Hematopoiesis and Mast Cell Development
Abstract
:1. Introduction
2. Yolk Sac and Liver Mast Cells
3. Bone Marrow Hematopoiesis
4. Bone Marrow Mast Cells
5. Transcriptomic Analysis
6. Mast Cells in Different Pathological Conditions
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ng, A.P.; Alexander, W.S. Haematopoietic Stem Cells: Past, Present and Future. Cell Death Discov. 2017, 3, 17002. [Google Scholar] [CrossRef]
- Moore, M.A.S.; Metcalf, D. Ontogeny of the Haemopoietic System: Yolk Sac Origin of In Vivo and In Vitro Colony Forming Cells in the Developing Mouse Embryo. Br. J. Haematol. 1970, 18, 279–296. [Google Scholar] [CrossRef]
- Lewis, K.; Yoshimoto, M.; Takebe, T. Fetal Liver Hematopoiesis: From Development to Delivery. Stem Cell Res. Ther. 2021, 12, 139. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, J.; Lucas, D. Anatomy of Hematopoiesis and Local Microenvironments in the Bone Marrow. Where To? Front. Immunol. 2021, 12, 768439. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.J.; McCulloch, E.A.; Till, J.E. Cytological Demonstration of the Clonal Nature of Spleen Colonies Derived from Transplanted Mouse Marrow Cells. Nature 1963, 197, 452–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luckey, C.J.; Bhattacharya, D.; Goldrath, A.W.; Weissman, I.L.; Benoist, C.; Mathis, D. Memory T and Memory B Cells Share a Transcriptional Program of Self-Renewal with Long-Term Hematopoietic Stem Cells. Proc. Natl. Acad. Sci. USA 2006, 103, 3304–3309. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, C. Contributo Alla Conoscenza Delle “Mastzellen”. Gazz. Int. Med. Chir. 1909, 9, 745–748. [Google Scholar]
- Bloom, G.D. Chapter 10—Structural and biochemical characteristics of mast cells. In The Inflammatory Process, 2nd ed.; Zweifach, B.W., Grant, L., McCluskey, R.T., Eds.; Academic Press: Cambridge, MA, USA, 1974; pp. 545–599. ISBN 978-0-12-783401-6. [Google Scholar]
- Asboe-Hansen, G.; Levi, H.; Nielsen, A.; Bentzon, M.W. Premitotic Uptake of Tritiated Thymidine by Mast Cells. Acta Pathol. Microbiol. Scand. 1965, 63, 533–548. [Google Scholar] [CrossRef]
- Riley, J.F. The Mast Cells; E & S Livingstone LTD: Edinburgh, Scotland; London, UK, 1959; p. 182. [Google Scholar]
- Bensley, J.H. On the Origin of Mast Cells. Anat. Rec. 1952, 112, 310. [Google Scholar]
- Ginsburg, H. The in Vitro Differentiation and Culture of Normal Mast Cells from the Mouse Thymus. Ann. N. Y. Acad. Sci. 1963, 103, 20–39. [Google Scholar] [CrossRef]
- Wong, P.M.; Chung, S.W.; Chui, D.H.; Eaves, C.J. Properties of the Earliest Clonogenic Hemopoietic Precursors to Appear in the Developing Murine Yolk Sac. Proc. Natl. Acad. Sci. USA 1986, 83, 3851–3854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palis, J.; Robertson, S.; Kennedy, M.; Wall, C.; Keller, G. Development of Erythroid and Myeloid Progenitors in the Yolk Sac and Embryo Proper of the Mouse. Dev. Camb. Engl. 1999, 126, 5073–5084. [Google Scholar] [CrossRef] [PubMed]
- Gomez Perdiguero, E.; Klapproth, K.; Schulz, C.; Busch, K.; Azzoni, E.; Crozet, L.; Garner, H.; Trouillet, C.; de Bruijn, M.F.; Geissmann, F.; et al. Tissue-Resident Macrophages Originate from Yolk-Sac-Derived Erythro-Myeloid Progenitors. Nature 2015, 518, 547–551. [Google Scholar] [CrossRef] [PubMed]
- McGrath, K.E.; Frame, J.M.; Fegan, K.H.; Bowen, J.R.; Conway, S.J.; Catherman, S.C.; Kingsley, P.D.; Koniski, A.D.; Palis, J. Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo. Cell Rep. 2015, 11, 1892–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoeffel, G.; Chen, J.; Lavin, Y.; Low, D.; Almeida, F.F.; See, P.; Beaudin, A.E.; Lum, J.; Low, I.; Forsberg, E.C.; et al. C-Myb(+) Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages. Immunity 2015, 42, 665–678. [Google Scholar] [CrossRef] [Green Version]
- Mass, E.; Ballesteros, I.; Farlik, M.; Halbritter, F.; Günther, P.; Crozet, L.; Jacome-Galarza, C.E.; Händler, K.; Klughammer, J.; Kobayashi, Y.; et al. Specification of Tissue-Resident Macrophages during Organogenesis. Science 2016, 353, aaf4238. [Google Scholar] [CrossRef] [Green Version]
- Gentek, R.; Ghigo, C.; Hoeffel, G.; Bulle, M.J.; Msallam, R.; Gautier, G.; Launay, P.; Chen, J.; Ginhoux, F.; Bajénoff, M. Hemogenic Endothelial Fate Mapping Reveals Dual Developmental Origin of Mast Cells. Immunity 2018, 48, 1160–1171.e5. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, S.; Xu, J.; Zhang, X.; Han, D.; Liu, J.; Xia, M.; Yi, L.; Shen, Q.; Xu, S.; et al. Adult Connective Tissue-Resident Mast Cells Originate from Late Erythro-Myeloid Progenitors. Immunity 2018, 49, 640–653.e5. [Google Scholar] [CrossRef] [Green Version]
- St John, A.L.; Rathore, A.P.S.; Ginhoux, F. New Perspectives on the Origins and Heterogeneity of Mast Cells. Nat. Rev. Immunol. 2023, 23, 55–68. [Google Scholar] [CrossRef]
- Sonoda, T.; Hayashi, C.; Kitamura, Y. Presence of Mast Cell Precursors in the Yolk Sac of Mice. Dev. Biol. 1983, 97, 89–94. [Google Scholar] [CrossRef]
- Rodewald, H.R.; Dessing, M.; Dvorak, A.M.; Galli, S.J. Identification of a Committed Precursor for the Mast Cell Lineage. Science 1996, 271, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Gurish, M.F.; Austen, K.F. Developmental Origin and Functional Specialization of Mast Cell Subsets. Immunity 2012, 37, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mass, E.; Gentek, R. Fetal-Derived Immune Cells at the Roots of Lifelong Pathophysiology. Front. Cell Dev. Biol. 2021, 9, 648313. [Google Scholar] [CrossRef] [PubMed]
- Calvi, L.M.; Adams, G.B.; Weibrecht, K.W.; Weber, J.M.; Olson, D.P.; Knight, M.C.; Martin, R.P.; Schipani, E.; Divieti, P.; Bringhurst, F.R.; et al. Osteoblastic Cells Regulate the Haematopoietic Stem Cell Niche. Nature 2003, 425, 841–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiel, M.J.; Yilmaz, O.H.; Iwashita, T.; Yilmaz, O.H.; Terhorst, C.; Morrison, S.J. SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells. Cell 2005, 121, 1109–1121. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Ferrer, S.; Michurina, T.V.; Ferraro, F.; Mazloom, A.R.; Macarthur, B.D.; Lira, S.A.; Scadden, D.T.; Ma’ayan, A.; Enikolopov, G.N.; Frenette, P.S. Mesenchymal and Haematopoietic Stem Cells Form a Unique Bone Marrow Niche. Nature 2010, 466, 829–834. [Google Scholar] [CrossRef] [Green Version]
- Cheshier, S.H.; Morrison, S.J.; Liao, X.; Weissman, I.L. In Vivo Proliferation and Cell Cycle Kinetics of Long-Term Self-Renewing Hematopoietic Stem Cells. Proc. Natl. Acad. Sci. USA 1999, 96, 3120–3125. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.; Laurenti, E.; Oser, G.; van der Wath, R.C.; Blanco-Bose, W.; Jaworski, M.; Offner, S.; Dunant, C.F.; Eshkind, L.; Bockamp, E.; et al. Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair. Cell 2008, 135, 1118–1129. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.; Trumpp, A. Bone-Marrow Haematopoietic-Stem-Cell Niches. Nat. Rev. Immunol. 2006, 6, 93–106. [Google Scholar] [CrossRef]
- Kopp, H.-G.; Avecilla, S.T.; Hooper, A.T.; Rafii, S. The Bone Marrow Vascular Niche: Home of HSC Differentiation and Mobilization. Physiol. Bethesda Md. 2005, 20, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Pasquier, J.; Ghiabi, P.; Chouchane, L.; Razzouk, K.; Rafii, S.; Rafii, A. Angiocrine Endothelium: From Physiology to Cancer. J. Transl. Med. 2020, 18, 52. [Google Scholar] [CrossRef] [PubMed]
- Benayahu, D.; Akavia, U.D.; Shur, I. Differentiation of Bone Marrow Stroma-Derived Mesenchymal Cells. Curr. Med. Chem. 2007, 14, 173–179. [Google Scholar] [CrossRef] [PubMed]
- de Haan, G.; Weersing, E.; Dontje, B.; van Os, R.; Bystrykh, L.V.; Vellenga, E.; Miller, G. In Vitro Generation of Long-Term Repopulating Hematopoietic Stem Cells by Fibroblast Growth Factor-1. Dev. Cell 2003, 4, 241–251. [Google Scholar] [CrossRef]
- Wright, D.E.; Wagers, A.J.; Gulati, A.P.; Johnson, F.L.; Weissman, I.L. Physiological Migration of Hematopoietic Stem and Progenitor Cells. Science 2001, 294, 1933–1936. [Google Scholar] [CrossRef]
- Kiel, M.J.; Radice, G.L.; Morrison, S.J. Lack of Evidence That Hematopoietic Stem Cells Depend on N-Cadherin-Mediated Adhesion to Osteoblasts for Their Maintenance. Cell Stem. Cell 2007, 1, 204–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, Y.-Y.; Sharkis, S.J. A Low Level of Reactive Oxygen Species Selects for Primitive Hematopoietic Stem Cells That May Reside in the Low-Oxygenic Niche. Blood 2007, 110, 3056–3063. [Google Scholar] [CrossRef] [Green Version]
- Kubota, Y.; Takubo, K.; Suda, T. Bone Marrow Long Label-Retaining Cells Reside in the Sinusoidal Hypoxic Niche. Biochem. Biophys. Res. Commun. 2008, 366, 335–339. [Google Scholar] [CrossRef]
- Parmar, K.; Mauch, P.; Vergilio, J.-A.; Sackstein, R.; Down, J.D. Distribution of Hematopoietic Stem Cells in the Bone Marrow According to Regional Hypoxia. Proc. Natl. Acad. Sci. USA 2007, 104, 5431–5436. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Niu, C.; Ye, L.; Huang, H.; He, X.; Tong, W.-G.; Ross, J.; Haug, J.; Johnson, T.; Feng, J.Q.; et al. Identification of the Haematopoietic Stem Cell Niche and Control of the Niche Size. Nature 2003, 425, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Saunders, T.L.; Enikolopov, G.; Morrison, S.J. Endothelial and Perivascular Cells Maintain Haematopoietic Stem Cells. Nature 2012, 481, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, L. Understanding Hematopoietic Stem-Cell Microenvironments. Trends Biochem. Sci. 2006, 31, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Lo Celso, C.; Fleming, H.E.; Wu, J.W.; Zhao, C.X.; Miake-Lye, S.; Fujisaki, J.; Côté, D.; Rowe, D.W.; Lin, C.P.; Scadden, D.T. Live-Animal Tracking of Individual Haematopoietic Stem/Progenitor Cells in Their Niche. Nature 2009, 457, 92–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatanaka, K.; Kitamura, Y.; Nishimune, Y. Local Development of Mast Cells from Bone Marrow-Derived Precursors in the Skin of Mice. Blood 1979, 53, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, Y.; Shimada, M.; Hatanaka, K.; Miyano, Y. Development of Mast Cells from Grafted Bone Marrow Cells in Irradiated Mice. Nature 1977, 268, 442–443. [Google Scholar] [CrossRef]
- Kitamura, Y.; Go, S.; Hatanaka, K. Decrease of Mast Cells in W/Wv Mice and Their Increase by Bone Marrow Transplantation. Blood 1978, 52, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Hasthorpe, S. A Hemopoietic Cell Line Dependent upon a Factor in Pokeweed Mitogen-Stimulated Spleen Cell Conditioning Medium. J. Cell Physiol. 1980, 105, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Arinobu, Y.; Iwasaki, H.; Gurish, M.F.; Mizuno, S.; Shigematsu, H.; Ozawa, H.; Tenen, D.G.; Austen, K.F.; Akashi, K. Developmental Checkpoints of the Basophil/Mast Cell Lineages in Adult Murine Hematopoiesis. Proc. Natl. Acad. Sci. USA 2005, 102, 18105–18110. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Grimbaldeston, M.A.; Tsai, M.; Weissman, I.L.; Galli, S.J. Identification of Mast Cell Progenitors in Adult Mice. Proc. Natl. Acad. Sci. USA 2005, 102, 11408–11413. [Google Scholar] [CrossRef] [Green Version]
- Jamur, M.C.; Grodzki, A.C.G.; Berenstein, E.H.; Hamawy, M.M.; Siraganian, R.P.; Oliver, C. Identification and Characterization of Undifferentiated Mast Cells in Mouse Bone Marrow. Blood 2005, 105, 4282–4289. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, J.S.; Heyman, B.; Hallgren, J. Committed Mast Cell Progenitors in Mouse Blood Differ in Maturity between Th1 and Th2 Strains. Allergy 2013, 68, 1333–1337. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, J.S.; Ding, Z.; Hallgren, J. Distinguishing Mast Cell Progenitors from Mature Mast Cells in Mice. Stem. Cells Dev. 2015, 24, 1703–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Födinger, M.; Fritsch, G.; Winkler, K.; Emminger, W.; Mitterbauer, G.; Gadner, H.; Valent, P.; Mannhalter, C. Origin of Human Mast Cells: Development from Transplanted Hematopoietic Stem Cells after Allogeneic Bone Marrow Transplantation. Blood 1994, 84, 2954–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, S.J. New Insights into “the Riddle of the Mast Cells”: Microenvironmental Regulation of Mast Cell Development and Phenotypic Heterogeneity. Lab. Investig. J. Tech. Methods Pathol. 1990, 62, 5–33. [Google Scholar]
- Broudy, V.C. Stem Cell Factor and Hematopoiesis. Blood 1997, 90, 1345–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, S.J.; Tsai, M.; Wershil, B.K.; Tam, S.Y.; Costa, J.J. Regulation of Mouse and Human Mast Cell Development, Survival and Function by Stem Cell Factor, the Ligand for the c-Kit Receptor. Int. Arch. Allergy Immunol. 1995, 107, 51–53. [Google Scholar] [CrossRef]
- Costa, J.J.; Demetri, G.D.; Harrist, T.J.; Dvorak, A.M.; Hayes, D.F.; Merica, E.A.; Menchaca, D.M.; Gringeri, A.J.; Schwartz, L.B.; Galli, S.J. Recombinant Human Stem Cell Factor (Kit Ligand) Promotes Human Mast Cell and Melanocyte Hyperplasia and Functional Activation in vivo. J. Exp. Med. 1996, 183, 2681–2686. [Google Scholar] [CrossRef]
- Dahlin, J.S.; Ekoff, M.; Grootens, J.; Löf, L.; Amini, R.-M.; Hagberg, H.; Ungerstedt, J.S.; Olsson-Strömberg, U.; Nilsson, G. KIT Signaling Is Dispensable for Human Mast Cell Progenitor Development. Blood 2017, 130, 1785–1794. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.N.P.; Campanelli, J.; Cordova, B.; Broncano, A.; Christo, K.F.; Gerson, S.L.; Markowitz, S.D.; Desai, A.B. Inactivating Mast Cell Function Promotes Steady-State and Regenerative Hematopoiesis. bioRxiv 2022. [Google Scholar] [CrossRef]
- Solimando, A.G.; Desantis, V.; Ribatti, D. Mast Cells and Interleukins. Int. J. Mol. Sci. 2022, 23, 14004. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, J.; Xue, L.; Zhao, T.; Ding, W.; Han, Y.; Ye, H. A Comparison of Transcriptome Analysis Methods with Reference Genome. BMC Genom. 2022, 23, 232. [Google Scholar] [CrossRef]
- Derakhshan, T.; Boyce, J.A.; Dwyer, D.F. Defining Mast Cell Differentiation and Heterogeneity through Single-Cell Transcriptomics Analysis. J. Allergy Clin. Immunol. 2022, 150, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Nakajima, T.; Matsumoto, K. Human Mast Cell Transcriptome Project. Int. Arch. Allergy Immunol. 2001, 125, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Motakis, E.; Guhl, S.; Ishizu, Y.; Itoh, M.; Kawaji, H.; de Hoon, M.; Lassmann, T.; Carninci, P.; Hayashizaki, Y.; Zuberbier, T.; et al. Redefinition of the Human Mast Cell Transcriptome by Deep-CAGE Sequencing. Blood 2014, 123, e58–e67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velten, L.; Haas, S.F.; Raffel, S.; Blaszkiewicz, S.; Islam, S.; Hennig, B.P.; Hirche, C.; Lutz, C.; Buss, E.C.; Nowak, D.; et al. Human Haematopoietic Stem Cell Lineage Commitment Is a Continuous Process. Nat. Cell Biol. 2017, 19, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Hamey, F.K.; Lau, W.W.Y.; Kucinski, I.; Wang, X.; Diamanti, E.; Wilson, N.K.; Göttgens, B.; Dahlin, J.S. Single-Cell Molecular Profiling Provides a High-Resolution Map of Basophil and Mast Cell Development. Allergy 2021, 76, 1731–1742. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Boey, D.; Bril, O.; Grootens, J.; Vijayabaskar, M.S.; Sorini, C.; Ekoff, M.; Wilson, N.K.; Ungerstedt, J.S.; Nilsson, G.; et al. Single-Cell Transcriptomics Reveals the Identity and Regulators of Human Mast Cell Progenitors. Blood Adv. 2022, 6, 4439–4449. [Google Scholar] [CrossRef]
- Volertas, S.; Schuler, C.F.; Akin, C. New Insights into Clonal Mast Cell Disorders Including Mastocytosis. Immunol. Allergy Clin. N. Am. 2018, 38, 341–350. [Google Scholar] [CrossRef]
- Noto, C.N.; Hoft, S.G.; DiPaolo, R.J. Mast Cells as Important Regulators in Autoimmunity and Cancer Development. Front. Cell Dev. Biol. 2021, 9, 752350. [Google Scholar] [CrossRef]
- Girolamo, F.; Coppola, C.; Ribatti, D. Immunoregulatory Effect of Mast Cells Influenced by Microbes in Neurodegenerative Diseases. Brain. Behav. Immun. 2017, 65, 68–89. [Google Scholar] [CrossRef]
- Ribatti, D. Mast Cells and Macrophages Exert Beneficial and Detrimental Effects on Tumor Progression and Angiogenesis. Immunol. Lett. 2013, 152, 83–88. [Google Scholar] [CrossRef]
- Irani, A.A.; Schechter, N.M.; Craig, S.S.; DeBlois, G.; Schwartz, L.B. Two Types of Human Mast Cells That Have Distinct Neutral Protease Compositions. Proc. Natl. Acad. Sci. USA 1986, 83, 4464–4468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varricchi, G.; de Paulis, A.; Marone, G.; Galli, S.J. Future Needs in Mast Cell Biology. Int. J. Mol. Sci. 2019, 20, 4397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frossi, B.; Mion, F.; Sibilano, R.; Danelli, L.; Pucillo, C.E.M. Is It Time for a New Classification of Mast Cells? What Do We Know about Mast Cell Heterogeneity? Immunol. Rev. 2018, 282, 35–46. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribatti, D.; d’Amati, A. Hematopoiesis and Mast Cell Development. Int. J. Mol. Sci. 2023, 24, 10679. https://doi.org/10.3390/ijms241310679
Ribatti D, d’Amati A. Hematopoiesis and Mast Cell Development. International Journal of Molecular Sciences. 2023; 24(13):10679. https://doi.org/10.3390/ijms241310679
Chicago/Turabian StyleRibatti, Domenico, and Antonio d’Amati. 2023. "Hematopoiesis and Mast Cell Development" International Journal of Molecular Sciences 24, no. 13: 10679. https://doi.org/10.3390/ijms241310679
APA StyleRibatti, D., & d’Amati, A. (2023). Hematopoiesis and Mast Cell Development. International Journal of Molecular Sciences, 24(13), 10679. https://doi.org/10.3390/ijms241310679