1.00–30.00) | KW = 20.58; p < 0.001 |
IL-6 (pg/mL) | IL-8 (pg/mL) | TNF-α (pg/mL) | Vitamin D (ng/mL) | |
---|---|---|---|---|
Patients (n = 115) | 5.45 (5.00–15.90) | 18.40 (11.38–37.10) | 4.30 (1.82–8.70) | 20.00 (14–29) |
Healthy controls (n = 34) | 0.92 (0.69–5.00) | 8.95 (5.00–13.02) | 5.7 (4.75–8.72) | >30 * |
Z = 6.05; p < 0.001 | Z = 5.34; p < 0.001 | Z = 1.23; p = 0.22 |
Unstandardized Coefficients | Standardized Coefficients | 95% Confidence Interval for B | |||||
---|---|---|---|---|---|---|---|
Variable | B | Standard Error | Beta | T | p | Lower Bound | Upper Bound |
Serum vitamin D | 2.489 | 0.514 | 0.416 | 4.838 | 0.000 | 1.469 | 3.508 |
IL-6 | −1.162 | 0.363 | −0.269 | 3.199 | 0.002 | −1.882 | −0.442 |
Age | −1.314 | 0.560 | −0.201 | −2.347 | 0.021 | −2.423 | −0.204 |
95% Confidence Interval for Exp (B) | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | B | Standard Error | Wald | gl | p | Exp (B) | Lower Bound | Upper Bound |
Serum vitamin D | 2.387 | 0.507 | 22.124 | 1 | 0.000 | 10.880 | 4.024 | 29.416 |
IL-8 | −1.477 | 0.495 | 8.901 | 1 | 0.003 | 0.228 | 0.086 | 0.602 |
Age | −1.424 | 0.523 | 7.428 | 1 | 0.006 | 0.241 | 0.086 | 0.670 |
95% Confidence Interval for Exp (B) | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | B | Standard Error | Wald | gl | p | Exp (B) | Lower Bound | Upper Bound |
OSO Handgrip | 1.822 | 0.440 | 17.118 | 1 | 0.000 | 6.182 | 2.608 | 14.652 |
Age | −1.355 | 0.447 | 9.212 | 1 | 0.002 | 0.258 | 0.107 | 0.619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-González, C.; Fernández-Alonso, P.; Pérez-Hernández, O.; Abreu-González, P.; Espelosín-Ortega, E.; Fernández-Rodríguez, C.M.; Martín-Ponce, E.; González-Reimers, E. Sarcopenic Obesity in People with Alcoholic Use Disorder: Relation with Inflammation, Vascular Risk Factors and Serum Vitamin D Levels. Int. J. Mol. Sci. 2023, 24, 9976. https://doi.org/10.3390/ijms24129976
Martín-González C, Fernández-Alonso P, Pérez-Hernández O, Abreu-González P, Espelosín-Ortega E, Fernández-Rodríguez CM, Martín-Ponce E, González-Reimers E. Sarcopenic Obesity in People with Alcoholic Use Disorder: Relation with Inflammation, Vascular Risk Factors and Serum Vitamin D Levels. International Journal of Molecular Sciences. 2023; 24(12):9976. https://doi.org/10.3390/ijms24129976
Chicago/Turabian StyleMartín-González, Candelaria, Paula Fernández-Alonso, Onán Pérez-Hernández, Pedro Abreu-González, Elisa Espelosín-Ortega, Camino María Fernández-Rodríguez, Esther Martín-Ponce, and Emilio González-Reimers. 2023. "Sarcopenic Obesity in People with Alcoholic Use Disorder: Relation with Inflammation, Vascular Risk Factors and Serum Vitamin D Levels" International Journal of Molecular Sciences 24, no. 12: 9976. https://doi.org/10.3390/ijms24129976
APA StyleMartín-González, C., Fernández-Alonso, P., Pérez-Hernández, O., Abreu-González, P., Espelosín-Ortega, E., Fernández-Rodríguez, C. M., Martín-Ponce, E., & González-Reimers, E. (2023). Sarcopenic Obesity in People with Alcoholic Use Disorder: Relation with Inflammation, Vascular Risk Factors and Serum Vitamin D Levels. International Journal of Molecular Sciences, 24(12), 9976. https://doi.org/10.3390/ijms24129976