The Effect of GLUT1 and HIF-1α Expressions on Glucose Uptake and Patient Survival in Non-Small-Cell Lung Carcinoma
Abstract
:1. Introduction
2. Results
2.1. GLUT1 Protein Expression
2.2. HIF-1α Protein Expression
2.3. Gene Expression Analysis
2.4. PET CT Scans and FDG Uptake
3. Discussion
4. Materials and Methods
4.1. Tissue Procurement and Processing
4.2. Immunohistochemical Staining and HSCORE Calculation
4.3. Immunofluorescent Staining and Signal Quantification
4.4. Transcriptomics
4.5. Statistical Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Beckles, M.A.; Spiro, S.G.; Colice, G.L.; Rudd, R.M. Initial evaluation of the patient with lung cancer: Symptoms, signs, laboratory tests, and paraneoplastic syndromes. Chest 2003, 123, 97S–104S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, W.; Sharp, D. Diagnosis of lung cancer in primary care: A structured review. Fam. Pract. 2004, 21, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Latimer, K.M.; Mott, T.F. Lung cancer: Diagnosis, treatment principles, and screening. Am. Fam. Physician 2015, 91, 250–256. [Google Scholar] [PubMed]
- Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; et al. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J. Thorac. Oncol. 2022, 17, 362–387. [Google Scholar] [CrossRef]
- Takeuchi, S.; Khiewvan, B.; Fox, P.S.; Swisher, S.G.; Rohren, E.M.; Bassett, R.L., Jr.; Macapinlac, H.A. Impact of initial PET/CT staging in terms of clinical stage, management plan, and prognosis in 592 patients with non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 906–914. [Google Scholar] [CrossRef]
- Clark, S.B.; Alsubait, S. Non Small Cell Lung Cancer; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ganapathy, V.; Thangaraju, M.; Prasad, P.D. Nutrient transporters in cancer: Relevance to Warburg hypothesis and beyond. Pharmacol. Ther. 2009, 121, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Koppenol, W.H.; Bounds, P.L.; Dang, C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 2011, 11, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Augustin, R. The protein family of glucose transport facilitators: It’s not only about glucose after all. IUBMB Life 2010, 62, 315–333. [Google Scholar] [CrossRef]
- Joost, H.G.; Thorens, B. The extended GLUT-family of sugar/polyol transport facilitators: Nomenclature, sequence characteristics, and potential function of its novel members (review). Mol. Membr. Biol. 2001, 18, 247–256. [Google Scholar] [CrossRef]
- Jun, Y.J.; Jang, S.M.; Han, H.L.; Lee, K.H.; Jang, K.S.; Paik, S.S. Clinicopathologic significance of GLUT1 expression and its correlation with Apaf-1 in colorectal adenocarcinomas. World J. Gastroenterol. 2011, 17, 1866–1873. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Zhang, H.; Nakasone, Y.; Mogi, K.; Endo, K. Expression of Glut-1 and Glut-3 in untreated oral squamous cell carcinoma compared with FDG accumulation in a PET study. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Garcia Boy, R.; Knapp, E.M.; Eisenhut, M.; Haberkorn, U.; Mier, W. Enzymes/transporters. Handb. Exp. Pharmacol. 2008, 185, 131–143. [Google Scholar] [CrossRef]
- Kaida, H.; Ishibashi, M.; Yuzuriha, M.; Kurata, S.; Arikawa, S.; Kawahara, A.; Uozumi, J.; Uchida, M.; Kobayashi, M.; Hirose, Y.; et al. Glucose transporter expression of an esophageal gastrointestinal tumor detected by F-18 FDG PET/CT. Clin. Nucl. Med. 2010, 35, 505–509. [Google Scholar] [CrossRef]
- Medina, R.A.; Owen, G.I. Glucose transporters: Expression, regulation and cancer. Biol. Res. 2002, 35, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Amann, T.; Hellerbrand, C. GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin. Ther. Targets 2009, 13, 1411–1427. [Google Scholar] [CrossRef]
- Basturk, O.; Singh, R.; Kaygusuz, E.; Balci, S.; Dursun, N.; Culhaci, N.; Adsay, N.V. GLUT-1 expression in pancreatic neoplasia: Implications in pathogenesis, diagnosis, and prognosis. Pancreas 2011, 40, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, K.C.; Cunha, I.W.; Rocha, R.M.; Ayala, F.R.; Cajaiba, M.M.; Begnami, M.D.; Vilela, R.S.; Paiva, G.R.; Andrade, R.G.; Soares, F.A. GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics 2011, 66, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Chan, D.A.; Sutphin, P.D.; Nguyen, P.; Turcotte, S.; Lai, E.W.; Banh, A.; Reynolds, G.E.; Chi, J.T.; Wu, J.; Solow-Cordero, D.E.; et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med. 2011, 3, 94ra70. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Luo, X.M.; Yao, H.T.; Zhou, S.H.; Ruan, L.X.; Yan, S.X. Expression of glucose transporter-1, hypoxia-inducible factor-1alpha, phosphatidylinositol 3-kinase and protein kinase B (Akt) in relation to [(18)F]fluorodeoxyglucose uptake in nasopharyngeal diffuse large B-cell lymphoma: A case report and literature review. J. Int. Med. Res. 2010, 38, 2160–2168. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.M.; Zhou, S.H.; Fan, J. Glucose transporter-1 as a new therapeutic target in laryngeal carcinoma. J. Int. Med. Res. 2010, 38, 1885–1892. [Google Scholar] [CrossRef]
- Reinicke, K.; Sotomayor, P.; Cisterna, P.; Delgado, C.; Nualart, F.; Godoy, A. Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue. J. Cell. Biochem. 2012, 113, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Sakashita, M.; Aoyama, N.; Minami, R.; Maekawa, S.; Kuroda, K.; Shirasaka, D.; Ichihara, T.; Kuroda, Y.; Maeda, S.; Kasuga, M. Glut1 expression in T1 and T2 stage colorectal carcinomas: Its relationship to clinicopathological features. Eur. J. Cancer 2001, 37, 204–209. [Google Scholar] [CrossRef]
- Higashi, K.; Ueda, Y.; Sakurai, A.; Mingwang, X.; Xu, L.; Murakami, M.; Seki, H.; Oguchi, M.; Taki, S.; Nambu, Y.; et al. Correlation of Glut-1 glucose transporter expression with [(18)F]FDG uptake in non-small cell lung cancer. Eur. J. Nucl. Med. 2000, 27, 1778–1785. [Google Scholar] [CrossRef] [PubMed]
- Schuurbiers, O.C.; Meijer, T.W.; Kaanders, J.H.; Looijen-Salamon, M.G.; de Geus-Oei, L.F.; van der Drift, M.A.; van der Heijden, E.H.; Oyen, W.J.; Visser, E.P.; Span, P.N.; et al. Glucose metabolism in NSCLC is histology-specific and diverges the prognostic potential of 18FDG-PET for adenocarcinoma and squamous cell carcinoma. J. Thorac. Oncol. 2014, 9, 1485–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finger, E.C.; Giaccia, A.J. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev. 2010, 29, 285–293. [Google Scholar] [CrossRef] [Green Version]
- McKeown, S.R. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. Radiol. 2014, 87, 20130676. [Google Scholar] [CrossRef] [Green Version]
- Strickaert, A.; Saiselet, M.; Dom, G.; De Deken, X.; Dumont, J.E.; Feron, O.; Sonveaux, P.; Maenhaut, C. Cancer heterogeneity is not compatible with one unique cancer cell metabolic map. Oncogene 2017, 36, 2637–2642. [Google Scholar] [CrossRef] [Green Version]
- Yfantis, A.; Mylonis, I.; Chachami, G.; Nikolaidis, M.; Amoutzias, G.D.; Paraskeva, E.; Simos, G. Transcriptional Response to Hypoxia: The Role of HIF-1-Associated Co-Regulators. Cells 2023, 12, 798. [Google Scholar] [CrossRef]
- Isa, A.Y.; Ward, T.H.; West, C.M.; Slevin, N.J.; Homer, J.J. Hypoxia in head and neck cancer. Br. J. Radiol. 2006, 79, 791–798. [Google Scholar] [CrossRef]
- Rankin, E.B.; Giaccia, A.J. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008, 15, 678–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amankwah, E.K.; Sellers, T.A.; Park, J.Y. Gene variants in the angiogenesis pathway and prostate cancer. Carcinogenesis 2012, 33, 1259–1269. [Google Scholar] [CrossRef] [Green Version]
- Bos, R.; Zhong, H.; Hanrahan, C.F.; Mommers, E.C.; Semenza, G.L.; Pinedo, H.M.; Abeloff, M.D.; Simons, J.W.; van Diest, P.J.; van der Wall, E. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J. Natl. Cancer Inst. 2001, 93, 309–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koukourakis, M.I.; Papazoglou, D.; Giatromanolaki, A.; Panagopoulos, I.; Maltezos, E.; Harris, A.L.; Gatter, K.C.; Sivridis, E. C2028T polymorphism in exon 12 and dinucleotide repeat polymorphism in intron 13 of the HIF-1alpha gene define HIF-1alpha protein expression in non-small cell lung cancer. Lung Cancer 2006, 53, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Talks, K.L.; Turley, H.; Gatter, K.C.; Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J.; Harris, A.L. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 2000, 157, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Sowa, T.; Menju, T.; Chen-Yoshikawa, T.F.; Takahashi, K.; Nishikawa, S.; Nakanishi, T.; Shikuma, K.; Motoyama, H.; Hijiya, K.; Aoyama, A.; et al. Hypoxia-inducible factor 1 promotes chemoresistance of lung cancer by inducing carbonic anhydrase IX expression. Cancer Med. 2017, 6, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Wohlkoenig, C.; Leithner, K.; Olschewski, A.; Olschewski, H.; Hrzenjak, A. TR3 is involved in hypoxia-induced apoptosis resistance in lung cancer cells downstream of HIF-1alpha. Lung Cancer 2017, 111, 15–22. [Google Scholar] [CrossRef]
- Yang, N.; Liang, Y.; Yang, P.; Ji, F. Propofol suppresses LPS-induced nuclear accumulation of HIF-1alpha and tumor aggressiveness in non-small cell lung cancer. Oncol. Rep. 2017, 37, 2611–2619. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Ling, X.; Rao, Z.; Peng, B.; Ding, G. Independent prognostic value of HIF-1alpha expression in radiofrequency ablation of lung cancer. Oncol. Lett. 2020, 19, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Zhou, M.L.; Fan, J. Inhibition of GLUT-1 expression and the PI3K/Akt pathway to enhance the chemosensitivity of laryngeal carcinoma cells in vitro. OncoTargets Ther. 2018, 11, 7865–7872. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.Y.; Zhong, J.T.; Shen, L.F.; Dai, L.B.; Zhou, S.H.; Fan, J.; Yao, H.T.; Lu, Z.J. Effect of Glut-1 and HIF-1alpha double knockout by CRISPR/CAS9 on radiosensitivity in laryngeal carcinoma via the PI3K/Akt/mTOR pathway. J. Cell. Mol. Med. 2022, 26, 2881–2894. [Google Scholar] [CrossRef]
- Choi, W.H.; Yoo, I.R.; Kim, T.J.; Lee, K.Y.; Kim, Y.K. Is the Glut expression related to FDG uptake in PET/CT of non-small cell lung cancer patients? Technol. Health Care 2015, 23 (Suppl. S2), S311–S318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.H.; Cho, K.J.; Lee, S.S.; Baek, H.J.; Park, J.H.; Cheon, G.J.; Choi, C.W.; Lim, S.M. Overexpression of Glut1 in lymphoid follicles correlates with false-positive (18)F-FDG PET results in lung cancer staging. J. Nucl. Med. 2004, 45, 999–1003. [Google Scholar]
- Goodwin, J.; Neugent, M.L.; Lee, S.Y.; Choe, J.H.; Choi, H.; Jenkins, D.M.R.; Ruthenborg, R.J.; Robinson, M.W.; Jeong, J.Y.; Wake, M.; et al. The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nat. Commun. 2017, 8, 15503. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Noguchi, Y.; Satoh, S.; Hayashi, H.; Inayama, Y.; Kitamura, H. Expression of facilitative glucose transporter isoforms in lung carcinomas: Its relation to histologic type, differentiation grade, and tumor stage. Mod. Pathol. 1998, 11, 437–443. [Google Scholar]
- Mamede, M.; Higashi, T.; Kitaichi, M.; Ishizu, K.; Ishimori, T.; Nakamoto, Y.; Yanagihara, K.; Li, M.; Tanaka, F.; Wada, H.; et al. [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia 2005, 7, 369–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Z.; Yang, C.; Zhang, X.; Zheng, P.; Shen, W. Expression of glucose transporter 1 and prognosis in non-small cell lung cancer: A pooled analysis of 1665 patients. Oncotarget 2017, 8, 60954–60961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budak, E.; Cok, G.; Akgun, A. The Contribution of Fluorine (18)F-FDG PET/CT to Lung Cancer Diagnosis, Staging and Treatment Planning. Mol. Imaging Radionucl. Ther. 2018, 27, 73–80. [Google Scholar] [CrossRef]
- Ozgul, M.A.; Kirkil, G.; Seyhan, E.C.; Cetinkaya, E.; Ozgul, G.; Yuksel, M. The maximum standardized FDG uptake on PET-CT in patients with non-small cell lung cancer. Multidiscip. Respir. Med. 2013, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, S.M.I.Y.; Abdel-Aziz, A.M.R.; Mansour, M.G.; Darwish, E.A.F. Evaluation of relationship between maximum SUV measured on 18F-FDG PET/CT with tumor pathological types, size, lymph node metastasis and distant metastasis in non-small cell lung cancer. Egypt. J. Radiol. Nucl. Med. 2022, 53, 220. [Google Scholar] [CrossRef]
- Khandani, A.H.; Whitney, K.D.; Keller, S.M.; Isasi, C.R.; Donald Blaufox, M. Sensitivity of FDG PET, GLUT1 expression and proliferative index in bronchioloalveolar lung cancer. Nucl. Med. Commun. 2007, 28, 173–177. [Google Scholar] [CrossRef]
- Xu, H.; Li, B.; Yu, W.; Wang, H.; Zhao, X.; Yao, Y.; Huang, D. Correlation between (1)(8)F-FDG uptake and the expression of glucose transporter-1 and hypoxia-inducible factor-1alpha in transplanted VX2 tumors. Nucl. Med. Commun. 2013, 34, 953–958. [Google Scholar] [CrossRef]
- Swinson, D.E.; Jones, J.L.; Cox, G.; Richardson, D.; Harris, A.L.; O’Byrne, K.J. Hypoxia-inducible factor-1 alpha in non small cell lung cancer: Relation to growth factor, protease and apoptosis pathways. Int. J. Cancer 2004, 111, 43–50. [Google Scholar] [CrossRef]
- Ryan, H.E.; Poloni, M.; McNulty, W.; Elson, D.; Gassmann, M.; Arbeit, J.M.; Johnson, R.S. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res. 2000, 60, 4010–4015. [Google Scholar]
- Hayashi, M.; Sakata, M.; Takeda, T.; Yamamoto, T.; Okamoto, Y.; Sawada, K.; Kimura, A.; Minekawa, R.; Tahara, M.; Tasaka, K.; et al. Induction of glucose transporter 1 expression through hypoxia-inducible factor 1alpha under hypoxic conditions in trophoblast-derived cells. J. Endocrinol. 2004, 183, 145–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higashi, K.; Ueda, Y.; Ikeda, R.; Kodama, Y.; Guo, J.; Matsunari, I.; Oguchi, M.; Tonami, H.; Katsuda, S.; Yamamoto, I. P-glycoprotein expression is associated with FDG uptake and cell differentiation in patients with untreated lung cancer. Nucl. Med. Commun. 2004, 25, 19–27. [Google Scholar] [CrossRef]
- Strauss, L.G. Fluorine-18 deoxyglucose and false-positive results: A major problem in the diagnostics of oncological patients. Eur. J. Nucl. Med. 1996, 23, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Saito, H.; Sakuma, Y.; Kondo, T.; Oshita, F.; Ito, H.; Tsuboi, M.; Hasegawa, C.; Yokose, T.; Kameda, Y.; et al. Prognostic value of preoperative FDG-PET in stage IA lung adenocarcinoma. Eur. J. Radiol. 2012, 81, 1891–1895. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Maeda, A.; Yukawa, T.; Nojima, Y.; Saisho, S.; Okita, R.; Nakata, M. Difference in prognostic values of maximal standardized uptake value on fluorodeoxyglucose-positron emission tomography and cyclooxygenase-2 expression between lung adenocarcinoma and squamous cell carcinoma. World J. Surg. Oncol. 2014, 12, 343. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Hu, Y.; Hu, M.; Zhang, S.; Li, B. The relationship between the preoperative plasma level of HIF-1alpha and clinic pathological features, prognosis in non-small cell lung cancer. Sci. Rep. 2016, 6, 20586. [Google Scholar] [CrossRef] [Green Version]
- Ogorevc, M.; Strikic, A.; Tomas, S.Z. Determining the immunohistochemical expression of GLUT1 in renal cell carcinoma using the HSCORE method. Biomed. Rep. 2021, 15, 79. [Google Scholar] [CrossRef] [PubMed]
- Cicchetti, D.V. Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instrument in Psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Ogorevc, M.; Kosovic, I.; Filipovic, N.; Bocina, I.; Juric, M.; Benzon, B.; Mardesic, S.; Vukojevic, K.; Saraga, M.; Kablar, B.; et al. Differences in Immunohistochemical and Ultrastructural Features between Podocytes and Parietal Epithelial Cells (PECs) Are Observed in Developing, Healthy Postnatal, and Pathologically Changed Human Kidneys. Int. J. Mol. Sci. 2022, 23, 7501. [Google Scholar] [CrossRef] [PubMed]
GLUT1 Tumor | p | GLUT1 Lymph Node | p | |
---|---|---|---|---|
Male (n = 32) | 2.71 ± 0.48 | 0.2896 * | 2.74 ± 0.54 | 0.0577 * |
Female (n = 16) | 2.53 ± 0.39 | 2.22 ± 0.22 | ||
Adenocarcinoma (n = 34) | 2.49 ± 0.38 | <0.0001 * | 2.39 ± 0.37 | 0.0196 * |
Squamous cell carcinoma (n = 14) | 3.05 ± 0.38 | 3.22 ± 0.51 | ||
Tumor stage | 0.5928 † | 0.6545 † | ||
I (n = 15) | 2.57 ± 0.45 | |||
II (n = 11) | 2.70 ± 0.37 | 2.57 ± 0.48 | ||
III (n = 18) | 2.75 ± 0.50 | 2.76 ± 0.52 | ||
Lymph nodes | 0.1096 * | 0.6621 * | ||
PET CT+ (n = 11) | 2.87 ± 0.40 | 2.57 ± 0.18 | ||
PET CT− (n = 35) | 2.59 ± 0.46 | 2.53 ± 0.58 |
Nuclear HIF-1α | p | Nuclear and Cytoplasmatic HIF-1α | p | |
---|---|---|---|---|
Male (n = 12) | 51.25 ± 38.33 | 0.086 * | 65.33 ± 26.31 | 0.0089 * |
Female (n = 8) | 11.00 ± 10.56 | 26.20 ± 22.85 | ||
Adenocarcinoma (n = 10) | 14.11 ± 18.16 | 0.0025 * | 34.33 ± 22.02 | 0.0038 * |
Squamous cell carcinoma (n = 10) | 66.44 ± 30.81 | 74.33 ± 22.66 | ||
Tumor stage | 0.7239 † | 0.6266 † | ||
I (n = 7) | 23.40 ± 36.98 | 38.20 ± 31.59 | ||
II (n = 6) | 53.80 ± 44.65 | 61.00 ± 39.17 | ||
III (n = 7) | 37.83 ± 35.32 | 57.83 ± 24.80 | ||
Lymph nodes | 0.0121 * | 0.0071 * | ||
PET CT+ (n = 5) | 85.50 ± 2.08 | 88.50 ± 2.38 | ||
PET CT− (n = 15) | 25.50 ± 31.89 | 42.92 ± 28.27 |
Tumor SUVmax | p | Lymph Node SUVmax | p | |
---|---|---|---|---|
Male (n = 32) | 7.81 ± 4.36 | 0.4778 * | 5.41 ± 1.78 | 0.3455 * |
Female (n = 16) | 8.86 ± 4.82 | 4.37 ± 1.51 | ||
Adenocarcinoma (n = 34) | 8.20 ± 4.27 | 0.6909 * | 6.05 ± 1.84 | 0.2182 * |
Squamous cell carcinoma (n = 14) | 8.05 ± 5.18 | 4.60 ± 1.51 | ||
Tumor stage | 0.2683 † | 0.515 † | ||
I (n = 15) | 7.16 ± 4.18 | 3.50 ± 0.28 | ||
II (n = 11) | 8.40 ± 6.12 | 4.60 ± 1.55 | ||
III (n = 18) | 9.17 ± 3.83 | 5.93 ± 1.96 | ||
Lymph nodes | 0.055 * | |||
PET CT+ | 9.80 ± 5.51 | |||
PET CT− | 7.33 ± 3.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokeza, J.; Strikic, A.; Ogorevc, M.; Kelam, N.; Vukoja, M.; Dilber, I.; Zekic Tomas, S. The Effect of GLUT1 and HIF-1α Expressions on Glucose Uptake and Patient Survival in Non-Small-Cell Lung Carcinoma. Int. J. Mol. Sci. 2023, 24, 10575. https://doi.org/10.3390/ijms241310575
Kokeza J, Strikic A, Ogorevc M, Kelam N, Vukoja M, Dilber I, Zekic Tomas S. The Effect of GLUT1 and HIF-1α Expressions on Glucose Uptake and Patient Survival in Non-Small-Cell Lung Carcinoma. International Journal of Molecular Sciences. 2023; 24(13):10575. https://doi.org/10.3390/ijms241310575
Chicago/Turabian StyleKokeza, Josipa, Ante Strikic, Marin Ogorevc, Nela Kelam, Martina Vukoja, Ivo Dilber, and Sandra Zekic Tomas. 2023. "The Effect of GLUT1 and HIF-1α Expressions on Glucose Uptake and Patient Survival in Non-Small-Cell Lung Carcinoma" International Journal of Molecular Sciences 24, no. 13: 10575. https://doi.org/10.3390/ijms241310575
APA StyleKokeza, J., Strikic, A., Ogorevc, M., Kelam, N., Vukoja, M., Dilber, I., & Zekic Tomas, S. (2023). The Effect of GLUT1 and HIF-1α Expressions on Glucose Uptake and Patient Survival in Non-Small-Cell Lung Carcinoma. International Journal of Molecular Sciences, 24(13), 10575. https://doi.org/10.3390/ijms241310575