Direct Effects of Toxic Divalent Cations on Contractile Proteins with Implications for the Heart: Unraveling Mechanisms of Dysfunction
Abstract
:1. Introduction
2. Accumulation, Competition, and Toxicity of Divalent Cations
2.1. Accumulation in the Myocardium and Cardiotoxic Effect of Divalent Cations
- Essential ions for physiological processes (Ca2+, Cu2+, Fe2+, Mg2+, Zn2+, Mo2+).
- Nonessential ions with no or low or unknown toxicity (Ba2+, Sr2+, Co2+, Ni2+).
- Nonessential and highly toxic ions (Cd2+, Pb2+, Hg2+).
2.2. Competition of Divalent Cations in the Body
2.3. Entry Pathways for Divalent Cations into Cardiomyocytes
2.4. Toxic Effects of Different Concentrations of Divalent Cations in Cells
3. EF-Hand Protein Family and Divalent Cations
3.1. Troponin C
3.2. Regulatory Light Chain
4. The Myosin ATP-Binding Pocket
Cation | Compound | Concentration | Change of Basal ATPase Activity, % * | Change of Actin-Activated ATPase Activity, % * | Velocity in Motility (Gliding) Assay, % * | Object | Reference |
---|---|---|---|---|---|---|---|
Ca | CaCl2 | 1 µM | −10 | Rabbit fast skeletal muscle myofibrils | Chao, 1990 [42] | ||
10 µM | +305 | ||||||
50 µM | +350 | ||||||
100 µM | +350 | ||||||
1 mM | +328 | ||||||
1 mM | +655 | −52 | Rabbit fast skeletal muscle myosin S1 fragment | Peyser, 1996 [159] | |||
2 mM | No motility | Dictyostelium discoideum myosin II | Walker, 2021 [153] | ||||
5 mM | +1450 | +475 | |||||
+4333 | +516 | Rabbit fast skeletal muscle myosin | Ge, 2019 [155] | ||||
+3544 | −16 | Polosukhina, 2000 [154] | |||||
Mn | MnCl2 | 1 mM | +383 | +12 | Myosin S1 fragment back and leg muscles of rabbit | Peyser, 1996 [159] | |
2 mM | −63 | Dictyostelium discoideum myosin II | Walker, 2021 [153] | ||||
5 mM | +4900 | +1050 | Dictyostelium discoideum myosin II | Walker, 2021 [153] | |||
6 mM | +32 | Rabbit fast skeletal muscle myosin S1 fragment | Burton, 2005 [160] | ||||
Pb | Pb(C2H3O2)2 | 8 µM | +30 | Rat left ventricle myosin | Fioresi, 2013 [161] | ||
100 µM | −26 | Rat right ventricle myosin | Vassallo, 2008 [62] | ||||
PbCl2 | 1 µM | −1 | Rabbit fast skeletal muscle myofibrils | Chao, 1990 [42] | |||
10 µM | +215 | ||||||
50 µM | +395 | ||||||
100 µM | +373 | ||||||
1 mM | +58 | ||||||
Cd | CdCl2 | 1 µM | −15 | Rabbit fast skeletal muscle myofibrils | Chao, 1990 [42] | ||
10 µM | +170 | ||||||
50 µM | +340 | ||||||
100 µM | +305 | ||||||
1 mM | No activity | ||||||
Hg | HgCl2 | 50 nM | −20 | Rat left ventricle myosin | Moreira, 2003 [64] | ||
100 nM | −40 | ||||||
150 nM | −50 | Vassalo, 1999 [65] | |||||
200 nM | −55 | Moreira, 2003 [64] | |||||
300 nM | −70 | ||||||
400 nM | −80 | ||||||
Cu | CuCl2 | 10 μg/mL | −67 | Rat left ventricle myosin | Filetti, 2018 [67] | ||
Ni | NiCl2 | 1 mM | −43 | −76 | Rabbit fast skeletal muscle myosin S1 fragment | Peyser, 1996 [159] | |
Ni(CH3CO2)2 | 5 mM | −63 | Rabbit fast skeletal muscle myosin S1 fragment | Burton, 2005 [160] | |||
Zn | ZnSO4 | 100 µM | −40 | Rabbit fast skeletal muscle myosin | Jones, 1997 [163] | ||
250 µM | −75 | ||||||
500 µM | −85 | ||||||
1 mM | −90 | ||||||
Al | AlCl3 | 100 µM | No effect | Rabbit fast skeletal muscle myosin | Jones, 1997 [163] | ||
250 µM | +10 | ||||||
500 µM | +10 | ||||||
1 mM | No effect | ||||||
AlC6H5O | 100 µM | No effect | Rabbit fast skeletal muscle myosin | Jones, 1997 [163] | |||
250 µM | No effect | ||||||
500 µM | No effect | ||||||
1 mM | No effect | ||||||
Fe | FeCl2 | 1 mM | +360 | −45 | Rabbit fast skeletal muscle myosin S1 fragment | Peyser, 1996 [159] | |
Co | CoCl2 | 1 mM | +262 | −27 | Rabbit fast skeletal muscle myosin S1 fragment | Peyser, 1996 [159] |
5. Materials and Methods
- (1)
- In the article title, at least one of the following words was found: “heart OR cardiomyocytes OR cardiotoxicity OR myocardial OR cardiac OR cardiovascular OR cardiomyopathy”.
- (2)
- In the found article, the chemical symbol, English, or Latin name of the divalent cation must be present in the article body. Namely [167], beryllium (Be2+), magnesium (Mg2+), calcium (Ca2+), strontium (Sr2+), barium (Ba2+), radium (Ra2+), vanadium (Va2+), chromium (Cr2+), manganese (Mn2+), iron/ferrum (Fe2+), ruthenium (Ru2+), osmium (Os2+), cobalt (Co2+), rhodium (Rh2+), nickel (Ni2+), palladium (Pd2+), platinum (Pt2+), copper/cuprum (Cu2+), zinc (Zn2+), cadmium (Cd2+), mercury (Hg2+), tin/stannum (Sn2+), lead/plumbum (Pb2+), polonium (Po2+). Divalent lanthanides that are known in the solid state but are unstable in water: neodymium (Nd2+), samarium (Sm2+), europium (Eu2+), dysprosium (Dy2+), Thulium (Tm2+), ytterbium (Yb2+). Divalent actinides (all artificially made): americium (Am2+), californium (Cf2+), einsteinium (Es2+), fermium (Fm2+), mendelevium (Md2+), nobelium (No2+).
- (3)
- In the found article, at least one of the words must be present in the text “transport”, “channel”, “accumulation”, “cardiotoxicity”, or “intoxication”. Additional search and selection were also made on the exact phrase according to the template “divalent cation + key word”, e.g., “copper cardiotoxicity”. All publications were screened based on their title and abstract to assess their relevance and eligibility, with special attention given to the known or proposed influence of divalent cations on the contractile or regulatory muscle proteins. More than 170 papers were carefully read and processed, and ca. 135 articles devoted to cations were utilized for the manuscript draft, which was revised several times.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huxley, H.E. The Mechanism of Muscular Contraction. Sci. Am. 1965, 213, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Weeds, A.G.; Lowey, S. Substructure of the Myosin Molecule. II. The Light Chains of Myosin. J. Mol. Biol. 1971, 61, 701–725. [Google Scholar] [CrossRef] [PubMed]
- Ebashi, S.; Endo, M.; Ohtsuki, I. Control of Muscle Contraction. Q. Rev. Biophys. 1969, 2, 351–384. [Google Scholar] [CrossRef] [PubMed]
- Ebashi, S.; Endo, M. Calcium and Muscle Contraction. Prog. Biophys. Mol. Biol. 1968, 18, 123–183. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.M.; Homsher, E.; Regnier, M. Regulation of Contraction in Striated Muscle. Physiol. Rev. 2000, 80, 853–924. [Google Scholar] [CrossRef]
- Lymn, R.W.; Taylor, E.W. Mechanism of Adenosine Triphosphate Hydrolysis by Actomyosin. Biochemistry 1971, 10, 4617–4624. [Google Scholar] [CrossRef]
- Onishi, H.; Mochizuki, N.; Morales, M.F. On the Myosin Catalysis of ATP Hydrolysis. Biochemistry 2004, 43, 3757–3763. [Google Scholar] [CrossRef]
- Kawasaki, Y.; van Eerd, J.-P. Biochemical and biophysical research communications. Biochem. Biophys. Res. Commun. 1972, 46, 335–340. [Google Scholar]
- Alexis, M.N.; Gratzer, W.B. Interaction of Skeletal Myosin Light Chains with Calcium Ions. Biochemistry 1978, 17, 2319–2325. [Google Scholar] [CrossRef]
- Kintses, B.; Gyimesi, M.; Pearson, D.S.; Geeves, M.A.; Zeng, W.; Bagshaw, C.R.; Málnási-Csizmadia, A. Reversible Movement of Switch 1 Loop of Myosin Determines Actin Interaction. EMBO J. 2007, 26, 265–274. [Google Scholar] [CrossRef]
- Webb, J.; Kirk, K.A.; Niedermeier, W.; Griggs, J.H.; Turner, M.E.; James, T.N. Distribution of 13 Trace Metals in Pig Heart Tissue. Bioinorg. Chem. 1973, 3, 61–75. [Google Scholar] [CrossRef]
- Novaes, R.D.; Mouro, V.G.S.; Gonçalves, R.V.; Mendonça, A.A.S.; Santos, E.C.; Fialho, M.C.Q.; Machado-Neves, M. Aluminum: A Potentially Toxic Metal with Dose-Dependent Effects on Cardiac Bioaccumulation, Mineral Distribution, DNA Oxidation and Microstructural Remodeling. Environ. Pollut. 2018, 242, 814–826. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Lee, G.H.; Yoon, C.; Jeong, U.; Kim, Y.; Cho, M.H.; Kim, D.W. Biodistribution and Toxicity of Spherical Aluminum Oxide Nanoparticles. J. Appl. Toxicol. 2016, 36, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.F.; He, M.; Li, X.L.; Lin, E.; Wang, Y.C.; Wei, H.; Wei, X. Molecular Mechanism of Aluminum-Induced Oxidative Damage and Apoptosis in Rat Cardiomyocytes. Biol. Trace Elem. Res. 2022, 200, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, A.; Magnavita, N.; Chimenti, C.; Caldarulo, M.; Sabbioni, E.; Pietra, R.; Cellini, C.; Possati, G.F.; Maseri, A. Marked Elevation of Myocardial Trace Elements in Idiopathic Dilated Cardiomyopathy Compared with Secondary Cardiac Dysfunction. J. Am. Coll. Cardiol. 1999, 33, 1578–1583. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Awan, Z.; Mumtaz, S.; Shakir, H.A.; Ahmad, F.; Ulhaq, M.; Tahir, H.M.; Awan, M.S.; Sharif, S.; Irfan, M.; et al. Cardiac Toxicity of Heavy Metals (Cadmium and Mercury) and Pharmacological Intervention by Vitamin C in Rabbits. Environ. Sci. Pollut. Res. 2020, 27, 29266–29279. [Google Scholar] [CrossRef]
- Thind, S. Cadmium Und Zinc Distribution in Cardiovascular of Normal and Cadmium-Treated and Other Dogs L. Exp. Mol. Pathol. 1975, 22, 326–334. [Google Scholar] [CrossRef]
- Ashraf, W. Accumulation of Heavy Metals in Kidney and Heart Tissues of Epinephelus Micrdon Fish from the Arabian Gulf. Environ. Monit. Assess. 2005, 101, 311–316. [Google Scholar] [CrossRef]
- Kopp, S.J.; Perry, H.M.; Glonek, T. Cardiac Physiologic-Metabolic Changes after Chronic Low-Level Heavy Metal Feeding. Am. J. Physiol. Heart Circ. Physiol. 1980, 8, 22–30. [Google Scholar] [CrossRef]
- Nefedova, E.A.; Halperin, A.I.; Shatornaya, V.F.; Shevchenko, I.V.; Demidenko, Y.V.; Pridius, I.A.; Myasoyed, Y.P. Experimental Determination of the Accumulation of Cadmium Salts in the Heart of the Embryo of Rat and Their Effect on Rat Cardiogenesis. Theor. Med. 2020, 1, 91–110. [Google Scholar] [CrossRef]
- Yazihan, N.; Koçak, M.K.; Akçil, E.; Erdem, O.; Sayal, A.; Güven, C.; Akyürek, N. Involvement of Galectin-3 in Cadmium-Induced Cardiac Toxicity. Anadolu Kardiyol. Derg. 2011, 11, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Speich, M. Concentrations of Lead, Cadmium, and Zinc in Human Heart Muscle and Aorta after Acute Myocardial Infarction. J. Am. Coll. Nutr. 2013, 1, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Jamall, I.S.; Naik, M.; Sprowls, J.J.; Trombetta, L.D. A Comparison of the Effects of Dietary Cadmium on Heart and Kidney Antioxidant Enzymes: Evidence for the Greater Vulnerability of the Heart to Cadmium Toxicity. J. Appl. Toxicol. 1989, 9, 339–345. [Google Scholar] [CrossRef]
- Liang, Y.; Young, J.L.; Kong, M.; Tong, Y.; Qian, Y.; Freedman, J.H.; Cai, L. Gender Differences in Cardiac Remodeling Induced by a High-Fat Diet and Lifelong, Low-Dose Cadmium Exposure. Chem. Res. Toxicol. 2019, 32, 1070–1081. [Google Scholar] [CrossRef] [PubMed]
- Iwao, S.; Tsuchiya, K.; Sugita, M. Variation of Cadmium Accumulation among Japanese. Arch. Environ. Health 1983, 38, 156–162. [Google Scholar] [CrossRef]
- Lin, H.; Tai, Y.; Chou, S.; Cheng, C.; Ho, C.; Lin, H. The Preferential Accumulation of Cadmium Ions among Various Tissues in Mice The Preferential Accumulation of Cadmium Ions among Various Tissues in Mice. Toxicol. Rep. 2022, 9, 111–119. [Google Scholar] [CrossRef]
- Kliver, E.E.; Okuneva, G.N.; Levicheva, E.N.; Nepomnyashchikh, L.M.; Loginova, I.Y.; Volkov, A.M.; Lushnikova, E.L.; Trunova, V.A.; Zvereva, V.V. Anatomical Variants of Transposition of the Main Vessels and Their Relationship with the Content of Chemical Elements in Heart Ventricles. Bull. Exp. Biol. Med. 2008, 145, 638–641. [Google Scholar] [CrossRef]
- Frank, A.; Wibom, R.; Danielsson, R. Myocardial Cytochrome c Oxidase Activity in Swedish Moose (Alces alces L.) Affected by Molybdenosis. Sci. Total Environ. 2002, 290, 121–129. [Google Scholar] [CrossRef]
- Crawford, A.J.; Bhattacharya, S.K. Excessive Intracellular Zinc Accumulation in Cardiac and Skeletal Muscles of Dystrophic Hamsters. Exp. Neurol. 1987, 95, 265–276. [Google Scholar] [CrossRef]
- Kaduk, B.; Metze, K.; Schmidt, P.F.; Brandt, G. Secondary Athrocytotic Cardiomyopathy—Heart Damage Due to Wilson’s Disease. Virchows Arch. A Pathol. Anat. Histol. 1980, 387, 67–80. [Google Scholar] [CrossRef]
- Pan, M.; Cheng, Z.; Huang, C.; Ye, Z.; Sun, L.; Chen, H.; Fu, B.; Zhou, K.; Fang, Z.; Wang, Z.; et al. Long-Term Exposure to Copper Induces Mitochondria-Mediated Apoptosis in Mouse Hearts. Ecotoxicol. Environ. Saf. 2022, 234, 113329. [Google Scholar] [CrossRef]
- Gilmour, P.S.; Schladweiler, M.C.; Nyska, A.; McGee, J.K.; Thomas, R.; Jaskot, R.H.; Schmid, J.; Kodavanti, U.P. Systemic Imbalance of Essential Metals and Cardiac Gene Expression in Rats Following Acute Pulmonary Zinc Exposure. J. Toxicol. Environ. Health Part A Curr. Issues 2006, 69, 2011–2032. [Google Scholar] [CrossRef]
- Schroeder, H.A.; Mitchener, M.; Nason, A.P. Life Term Effects of Nickel in Rats: Survival, Tumors, Interactions with Trace Elements and Tissue Levels. J. Nutr. 1974, 104, 239–243. [Google Scholar] [CrossRef]
- Whanger, P.D. Effects of Dietary Nickel on Enzyme Activities and Mineral Contents in Rats. Toxicol. Appl. Pharmacol. 1973, 25, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Davuljigari, C.B.; Gottipolu, R.R. Late-Life Cardiac Injury in Rats Following Early Life Exposure to Lead: Reversal Effect of Nutrient Metal Mixture. Cardiovasc. Toxicol. 2020, 20, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Brurok, H.; Schjøtt, J.; Berg, K.; Karlsson, J.O.G.; Jynge, P. Manganese and the Heart: Acute Cardiodepression and Myocardial Accumulation of Manganese. Acta Physiol. Scand. 1997, 159, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Novelli, E.L.B.; Rodrigues, N.L.; Sforcin, J.M.; Ribas, B.O. Toxic Effects of Nickel Exposure on Heart and Liver of Rats. Toxic Subst. Mech. 1997, 16, 251–258. [Google Scholar] [CrossRef]
- Ilbäck, N.G.; Fohlman, J.; Friman, G. A Common Viral Infection Can Change Nickel Target Organ Distribution. Toxicol. Appl. Pharmacol. 1992, 114, 166–170. [Google Scholar] [CrossRef]
- Ouyang, H.; Vogel, H.J. Metal Ion Binding to Calmodulin: NMR and Fluorescence Studies. BioMetals 1998, 11, 213–222. [Google Scholar] [CrossRef]
- Ferreira, G.; Santander, A.; Chavarría, L.; Cardozo, R.; Savio, F.; Sobrevia, L.; Nicolson, G.L. Functional Consequences of Lead and Mercury Exposomes in the Heart. Mol. Aspects Med. 2022, 87, 101048. [Google Scholar] [CrossRef]
- Barceloux, D.G. Molybdenum. Clin. Toxicol. 1999, 37, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.H.; Bu, C.H.; Cheung, W.Y. Activation of Troponin C by Cd2+ and Pb2+. Arch. Toxicol. 1990, 64, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, S.F.; Iwai-Shimada, M.; Oguri, T.; Isobe, T.; Takeuchi, A.; Kobayashi, Y.; Michikawa, T.; Yamazaki, S.; Nitta, H.; Kawamoto, T.; et al. Blood Mercury, Lead, Cadmium, Manganese and Selenium Levels in Pregnant Women and Their Determinants: The Japan Environment and Children’s Study (JECS). J. Expo. Sci. Environ. Epidemiol. 2019, 29, 633–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grau-perez, M.; Caballero-mateos, M.J.; Domingo-relloso, A.; Navas-acien, A.; Gomez-ariza, J.L.; Garcia-barrera, T.; Leon-latre, M.; Soriano-gil, Z.; Jarauta, E.; Cenarro, A.; et al. Toxic Metals and Subclinical Atherosclerosis in Carotid, Femoral, and Coronary Vascular Territories: The Aragon Workers Health Study. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Y.; Zhang, Z.Y.; Thijs, L.; Cauwenberghs, N.; Wei, F.F.; Jacobs, L.; Luttun, A.; Verhamme, P.; Kuznetsova, T.; Nawrot, T.S.; et al. Left Ventricular Structure and Function in Relation to Environmental Exposure to Lead and Cadmium. J. Am. Heart Assoc. 2017, 6, 4692. [Google Scholar] [CrossRef] [Green Version]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on Pollution and Health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- WHO. Lead Poisoning and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 9 January 2020).
- Hegde, S.; Maysky, M.; Zaidi, A. A Rare Case of Lead-Induced Cardiomyopathy. JACC Case Rep. 2020, 2, 1496–1500. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Carocci, A.; Lauria, G.; Catalano, A. Mercury Exposure and Heart Diseases. Int. J. Environ. Res. Public Health 2017, 14, 74. [Google Scholar] [CrossRef] [Green Version]
- Katsnelson, B.A.; Klinova, S.V.; Gerzen, O.P.; Balakin, A.A.; Lookin, O.N.; Lisin, R.V.; Nabiev, S.R.; Privalova, L.I.; Minigalieva, I.A.; Panov, V.G.; et al. Force-Velocity Characteristics of Isolated Myocardium Preparations from Rats Exposed to Subchronic Intoxication with Lead and Cadmium Acting Separately or in Combination. Food Chem. Toxicol. 2020, 144, 111641. [Google Scholar] [CrossRef]
- Klinova, S.V.; Katsnelson, B.A.; Minigalieva, I.A.; Gerzen, O.P.; Balakin, A.A.; Lisin, R.V.; Butova, K.A.; Nabiev, S.R.; Lookin, O.N.; Katsnelson, L.B.; et al. Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles. Int. J. Mol. Sci. 2021, 22, 3466. [Google Scholar] [CrossRef]
- Kopp, S.J.; Bárány, M.; Erlanger, M.; Perry, E.F.; Perry, H.M. The Influence of Chronic Low-Level Cadmium and/or Lead Feeding on Myocardial Contractility Related to Phosphorylation of Cardiac Myofibrillar Proteins. Toxicol. Appl. Pharmacol. 1980, 54, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Shemarova, I.V.; Korotkov, S.M.; Nesterov, V.P. Influence of Oxidative Processes in Mitochondria on Contractility of the Frog Rana Temporaria Heart Muscle. Effects of Cadmium. Zhurnal Evoliutsionnoi Biokhimii I Fiziol. 2011, 47, 306–310. [Google Scholar]
- Huang, Q.Y.; Fang, C.W.; Huang, H.Q. Alteration of Heart Tissue Protein Profiles in Acute Cadmium-Treated Scallops Patinopecten Yessoensis. Arch. Environ. Contam. Toxicol. 2011, 60, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protsenko, Y.L.; Katsnelson, B.A.; Klinova, S.V.; Lookin, O.N.; Balakin, A.A.; Nikitina, L.V.; Gerzen, O.P.; Nabiev, S.R.; Minigalieva, I.A.; Privalova, L.I.; et al. Further Analysis of Rat Myocardium Contractility Changes Associated with a Subchronic Lead Intoxication. Food Chem. Toxicol. 2019, 125, 233–241. [Google Scholar] [CrossRef]
- Gerzen, O.P.; Nabiev, S.R.; Klinova, S.V.; Minigalieva, I.A.; Sutunkova, M.P.; Katsnelson, B.A.; Nikitina, L.V. Molecular Mechanisms of Mechanical Function Changes of the Rat Myocardium under Subchronic Lead Exposure. Food Chem. Toxicol. 2022, 169, 113444. [Google Scholar] [CrossRef]
- Fioresi, M.; Simões, M.R.; Furieri, L.B.; Broseghini-Filho, G.B.; Vescovi, M.V.A.; Stefanon, I.; Vassallo, D.V. Chronic Lead Exposure Increases Blood Pressure and Myocardial Contractility in Rats. PLoS ONE 2014, 9, e96900. [Google Scholar] [CrossRef] [Green Version]
- Haverinen, J.; Badr, A.; Vornanen, M. Cardiac Toxicity of Cadmium Involves Complex Interactions Among Multiple Ion Currents in Rainbow Trout (Oncorhynchus mykiss) Ventricular Myocytes. Environ. Toxicol. Chem. 2021, 40, 2874–2885. [Google Scholar] [CrossRef]
- Limaye, D.A.; Shaikh, Z.A. Cytotoxicity of Cadmium and Characteristics of Its Transport in Cardiomyocytes. Toxicol. Appl. Pharmacol. 1999, 154, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, X.; Zhou, D.; Li, T.; Tang, L.; Gong, T.; Su, J.; Liang, P. Modelling Cadmium-Induced Cardiotoxicity Using Human Pluripotent Stem Cell-Derived Cardiomyocytes. J. Cell. Mol. Med. 2018, 22, 4221–4235. [Google Scholar] [CrossRef] [Green Version]
- Morad, M.; Maylie, J. Some Experimental Considerations. Chest 1980, 78, 166–173. [Google Scholar] [CrossRef]
- Vassallo, D.V.; Lebarch, E.C.; Moreira, C.M.; Wiggers, G.A.; Stefanon, I. Lead Reduces Tension Development and the Myosin ATPase Activity of the Rat Right Ventricular Myocardium. Braz. J. Med. Biol. Res. 2008, 41, 789–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira de Mattos, G.; Costa, C.; Savio, F.; Alonso, M.; Nicolson, G.L. Lead Poisoning: Acute Exposure of the Heart to Lead Ions Promotes Changes in Cardiac Function and Cav1.2 Ion Channels. Biophys. Rev. 2017, 9, 807–825. [Google Scholar] [CrossRef] [Green Version]
- Moreira, C.M.; Oliveira, E.M.; Bonan, C.D.; Sarkis, J.J.F.; Vassallo, D.V. Effects of Mercury on Myosin ATPase in the Ventricular Myocardium of the Rat. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2003, 135, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Vassallo, D.V.; Moreira, C.M.; Oliveira, E.M.; Bertollo, D.M.; Veloso, T.C.; Vassallo, C.; Appl, T.C.T. Effects of Mercury on the Isolated Heart Muscle Are Prevented by DTT and Cysteine 1 Effects of Mercury on the Isolated Heart Muscle Are Prevented. Toxicol. Appl. Pharmacol. 1999, 118, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Sa’idu, B.; Hassan, I.; Abdulazeez, N.; Aliyu, B.; Aliyu, B. Therapeutic Effect of Methanolic Leaves Extract of Cannabis in Copper Induced Cardio-Toxicity in Wistar Rats. Int. J. Pharmacogn. Life Sci. 2022, 3, 15–18. [Google Scholar] [CrossRef]
- Filetti, F.M.; Vassallo, D.V.; Fioresi, M.; Simões, M.R. Reactive Oxygen Species Impair the Excitation-Contraction Coupling of Papillary Muscles after Acute Exposure to a High Copper Concentration. Toxicol. Vitr. 2018, 51, 106–113. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Wu, L.; Mateescu, M. Toxic effects of cadmium and copper on the isolated heart of dogfish shark, squalus acanthias. J. Toxicol. Environ. Health Part A 2010, 57, 37–41. [Google Scholar]
- Lippmann, M.; Ito, K.; Hwang, J.S.; Maciejczyk, P.; Chen, L.C. Cardiovascular Effects of Nickel in Ambient Air. Environ. Health Perspect. 2006, 114, 1662–1669. [Google Scholar] [CrossRef] [Green Version]
- Chuang, H.C.; Hsueh, T.W.; Chang, C.C.; Hwang, J.S.; Chuang, K.J.; Yan, Y.H.; Cheng, T.J. Nickel-Regulated Heart Rate Variability: The Roles of Oxidative Stress and Inflammation. Toxicol. Appl. Pharmacol. 2013, 266, 298–306. [Google Scholar] [CrossRef]
- Campen, M.J.; Nolan, J.P.; Schladweiler, M.C.J.; Kodavanti, U.P.; Evansky, P.A.; Costa, D.L.; Watkinson, W.P. Cardiovascular and Thermoregulatory Effects of Inhaled PM-Associated Transition Metals: A Potential Interaction between Nickel and Vanadium Sulfate. Toxicol. Sci. 2001, 64, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Yuan, Y.; Xiao, Y.; Long, P.; Li, W.; Yu, Y.; Liu, Y.; Liu, K.; Wang, H.; Zhou, L.; et al. Associations of Plasma Metal Concentrations with the Risks of All-Cause and Cardiovascular Disease Mortality in Chinese Adults. Environ. Int. 2021, 157, 106808. [Google Scholar] [CrossRef] [PubMed]
- Paquette, T.; Clay, J.R.; Ogbaghebriel, A.; Shrier, A. Effects of Divalent Cations on the E-4031-Sensitive Repolarization Current, I(Kr), in Rabbit Ventricular Myocytes. Biophys. J. 1998, 74, 1278–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alissa, E.M.; Ferns, G.A. Heavy Metal Poisoning and Cardiovascular Disease. J. Toxicol. 2011, 2011, 870125. [Google Scholar] [CrossRef] [PubMed]
- Sevim, Ç.; Doğan, E.; Comakli, S. Cardiovascular Disease and Toxic Metals. Curr. Opin. Toxicol. 2020, 19, 88–92. [Google Scholar] [CrossRef]
- Fatima, G.; Raza, A.M.; Hadi, N.; Nigam, N.; Mahdi, A.A. Cadmium in Human Diseases: It’s More than Just a Mere Metal. Indian J. Clin. Biochem. 2019, 34, 371–378. [Google Scholar] [CrossRef]
- Messner, B.; Bernhard, D. Cadmium and Cardiovascular Diseases: Cell Biology, Pathophysiology, and Epidemiological Relevance. BioMetals 2010, 23, 811–822. [Google Scholar] [CrossRef]
- Chen, X.; Cai, Q.; Liang, R.; Zhang, D.; Liu, X.; Zhang, M.; Xiong, Y.; Xu, M.; Liu, Q.; Li, P.; et al. Copper Homeostasis and Copper-Induced Cell Death in the Pathogenesis of Cardiovascular Disease and Therapeutic Strategies. Cell Death Dis. 2023, 14, 105. [Google Scholar] [CrossRef]
- Afridi, H.I.; Kazi, T.G.; Kazi, N.G.; Jamali, M.K.; Arain, M.B.; Sirajuddin; Baig, J.A.; Kandhro, G.A.; Wadhwa, S.K.; Shah, A.Q. Evaluation of Cadmium, Lead, Nickel and Zinc Status in Biological Samples of Smokers and Nonsmokers Hypertensive Patients. J. Hum. Hypertens. 2010, 24, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Chanihoon, G.Q.; Afridi, H.I.; Kazi, T.G.; Talpur, F.N.; Baig, J.A. Evaluation of Zinc and Cadmium Levels in the Biological Samples of Ewing Sarcomas Patients and Healthy Subjects Clinica Chimica Acta Evaluation of Zinc and Cadmium Levels in the Biological Samples of Ewing Sarcomas Patients and Healthy Subjects. Clin. Chim. Acta 2021, 522, 1–7. [Google Scholar] [CrossRef]
- Lashari, A.; Afridi, H.I.; Kazi, T.G.; Talpur, F.N.; Baig, J.A.; Chanihoon, G.Q.; Channa, G.M. Interaction between Cadmium and Zinc Levels in the Biological Samples of Type 1 Diabetic Mellitus Children, Reside in Different Areas of Sindh, Pakistan. Am. J. Anal. Chem. 2021, 12, 241–259. [Google Scholar] [CrossRef]
- Yu, H.; Zhen, J.; Xu, J.; Cai, L.; Leng, J.; Ji, H.; Keller, B.B. Zinc Protects against Cadmium-Induced Toxicity in Neonatal Murine Engineered Cardiac Tissues via Metallothionein-Dependent and Independent Mechanisms. Acta Pharmacol. Sin. 2020, 41, 638–649. [Google Scholar] [CrossRef]
- Khalaf, Q.H.; Awad, N.A.N.; Hamadie, S.S. Determination the Relationship between Cadmium and Zinc Levels with Myocardial Infarction. Teikyo Med. J. 2022, 45, 5721–5728. [Google Scholar]
- Richardt, G.; Federolf, G.; Habermann, E. Affinity of Heavy Metal Ions to Intracellular Ca2+-Binding Proteins. Biochem. Pharmacol. 1986, 35, 1331–1335. [Google Scholar] [CrossRef]
- Thévenod, F.; Fels, J.; Lee, W.K.; Zarbock, R. Channels, Transporters and Receptors for Cadmium and Cadmium Complexes in Eukaryotic Cells: Myths and Facts. BioMetals 2019, 32, 469–489. [Google Scholar] [CrossRef]
- Rani, A.; Kumar, A.; Lal, A.; Pant, M. Cellular Mechanisms of Cadmium-Induced Toxicity: A Review. Int. J. Environ. Health Res. 2014, 24, 378–399. [Google Scholar] [CrossRef]
- Žikić, R.V.; Štajn, A.Š.; Ognjanović, B.I.; Saičić, Z.S.; Kostić, M.M.; Pavlović, S.Z.; Petrović, V.M. The Effect of Cadmium and Selenium on the Antioxidant Enzyme Activities in Rat Heart. J. Environ. Pathol. Toxicol. Oncol. 1998, 17, 259–264. [Google Scholar]
- Moulis, J.M. Cellular Mechanisms of Cadmium Toxicity Related to the Homeostasis of Essential Metals. BioMetals 2010, 23, 877–896. [Google Scholar] [CrossRef]
- Kirberger, M.; Yang, J.J. Structural Differences between Pb2+- and Ca2+-Binding Sites in Proteins: Implications with Respect to Toxicity. J. Inorg. Biochem. 2008, 102, 1901–1909. [Google Scholar] [CrossRef] [Green Version]
- Kirberger, M.; Wong, H.C.; Jiang, J.; Yang, J.J. Metal Toxicity and Opportunistic Binding of Pb2+ in Proteins. J. Inorg. Biochem. 2013, 125, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Dudev, T.; Grauffel, C.; Lim, C. How Pb 2+ Binds and Modulates Properties of Ca2+ -Signaling Proteins. Inorg. Chem. 2018, 57, 14798–14809. [Google Scholar] [CrossRef]
- Gorkhali, R.; Huang, K.; Kirberger, M.; Yang, J.J. Defining Potential Roles of Pb2+ in Neurotoxicity from a Calciomics Approach. Metallomics 2016, 8, 563–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordemann, J.M.; Austin, R.N. Lead Neurotoxicity: Exploring the Potential Impact of Lead Substitution in Zinc-Finger Proteins on Mental Health. Metallomics 2016, 8, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Wyparło-Wszelaki, M.; Machoń-Grecka, A.; Wąsik, M.; Dobrakowski, M. Critical Aspects of the Physiological Interactions between Lead and Magnesium. J. Biochem. Mol. Toxicol. 2022, 36, e22964. [Google Scholar] [CrossRef]
- Jacobus, W.E.; Brierley, G.P. Ion Transport by Heart Mitochondria. J. Biol. Chem. 1969, 244, 4995–5004. [Google Scholar] [CrossRef]
- Hendrych, M.; Olejnickova, V.; Marie, N. Calcium versus Strontium Handling by the Heart Muscle. Gen. Physiol. Biophys. 2016, 35, 13–23. [Google Scholar] [CrossRef]
- Bongini, R.E.; Culver, S.B.; Elkins, K.M. Engineering Aluminum Binding Affinity in an Isolated EF-Hand from Troponin C: A Computational Site-Directed Mutagenesis Study. J. Inorg. Biochem. 2007, 101, 1251–1264. [Google Scholar] [CrossRef]
- Mujika, J.I.; Rezabal, E.; Mercero, J.M.; Ruipérez, F.; Costa, D.; Ugalde, J.M.; Lopez, X. Aluminium in Biological Environments: A Computational Approach. Comput. Struct. Biotechnol. J. 2014, 9, e201403002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezabal, E.; Mercero, J.M.; Lopez, X.; Ugalde, J.M. Protein Side Chains Facilitate Mg/Al Exchange in Model Protein Binding Sites. ChemPhysChem 2007, 8, 2119–2124. [Google Scholar] [CrossRef]
- Potocki, S.; Witkowska, D.; Pyrkosz, M.; Szebesczyk, A.; Krzywoszynska, K.; Kozlowski, H. Metal Transport and Homeostasis within the Human Body: Toxicity Associated with Transport Abnormalities. Curr. Med. Chem. 2012, 19, 2738–2759. [Google Scholar] [CrossRef]
- Goytain, A.; Quamme, G.A. Functional Characterization of Human SLC41A1, a Mg2+ Transporter with Similarity to Prokaryotic MgtE Mg2+ Transporters. Physiol. Genom. 2005, 21, 337–342. [Google Scholar] [CrossRef]
- Goytain, A.; Quamme, G.A. Functional Characterization of ACDP2 (Ancient Conserved Domain Protein), a Divalent Metal Transporter. Physiol. Genom. 2005, 22, 382–389. [Google Scholar] [CrossRef]
- Goytain, A.; Quamme, G.A. Functional Characterization of the Human Solute Carrier, SLC41A2. Biochem. Biophys. Res. Commun. 2005, 330, 701–705. [Google Scholar] [CrossRef]
- Goytain, A.; Quamme, G.A. Identification and Characterization of a Novel Family of Membrane Magnesium Transporters, MMgT1 and MMgT2. Am. J. Physiol. Cell Physiol. 2008, 294, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Argüello, J.M. Identification of Ion-Selectivity Determinants in Heavy-Metal Transport P1B-Type ATPases. J. Membr. Biol. 2003, 195, 93–108. [Google Scholar] [CrossRef]
- Arguello, J.M.; Eren, E.; Gonza’lez-Guerrero, M. The Structure and Function of Heavy Metal Transport P 1B -ATPases. Biometals 2007, 20, 233–248. [Google Scholar] [CrossRef]
- Bridges, C.C.; Zalups, R.K. Molecular and Ionic Mimicry and the Transport of Toxic Metals. Toxicol. Appl. Pharmacol. 2005, 204, 274–308. [Google Scholar] [CrossRef] [Green Version]
- Hobai, I.A.; Bates, J.A.; Howarth, F.C.; Levi, A.J. Inhibition by External Cd2+ of Na/Ca Exchange and L-Type Ca Channel in Rabbit Ventricular Myocytes. Am. J. Physiol. Heart Circ. Physiol. 1997, 272, H2164–H2172. [Google Scholar] [CrossRef]
- Pignier, C.; Potreau, D. Characterization of Nifedipine-Resistant Calcium Current in Neonatal Rat Ventricular Cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, 2259–2268. [Google Scholar] [CrossRef]
- Yu, H.T.; Zhen, J.; Leng, J.Y.; Cai, L.; Ji, H.L.; Keller, B.B. Zinc as a Countermeasure for Cadmium Toxicity. Acta Pharmacol. Sin. 2021, 42, 340–346. [Google Scholar] [CrossRef]
- Ferreira, G.; Yi, J.; Ríos, E.; Shirokov, R. Ion-Dependent Inactivation of Barium Current through L-Type Calcium Channels. J. Gen. Physiol. 1997, 109, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Atchison, W.D. Effects of Toxic Environmental Contaminants on Voltage-Gated Calcium Channel Function: From Past to Present. J. Bioenerg. Biomembr. 2003, 35, 507–532. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Azevedo, B.; Barros Furieri, L.; Peçanha, F.M.I.; Wiggers, G.A.; Frizera Vassallo, P.; Ronacher Simões, M.; Fiorim, J.; Rossi De Batista, P.; Fioresi, M.; Rossoni, L.; et al. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems. J. Biomed. Biotechnol. 2012, 2012, 949048. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Li, Y.; Shi, L.; Hussain, R.; Mehmood, K.; Tang, Z.; Zhang, H. Heavy Metals Induced Mitochondrial Dysfunction in Animals: Molecular Mechanism of Toxicity. Toxicology 2022, 469, 153136. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Morris, H.; Cronin, M.T.D. Glutathione-Heavy-Metal-1. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaburjakova, J.; Gaburjakova, M. The Cardiac Ryanodine Receptor Provides a Suitable Pathway for the Rapid Transport of Zinc (Zn2+). Cells 2022, 11, 868. [Google Scholar] [CrossRef]
- Lin, Z.; Wei, L.; Cai, W.; Zhu, Y.; Tucholski, T.; Mitchell, S.D.; Guo, W.; Ford, S.P.; Diffee, G.M.; Ge, Y. Simultaneous Quantification of Protein Expression and Modifications by Top-down Targeted Proteomics: A Case of the Sarcomeric Subproteome. Mol. Cell. Proteom. 2019, 18, 594–605. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, C. Role of Calcium Channels in Heavy Metal Toxicity. ISRN Toxicol. 2013, 2013, 184360. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Han, J.; Su, W.; Li, A.; Zhang, W.; Li, H.; Hu, H.; Song, W.; Xu, C.; Chen, J. Gut-on-a-Chip for Exploring the Transport Mechanism of Hg(II). Microsyst. Nanoeng. 2023, 9, 2. [Google Scholar] [CrossRef]
- Fujishiro, H.; Himeno, S. New Insights into the Roles of ZIP8, a Cadmium and Manganese Transporter, and Its Relation to Human Diseases. Biol. Pharm. Bull. 2019, 42, 1076–1082. [Google Scholar] [CrossRef] [Green Version]
- Au, C.; Benedetto, A.; Aschner, M. Manganese Transport in Eukaryotes: The Role of DMT1. Neurotoxicology 2008, 29, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Herman, S.; Lipiñski, P.; Starzyñski, R.; Bednarz, A.; Grzmil, P.; Lenartowicz, M. Molecular Mechanisms of Cellular Copper Homeostasis in Mammals. Folia Biol. 2022, 70, 201–212. [Google Scholar] [CrossRef]
- Illing, A.C.; Shawki, A.; Cunningham, C.L.; Mackenzie, B. Substrate Profile and Metal-Ion Selectivity of Human Divalent Metal-Ion Transporter-1. J. Biol. Chem. 2012, 287, 30485–30496. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, M.; Vélez, D.; Devesa, V.; Puig, S. Participation of Divalent Cation Transporter DMT1 in the Uptake of Inorganic Mercury. Toxicology 2015, 331, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Liu, X.; Jia, M.R.; Shi, X.Y.; Fu, J.W.; Guan, D.X.; Ma, L.Q. Amine- and Thiol-Bifunctionalized Mesoporous Silica Material for Immobilization of Pb and Cd: Characterization, Efficiency, and Mechanism. Chemosphere 2022, 291, 132771. [Google Scholar] [CrossRef]
- Krezel, A.; Lesniak, W.; Jezowska-Bojczuk, M.; Mlynarz, P.; Brasun, J.; Kozlowski, H.; Bal, W. Coordination of Heavy Metals by Dithiothreitol, a Commonly Used Thiol Group Protectant. J. Inorg. Biochem. 2001, 84, 77–88. [Google Scholar] [CrossRef]
- Xin, M.; Olson, E.N.; Bassel-Duby, R. Mending Broken Hearts: Cardiac Development as a Basis for Adult Heart Regeneration and Repair. Nat. Rev. Mol. Cell Biol. 2013, 14, 529–541. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, Y.; Kawamura, K.; Nakamura, Y.; Ono, K. Pathological Impact of Hyperpolarization-Activated Chloride Current Peculiar to Rat Pulmonary Vein Cardiomyocytes. J. Mol. Cell. Cardiol. 2014, 66, 53–62. [Google Scholar] [CrossRef]
- Kaplan, J.H.; Maryon, E.B. How Mammalian Cells Acquire Copper: An Essential but Potentially Toxic Metal. Biophys. J. 2016, 110, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinnell, J.; Turner, S.; Howell, S. Cardiac Muscle Physiology. Contin. Educ. Anaesth. Crit. Care Pain 2007, 7, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Denborough, M. Malignant Hyperthermia. Lancet 1998, 352, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Tautz, T.; Zhang, S.; Fomina, A.; Liu, H. The Current Status of Malignant Hyperthermia. J. Biomed. Res. 2020, 34, 75–85. [Google Scholar] [CrossRef]
- Murphy, E.; Steenbergen, C.; Levy, L.A.; Raju, B.; London, R.E. Cytosolic Free Magnesium Levels in Ischemic Rat Heart. J. Biol. Chem. 1989, 264, 5622–5627. [Google Scholar] [CrossRef]
- Borchgrevink, P.C.; Schie Bergan, A.; Bakoy, O.E.; Jynge, P. Magnesium and Reperfusion of Ischemic Rat Heart as Assessed by 31P-NMR. Am. J. Physiol. Heart Circ. Physiol. 1989, 256, H195–H204. [Google Scholar] [CrossRef]
- Johnson, C.J.; Peterson, D.R.; Smith, E.K. Myocardial Tissue Concentrations of Magnesium and Potassium in Men Dying Suddenly from Ischemic Heart Disease. Am. J. Clin. Nutr. 1979, 32, 967–970. [Google Scholar] [CrossRef]
- Lewit-bentley, A.; Réty, S. EF-Hand Calcium-Binding Proteins. Curr. Opin. Struct. Biol. 2000, 10, 637–643. [Google Scholar] [CrossRef]
- Snyder, E.E.; Buoscio, B.W.; Falke, J.J. Calcium(II) Site Specificity: Effect of Size and Charge on Metal Ion Binding to an EF-Hand-like Site. Biochemistry 1990, 29, 3937–3943. [Google Scholar] [CrossRef]
- Chao, S.H.; Bu, C.H.; Cheung, W.Y. Stimulation of Myosin Light-Chain Kinase by Cd2+ and Pb2+. Arch. Toxicol. 1995, 69, 197–203. [Google Scholar] [CrossRef]
- Chao, S.H.; Suzuki, Y.; Zysk, J.R.; Cheung, W.Y. Activation of Calmodulin by Various Metal Cations as a Function of Ionic Radius. Mol. Pharmacol. 1984, 26, 75–82. [Google Scholar] [PubMed]
- Vologzhannikova, A.A.; Shevelyova, M.P.; Kazakov, A.S.; Sokolov, A.S.; Borisova, N.I.; Permyakov, E.A.; Kircheva, N.; Nikolova, V.; Dudev, T.; Permyakov, S.E. Strontium Binding to α-Parvalbumin, a Canonical Calcium-Binding Protein of the “EF-Hand” Family. Biomolecules 2021, 11, 1158. [Google Scholar] [CrossRef] [PubMed]
- Siegel, N. Aluminum Interaction With Biomolecules: The Molecular Basis for Aluminum Toxicity. Am. J. Kidney Dis. 1985, 6, 353–357. [Google Scholar] [CrossRef] [PubMed]
- de Souza, I.D.; de Andrade, A.S.; Dalmolin, R.J.S. Lead-Interacting Proteins and Their Implication in Lead Poisoning. Crit. Rev. Toxicol. 2018, 48, 375–386. [Google Scholar] [CrossRef]
- Marston, S.; Zamora, J.E. Troponin Structure and Function: A View of Recent Progress. J. Muscle Res. Cell Motil. 2020, 41, 71–89. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, F. Ion Exchange Properties of the Calcium Receptor Site of Troponin. Biochim. Biophys. Acta (BBA)-Bioenerg. 1971, 245, 221–229. [Google Scholar] [CrossRef]
- O’Connell, B.; Stephenson, D.G.; Blazev, R.; Stephenson, G.M.M. Troponin C Isoform Composition Determines Differences in Sr2+-Activation Characteristics between Rat Diaphragm Fibers. Am. J. Physiol. Cell Physiol. 2004, 287, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Nag, S.; Gong, H.; Qi, L.; Irving, T.C. Cardiac Myosin Filaments Are Directly Regulated by Calcium. J. Gen. Physiol. 2022, 154, 1–13. [Google Scholar] [CrossRef]
- Sitbon, Y.H.; Yadav, S.; Kazmierczak, K.; Szczesna-Cordary, D. Insights into Myosin Regulatory and Essential Light Chains: A Focus on Their Roles in Cardiac and Skeletal Muscle Function, Development and Disease. J. Muscle Res. Cell Motil. 2020, 41, 313–327. [Google Scholar] [CrossRef]
- Markandran, K.; Poh, J.W.; Ferenczi, M.A.; Cheung, C. Regulatory Light Chains in Cardiac Development and Disease. Int. J. Mol. Sci. 2021, 22, 4351. [Google Scholar] [CrossRef]
- Metzger, J.M.; Moss, R.L. Transitions in Vertebrate Skeletal Muscle. Biophys. J. 1992, 63, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Falke, J.J.; Snyder, E.E.; Thatcher, K.C.; Voertler, C.S. Quantitating and Engineering the Ion Specificity of an EF-Hand-like Ca2+ Binding Site. Biochemistry 1991, 30, 8690–8697. [Google Scholar] [CrossRef]
- Da Silva, A.C.R.; Kendrick-Jones, J.; Reinach, F.C. Determinants of Ion Specificity on EF-Hands Sites: Conversion of the Ca2+/Mg2+ Site of Smooth Muscle Myosin Regulatory Light Chain into a Ca2+-Specific Site. J. Biol. Chem. 1995, 270, 6773–6778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Prudent, M.; Fauvet, B.; Lashuel, H.A.; Girault, H.H. Phosphorylation of α -Synuclein at Y125 and S129 Alters Its Metal Binding Properties: Implications for Understanding the Role of α -Synuclein in the Pathogenesis of Parkinson’s Disease and Related Disorders. ACS Chem. Neurosci. 2011, 2, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.C.; Walczak, C.E.; Cochran, J.C. Switch-1 Instability at the Active Site Decouples ATP Hydrolysis from Force Generation in Myosin II. Cytoskeleton 2021, 78, 3–13. [Google Scholar] [CrossRef]
- Polosukhina, K.; Eden, D.; Chinn, M.; Highsmith, S. CaATP as a Substrate to Investigate the Myosin Lever Arm Hypothesis of Force Generation. Biophys. J. 2000, 78, 1474–1481. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Gargey, A.; Nesmelova, I.V.; Nesmelov, Y.E. CaATP Prolongs Strong Actomyosin Binding and Promotes Futile Myosin Stroke. J. Muscle Res. Cell Motil. 2019, 40, 389–398. [Google Scholar] [CrossRef]
- Baylor, S.M.; Hollingworth, S. Model of Sarcomeric Ca2+ Movements, Including ATP Ca2+ Binding and Diffusion, during Activation of Frog Skeletal Muscle. J. Gen. Physiol. 1998, 112, 297–316. [Google Scholar] [CrossRef] [Green Version]
- Tkachev, Y.V.; Ge, J.; Negrashov, I.V.; Nesmelov, Y.E. Metal Cation Controls Myosin and Actomyosin Kinetics. Protein Sci. 2013, 22, 1766–1774. [Google Scholar] [CrossRef] [Green Version]
- Bagshaw, C.R. The Kinetic Mechanism of the Manganous Ion-Dependent Adenosine Triphosphatase of Myosin Subfragment 1. FEBS Lett. 1975, 58, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Peyser, Y.M.; Ben-hur, M.; Werber, M.M.; Muhlrad, A. Effect of Divalent Cations on the Formation and Stability of Myosin Subfragment 1—ADP—Phosphate Analog Complexes. Biochemistry 1996, 35, 4409–4416. [Google Scholar] [CrossRef] [PubMed]
- Burton, K.; White, H.; Sleep, J. Kinetics of Muscle Contraction and Actomyosin NTP Hydrolysis from Rabbit Using a Series of Metal-Nucleotide Substrates. J. Physiol. 2005, 563, 689–711. [Google Scholar] [CrossRef] [Green Version]
- Fioresi, M.; Furieri, L.B.; Simões, M.R.; Ribeiro Junior, R.F.; Meira, E.F.; Fernandes, A.A.; Stefanon, I.; Vassallo, D.V. Acute Exposure to Lead Increases Myocardial Contractility Independent of Hypertension Development. Braz. J. Med. Biol. Res. 2013, 46, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Chizzonite, R.A.; Everett, A.W.; Prior, G.; Zak, R. Comparison of Myosin Heavy Chains in Atria and Ventricles from Hyperthyroid, Hypjthyroid and Euthyroid Rats. J. Biol. Chem. 1984, 259, 15564–15571. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L.; Kochian, L.V. Aluminum Interaction with Plasma Membrane Lipids and Enzyme Metal Binding Sites and Its Potential Role in Al Cytotoxicity. FEBS Lett. 1997, 400, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochran, J.C.; Zhao, Y.C.; Wilcox, D.E.; Kull, F.J. A Metal Switch for Controlling the Activity of Molecular Motor Proteins. Nat. Struct. Mol. Biol. 2012, 19, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Cochran, J.C.; Thompson, M.E.; Kull, F.J. Metal Switch-Controlled Myosin II from Dictyostelium Discoideum Supports Closure of Nucleotide Pocket during ATP Binding Coupled to Detachment from Actin Filaments. J. Biol. Chem. 2013, 288, 28312–28323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Academia and Clinic Annals of Internal Medicine Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, N.; Arnshaw, A. Chemistry of the Elements. Radiochim. Acta 1996, 72, 1–6. [Google Scholar] [CrossRef]
- Quick, S.; Reuner, U.; Weidauer, M.; Hempel, C.; Heidrich, F.M.; Mues, C.; Sveric, K.M.; Ibrahim, K.; Reichmann, H.; Linke, A.; et al. Cardiac and Autonomic Function in Patients with Wilson’s Disease. Orphanet J. Rare Dis. 2019, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerzen, O.P.; Votinova, V.O.; Potoskueva, I.K.; Tzybina, A.E.; Nikitina, L.V. Direct Effects of Toxic Divalent Cations on Contractile Proteins with Implications for the Heart: Unraveling Mechanisms of Dysfunction. Int. J. Mol. Sci. 2023, 24, 10579. https://doi.org/10.3390/ijms241310579
Gerzen OP, Votinova VO, Potoskueva IK, Tzybina AE, Nikitina LV. Direct Effects of Toxic Divalent Cations on Contractile Proteins with Implications for the Heart: Unraveling Mechanisms of Dysfunction. International Journal of Molecular Sciences. 2023; 24(13):10579. https://doi.org/10.3390/ijms241310579
Chicago/Turabian StyleGerzen, Oksana P., Veronika O. Votinova, Iulia K. Potoskueva, Alyona E. Tzybina, and Larisa V. Nikitina. 2023. "Direct Effects of Toxic Divalent Cations on Contractile Proteins with Implications for the Heart: Unraveling Mechanisms of Dysfunction" International Journal of Molecular Sciences 24, no. 13: 10579. https://doi.org/10.3390/ijms241310579
APA StyleGerzen, O. P., Votinova, V. O., Potoskueva, I. K., Tzybina, A. E., & Nikitina, L. V. (2023). Direct Effects of Toxic Divalent Cations on Contractile Proteins with Implications for the Heart: Unraveling Mechanisms of Dysfunction. International Journal of Molecular Sciences, 24(13), 10579. https://doi.org/10.3390/ijms241310579