Protein Extract of a Probiotic Strain of Hafnia alvei and Bacterial ClpB Protein Improve Glucose Tolerance in Mice
Abstract
:1. Introduction
2. Results
2.1. Experiment 1
2.1.1. Sweet Preference Test
2.1.2. Baseline Glucose and Body Composition
2.1.3. Glucose Tolerance Tests
2.1.4. Plasma Insulin and Insulin Tolerance Test
2.1.5. Regulatory Peptide mRNA Levels in the Hypothalamus
2.2. Experiment #2 (Exp#2)
ClpB Administration
3. Discussion
4. Materials and Methods
4.1. Bacterial Culture
4.2. Bacterial Protein Extraction
4.3. Experiment #1 (Exp #1)
4.3.1. Animals
4.3.2. Probiotic Treatment and Experimental Design
4.3.3. Sweet Preference Test
4.3.4. Glucose and Insulin Tolerance Tests
4.3.5. Body Composition and Insulin Assay
4.3.6. Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT)-PCR
4.4. Experiment # 2 (Exp#2)
4.4.1. Animals
4.4.2. ClpB Administration and Glucose Measurements in Mice
4.4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
26RFa | peptide 26RFamide |
AgRP | agouti-related protein |
AUC | area under the curve |
BALT | brief-access licking test |
CCK | cholecystokinin |
ClpB | caseinolytic protease B |
Gal | galanin |
GLP-1 | glucagon-like peptide-1 |
IG GTT | intragastric glucose tolerance test |
IP GTT | intraperitoneal glucose tolerance test |
ITT | insulin tolerance test |
NPY | neuropeptide Y |
Oxt | oxytocin |
POMC | proopiomelanocortin |
PYY | peptide YY |
T2D | type 2 diabetes |
α-MSH | α-melanocyte-stimulating hormone |
References
- Palmnäs-Bédard, M.S.A.; Costabile, G.; Vetrani, C.; Åberg, S.; Hjalmarsson, Y.; Dicksved, J.; Riccardi, G.; Landberg, R. The human gut microbiota and glucose metabolism: A scoping review of key bacteria and the potential role of SCFAs. Am. J. Clin. Nutr. 2022, 116, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Kaul, R.; Harfouche, M.; Arabi, M.; Al-Najjar, Y.; Sarkar, A.; Saliba, R.; Chaari, A. The effect of microbiome-modulating probiotics, prebiotics and synbiotics on glucose homeostasis in type 2 diabetes: A systematic review, meta-analysis, and meta-regression of clinical trials. Pharmacol. Res. 2022, 185, 106520. [Google Scholar] [CrossRef]
- Arora, T.; Vanslette, A.M.; Hjorth, S.A.; Bäckhed, F. Microbial regulation of enteroendocrine cells. Med 2021, 2, 553–570. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.W.-L.; Martin, A.; Young, R.; Keating, D.J. The Regulation of Peripheral Metabolism by Gut-Derived Hormones. Front. Endocrinol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Tennoune, N.; Chan, P.; Breton, J.; Legrand, R.; Chabane, Y.N.; Akkermann, K.; Järv, A.; Ouelaa, W.; Takagi, k.; Ghouzali, I.; et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide [alpha]-MSH, at the origin of eating disorders. Transl. Psychiatry 2014, 4, e458. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.J.P.; Çakir, I.; Carrington, S.J.; Cone, R.D.; Ghamari-Langroudi, M.; Gillyard, T.; Gimenez, L.E.; Litt, M.J. 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J. Mol. Endocrinol. 2016, 56, T157–T174. [Google Scholar] [CrossRef] [Green Version]
- Panaro, B.L.; Tough, I.R.; Engelstoft, M.S.; Matthews, R.T.; Digby, G.J.; Møller, C.L.; Svendsen, B.; Gribble, F.; Reimann, F.; Holst, J.J.; et al. The Melanocortin-4 Receptor Is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-like Peptide 1 In Vivo. Cell Metab. 2014, 20, 1018–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominique, M.; Breton, J.; Guérin, C.; Bole-Feysot, C.; Lambert, G.; Déchelotte, P.; Fetissov, S. Effects of macronutrients on the in vitro production of ClpB, a bacterial mimetic protein of α-MSH and its possible role in the satiety signaling. Nutrients 2019, 11, 2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominique, M.; Lucas, N.; Legrand, R.; Bouleté, I.-M.; Bôle-Feysot, C.; Deroissart, C.; Léon, F.; Nobis, S.; Rego, J.-C.D.; Lambert, G.; et al. Effects of Bacterial CLPB Protein Fragments on Food Intake and PYY Secretion. Nutrients 2021, 13, 2223. [Google Scholar] [CrossRef]
- Legrand, R.; Lucas, N.; Dominique, M.; Azhar, S.; Deroissart, C.; Le Solliec, M.-A.; Rondeaux, J.; Nobis, S.; Guérin, C.; Léon, F.; et al. Commensal Hafnia alvei strain reduces food intake and fat mass in obese mice—A new potential probiotic for appetite and body weight management. Int. J. Obes. 2020, 44, 1041–1051. [Google Scholar] [CrossRef] [Green Version]
- Lucas, N.; Legrand, R.; Deroissart, C.; Dominique, M.; Azhar, S.; Le Solliec, M.A.; Léon, F.; Claude Do-Rego, J.; Dechelotte, P.; Fetissov, S.O.; et al. Hafnia alvei HA4597 Strain Reduces Food Intake and Body Weight Gain and Improves Body Composition, Glucose, and Lipid Metabolism in a Mouse Model of Hyperphagic Obesity. Microorganisms 2019, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Déchelotte, P.; Breton, J.; Trotin-Picolo, C.; Grube, B.; Erlenbeck, C.; Bothe, G.; Fetissov, S.O.; Lambert, G. The probiotic strain H. alvei HA4597® improves weight loss in overweight subjects under moderate hypocaloric diet: A proof-of-concept, multicenter randomized, double-blind placebo-controlled study. Nutrients 2021, 13, 1902. [Google Scholar] [CrossRef]
- Chometton, S.; Jung, A.-H.; Mai, L.; Bon, T.D.; Ramirez, A.O.; Pittman, D.W.; Schier, L.A. A glucokinase-linked sensor in the taste system contributes to glucose appetite. Mol. Metab. 2022, 64, 101554. [Google Scholar] [CrossRef]
- Gutierrez, R.; Fonseca, E.; Simon, S.A. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell. Mol. Life Sci. 2020, 77, 3469–3502. [Google Scholar] [CrossRef]
- Bartoshuk, L.M.; Duffy, V.B.; Hayes, J.E.; Moskowitz, H.R.; Snyder, D.J. Psychophysics of sweet and fat perception in obesity: Problems, solutions and new perspectives. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1137–1148. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, L.F.; Bennett, L.; Baic, S.; Melichar, J.K. Taste and weight: Is there a link? Am. J. Clin. Nutr. 2009, 90, 800s–803s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Bartolome, C.L.; Low, C.S.; Yi, X.; Chien, C.-H.; Wang, P.; Kong, D. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 2018, 556, 505–509. [Google Scholar] [CrossRef] [PubMed]
- El Mehdi, M.; Takhlidjt, S.; Devère, M.; Arabo, A.; Le Solliec, M.A.; Maucotel, J.; Bénani, A.; Nedelec, E.; Duparc, C.; Lefranc, B.; et al. The 26RFa (QRFP)/GPR103 neuropeptidergic system in mice relays insulin signalling into the brain to regulate glucose homeostasis. Diabetologia 2022, 65, 1198–1211. [Google Scholar] [CrossRef] [PubMed]
- Marcos, P.; Coveñas, R. Neuropeptidergic Control of Feeding: Focus on the Galanin Family of Peptides. Int. J. Mol. Sci. 2021, 22, 2544. [Google Scholar] [CrossRef]
- Song, Z.; Levin, B.E.; Stevens, W.; Sladek, C.D. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2014, 306, R447–R456. [Google Scholar] [CrossRef] [Green Version]
- Flak, J.N.; Goforth, P.B.; Dell’Orco, J.; Sabatini, P.V.; Li, C.; Bozadjieva, N.; Sorensen, M.J.; Valenta, A.C.; Rupp, A.C.; Affinati, A.H.; et al. Ventromedial hypothalamic nucleus neuronal subset regulates blood glucose independently of insulin. J. Clin. Investig. 2020, 130, 2943–2952. [Google Scholar] [CrossRef] [Green Version]
- Breton, J.; Tennoune, N.; Lucas, N.; Francois, M.; Legrand, R.; Jacquemot, J.; Goichon, A.; Guérin, C.; Peltier, J.; Pestel-Caron, M.; et al. Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth. Cell Metab. 2016, 23, 324–334. [Google Scholar] [CrossRef] [Green Version]
- Peach, M.; Marsh, N.; MacPhee, D.J. Protein Solubilization: Attend to the Choice of Lysis Buffer. Methods Mol. Biol. 2012, 869, 37–47. [Google Scholar]
- Glendinning, J.I.; Chyou, S.; Lin, I.; Onishi, M.; Patel, P.; Zheng, K.H. Initial Licking Responses of Mice to Sweeteners: Effects of Tas1r3 Polymorphisms. Chem. Senses 2005, 30, 601–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murovets, V.O.; Lukina, E.A.; Sozontov, E.A.; Andreeva, J.V.; Khropycheva, R.P.; Zolotarev, V.A. Allelic variation of the Tas1r3 taste receptor gene affects sweet taste responsiveness and metabolism of glucose in F1 mouse hybrids. PLoS ONE 2020, 15, e0235913. [Google Scholar] [CrossRef] [PubMed]
- Danchenko, E.O.; Chirkin, A.A. A new approach to the determination of glycogen concentration in various tissues and comments on the interpretation of its results. Sud. Meditsinskaia Ekspertiza 2010, 53, 25–28. [Google Scholar]
- Mcintyre, N.; Holdsworth, C.; Turner, D. New interpretation of oral glucose tolerance. Lancet 1964, 284, 20–21. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. Incretin Action in the Pancreas: Potential Promise, Possible Perils, and Pathological Pitfalls. Diabetes 2013, 62, 3316–3323. [Google Scholar] [CrossRef] [Green Version]
- Rehfeld, J.F. The Origin and Understanding of the Incretin Concept. Front. Endocrinol. 2018, 9, 387. [Google Scholar] [CrossRef] [Green Version]
- Elrick, H.; Stimmler, L.; Hlad, C.J., Jr.; Arai, Y. Plasma Insulin Response to Oral and Intravenous Glucose Administration1. J. Clin. Endocrinol. Metab. 1964, 24, 1076–1082. [Google Scholar] [CrossRef]
- Rossi, J.; Balthasar, N.; Olson, D.; Scott, M.; Berglund, E.; Lee, C.E.; Choi, M.J.; Lauzon, D.; Lowell, B.B.; Elmquist, J.K. Melanocortin-4 Receptors Expressed by Cholinergic Neurons Regulate Energy Balance and Glucose Homeostasis. Cell Metab. 2011, 13, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Gonzalez, M.; Li, R.; Pomeranz, L.E.; Alvarsson, A.; Marongiu, R.; Hampton, R.F.; Kaplitt, M.G.; Vasavada, R.C.; Schwartz, G.J.; Stanley, S.A. Mapping and targeted viral activation of pancreatic nerves in mice reveal their roles in the regulation of glucose metabolism. Nat. Biomed. Eng. 2022, 6, 1298–1316. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Wang, Y.; Shi, C.; Zhang, X.; Gong, H.; Dong, Y. Islet MC4R Regulates PC1/3 to Improve Insulin Secretion in T2DM Mice via the cAMP and β-arrestin-1 Pathways. Appl. Biochem. Biotechnol. 2022, 194, 6164–6178. [Google Scholar] [CrossRef]
- Kwon, E.; Joung, H.-Y.; Liu, S.-M.; Chua, S.C., Jr.; Schwartz, G.J.; Jo, Y.-H. Optogenetic stimulation of the liver-projecting melanocortinergic pathway promotes hepatic glucose production. Nat. Commun. 2020, 11, 6295. [Google Scholar] [CrossRef] [PubMed]
- Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 2017, 23, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.S.; Cho, C.H.; Yun, M.S.; Jang, S.J.; You, H.J.; Kim, J.-H.; Han, D.; Cha, K.H.; Moon, S.H.; Lee, K.; et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 2021, 6, 563–573. [Google Scholar] [CrossRef]
- Nelson, G.; Chandrashekar, J.; Hoon, M.A.; Feng, L.; Zhao, G.; Ryba, N.J.P.; Zuker, C.S. An amino-acid taste receptor. Nature 2002, 416, 199–202. [Google Scholar] [CrossRef]
- Merigo, F.; Benati, D.; Cristofoletti, M.; Osculati, F.; Sbarbati, A. Glucose transporters are expressed in taste receptor cells. J. Anat. 2011, 219, 243–252. [Google Scholar] [CrossRef]
- Glendinning, J.I.; Stano, S.; Holter, M.; Azenkot, T.; Goldman, O.; Margolskee, R.F.; Vasselli, J.R.; Sclafani, A. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2015, 309, R552–R560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Han, W.; Lin, C.; Li, F.; De Araujo, I.E. Sugar Metabolism Regulates Flavor Preferences and Portal Glucose Sensing. Front. Integr. Neurosci. 2018, 12, 57. [Google Scholar] [CrossRef]
- Jang, H.-J.; Kokrashvili, Z.; Theodorakis, M.J.; Carlson, O.D.; Kim, B.-J.; Zhou, J.; Kim, H.H.; Xu, X.; Chan, S.L.; Juhaszova, M.; et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl. Acad. Sci. USA 2007, 104, 15069–15074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baird, J.-P.; Palacios, M.; LaRiviere, M.; Grigg, L.A.; Lim, C.; Matute, E.; Lord, J. Anatomical dissociation of melanocortin receptor agonist effects on taste- and gut-sensitive feeding processes. Am. J. Physiol. Integr. Comp. Physiol. 2011, 301, R1044–R1056. [Google Scholar] [CrossRef] [PubMed]
- Gromova, L.V.; Fetissov, S.O.; Gruzdkov, A.A. Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021, 13, 247. [Google Scholar] [CrossRef] [PubMed]
Gene Target | Primer Sequences (Forward and Reverse) | PCR Product Length in Base Pairs (b.p.) and Tann |
---|---|---|
Agouti-related protein (AgRP) | 5′-CCCAGAGTTCCCAGGTCTAAGTCT-3′ 5′-CACCTCCGCCAAAGCTTCT-3′ | 100 b.p. 61 °C |
Beta-actin | 5′-TCCACACCCGCCACCAGTTC-3′ 5′-GGAGCATCGTCGCCCGC-3′ | 103 b.p. 59 °C |
Cholecystokinin (CCK) | 5′-GCTGATTTCCCCATCCAAA-3′ 5′-GCTTCTGCAGGGACTACCG-3′ | 105 b.p. 58 °C |
Galanin (Gal) | 5′-CACAGATCATTTAGCGACAAGCAT-3′ 5′-GACAATGTTGCTCTCAGGCAG-3′ | 114 b.p. 59 °C |
Neuropeptide 26RFA | 5′-GAAGGGGACCCACAGACATC-3′ 5′-GTCTTGCCTCCCTAGACGGAA-3′ | 176 b.p. 60.5 °C |
Neuropeptide Y (NPY) | 5′-CCGCTCTGCGACACTACAT-3′ 5′-TGTCTCAGGGCTGGATCTCT-3′ | 68 b.p. 60 °C |
Oxytocin (Oxt) | 5′-GACCTGGATATGCGCAAGTGT-3′ 5′-GAAGCAGCCCAGCTCGTC-3′ | 96 b.p. 60 °C |
Pro-opiomelanocortin (POMC) | 5′-CAGTGCCAGGACCTCACC-3′ 5′-CAGCGAGAGGTCGAGTTTG-3′ | 72 b.p. 59 °C |
TATA-binding protein | 5′-CTGCTGTTGGTGATTGTTGGT-3′ 5′-AGGCGGAATGTATCTGGCAC-3′ | 199 b.p. 59 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolotarev, V.A.; Murovets, V.O.; Sepp, A.L.; Sozontov, E.A.; Lukina, E.A.; Khropycheva, R.P.; Pestereva, N.S.; Ivleva, I.S.; El Mehdi, M.; Lahaye, E.; et al. Protein Extract of a Probiotic Strain of Hafnia alvei and Bacterial ClpB Protein Improve Glucose Tolerance in Mice. Int. J. Mol. Sci. 2023, 24, 10590. https://doi.org/10.3390/ijms241310590
Zolotarev VA, Murovets VO, Sepp AL, Sozontov EA, Lukina EA, Khropycheva RP, Pestereva NS, Ivleva IS, El Mehdi M, Lahaye E, et al. Protein Extract of a Probiotic Strain of Hafnia alvei and Bacterial ClpB Protein Improve Glucose Tolerance in Mice. International Journal of Molecular Sciences. 2023; 24(13):10590. https://doi.org/10.3390/ijms241310590
Chicago/Turabian StyleZolotarev, Vasiliy A., Vladimir O. Murovets, Anastasiya L. Sepp, Egor A. Sozontov, Ekaterina A. Lukina, Raisa P. Khropycheva, Nina S. Pestereva, Irina S. Ivleva, Mouna El Mehdi, Emilie Lahaye, and et al. 2023. "Protein Extract of a Probiotic Strain of Hafnia alvei and Bacterial ClpB Protein Improve Glucose Tolerance in Mice" International Journal of Molecular Sciences 24, no. 13: 10590. https://doi.org/10.3390/ijms241310590
APA StyleZolotarev, V. A., Murovets, V. O., Sepp, A. L., Sozontov, E. A., Lukina, E. A., Khropycheva, R. P., Pestereva, N. S., Ivleva, I. S., El Mehdi, M., Lahaye, E., Chartrel, N., & Fetissov, S. O. (2023). Protein Extract of a Probiotic Strain of Hafnia alvei and Bacterial ClpB Protein Improve Glucose Tolerance in Mice. International Journal of Molecular Sciences, 24(13), 10590. https://doi.org/10.3390/ijms241310590