Molecular Mechanism in the Development of Pulmonary Fibrosis in Patients with Sarcoidosis
Abstract
:1. Introduction
2. Clinical Presentation
3. Imaging
4. Genetic Factors
5. Main Key Players of Fibrotic Sarcoidosis
6. T Cells
7. Macrophages
8. Signaling Pathway in Fibrotic Sarcoidosis
8.1. TGF-β/Smad Signaling
8.2. JAK-STAT Signaling
8.3. mTOR Signaling
8.4. Wnt Signaling
9. Histological Findings in Fibrotic Sarcoidosis
10. Comparison with Other Interstitial Lung Diseases
11. Treatment
12. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Spagnolo, P.; Rossi, G.; Trisolini, R.; Sverzellati, N.; Baughman, R.P.; Wells, A.U. Pulmonary Sarcoidosis. Lancet Respir. Med. 2018, 6, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Costabel, U.; Hansell, D.M.; King, T.E., Jr.; Lynch, D.A.; Nicholson, A.G.; Ryerson, C.J.; Ryu, J.H.; Selman, M.; Wells, A.U. An Official American Thoracic Society/European Respiratory Society Statement: Update of the International Multidisciplinary Classification of the Idiopathic Interstitial Pneumonias. Am. J. Respir. Crit. Care Med. 2013, 188, 733–748. [Google Scholar] [CrossRef]
- Raghu, G.; Rochwerg, B.; Zhang, Y.; Garcia, C.A.C.; Azuma, A.; Behr, J.; Brozek, J.L.; Collard, H.R.; Cunningham, W.; Homma, S. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2015, 192, e3–e19. [Google Scholar] [CrossRef] [PubMed]
- Cottin, V. Treatment of Progressive Fibrosing Interstitial Lung Diseases: A Milestone in the Management of Interstitial Lung Diseases. Eur. Respir. Soc. 2019, 28, 190109. [Google Scholar] [CrossRef]
- Kolb, M.; Vašáková, M. The Natural History of Progressive Fibrosing Interstitial Lung Diseases. Respir. Res. 2019, 20, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.; Judson, M.A.; Baughman, R.P. Management of Advanced Pulmonary Sarcoidosis. Am. J. Respir. Crit. Care Med. 2022, 205, 495–506. [Google Scholar] [CrossRef]
- Kirkil, G.; Lower, E.E.; Baughman, R.P. Predictors of Mortality in Pulmonary Sarcoidosis. Chest 2018, 153, 105–113. [Google Scholar] [CrossRef]
- Patel, D.C.; Valeyre, D. Advanced Pulmonary Sarcoidosis. Curr. Opin. Pulm. Med. 2020, 26, 574–581. [Google Scholar] [CrossRef]
- Kishore, A.; Petersen, B.-S.; Nutsua, M.; Müller-Quernheim, J.; Franke, A.; Fischer, A.; Schreiber, S.; Petrek, M. Whole-Exome Sequencing Identifies Rare Genetic Variations in German Families with Pulmonary Sarcoidosis. Hum. Genet. 2018, 137, 705–716. [Google Scholar] [CrossRef]
- Thillai, M.; Atkins, C.P.; Crawshaw, A.; Hart, S.P.; Ho, L.-P.; Kouranos, V.; Patterson, K.C.; Screaton, N.J.; Whight, J.; Wells, A.U. BTS Clinical Statement on Pulmonary Sarcoidosis. Thorax 2021, 76, 4–20. [Google Scholar] [CrossRef]
- Nardi, A.; Brillet, P.-Y.; Letoumelin, P.; Girard, F.; Brauner, M.; Uzunhan, Y.; Naccache, J.-M.; Valeyre, D.; Nunes, H. Stage IV Sarcoidosis: Comparison of Survival with the General Population and Causes of Death. Eur. Respir. J. 2011, 38, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Harrison, B.D.W.; Shaylor, J.M.; Stokes, T.C.; Wilkes, A.R. Airflow Limitation in Sarcoidosis—A Study of Pulmonary Function in 107 Patients with Newly Diagnosed Disease. Respir. Med. 1991, 85, 59–64. [Google Scholar] [CrossRef]
- Parikh, K.S.; Dahhan, T.; Nicholl, L.; Ruopp, N.; Pomann, G.-M.; Fortin, T.; Tapson, V.F.; Rajagopal, S. Clinical Features and Outcomes of Patients with Sarcoidosis-Associated Pulmonary Hypertension. Sci. Rep. 2019, 9, 4061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shorr, A.F.; Helman, D.L.; Davies, D.B.; Nathan, S.D. Pulmonary Hypertension in Advanced Sarcoidosis: Epidemiology and Clinical Characteristics. Eur. Respir. J. 2005, 25, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Shlobin, O.A.; Nathan, S.D. Management of End-Stage Sarcoidosis: Pulmonary Hypertension and Lung Transplantation. Eur. Respir. J. 2012, 39, 1520–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeny, F.; Uzunhan, Y.; Lacroix, M.; Gille, T.; Brillet, P.-Y.; Nardi, A.; Bouvry, D.; Planès, C.; Nunes, H.; Valeyre, D. Predictors of Mortality in Fibrosing Pulmonary Sarcoidosis. Respir. Med. 2020, 169, 105997. [Google Scholar] [CrossRef] [PubMed]
- JG, S. Prognosis of Intrathoracic Sarcoidosis in England: A Review of 136 Cases after Five Year’s Observation. Br. Med. J. 1961, 2, 1617–1623. [Google Scholar]
- Culver, D.A.; Baughman, R.P. It’s Time to Evolve from Scadding: Phenotyping Sarcoidosis. Eur. Respir. J. 2018, 51, 1800050. [Google Scholar] [CrossRef] [Green Version]
- Sawahata, M.; Johkoh, T.; Kawanobe, T.; Kono, C.; Nakamura, Y.; Bando, M.; Hagiwara, K.; Takemura, T.; Sakai, F.; Shijubo, N. Computed Tomography Images of Fibrotic Pulmonary Sarcoidosis Leading to Chronic Respiratory Failure. J. Clin. Med. 2020, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Spagnolo, P.; Sverzellati, N.; Wells, A.U.; Hansell, D.M. Imaging Aspects of the Diagnosis of Sarcoidosis. Eur. Radiol. 2014, 24, 807–816. [Google Scholar] [CrossRef]
- Abehsera, M.; Valeyre, D.; Grenier, P.; Jaillet, H.; Battesti, J.P.; Brauner, M.W. Sarcoidosis with Pulmonary Fibrosis: CT Patterns and Correlation with Pulmonary Function. Am. J. Roentgenol. 2000, 174, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, M.; Toussie, D.; Pavlishyn, N.; Yankelevitz, D.; O’Connor, T.; Henschke, C.; Padilla, M. The Right Upper Lobe Bronchus Angle: A Tool for Differentiating Fibrotic and Non-Fibrotic Sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 2020, 37, 99. [Google Scholar] [PubMed]
- Schimmelpennink, M.C.; Meek, D.B.; Vorselaars, A.D.M.; Langezaal, L.C.M.; van Moorsel, C.H.M.; van der Vis, J.J.; Veltkamp, M.; Grutters, J.C. Characterization of the PF-ILD Phenotype in Patients with Advanced Pulmonary Sarcoidosis. Respir. Res. 2022, 23, 169. [Google Scholar] [CrossRef]
- Mostard, R.L.; Verschakelen, J.A.; van Kroonenburgh, M.J.; Nelemans, P.J.; Wijnen, P.A.; Vöö, S.; Drent, M. Severity of Pulmonary Involvement and 18F-FDG PET Activity in Sarcoidosis. Respir. Med. 2013, 107, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Cavazza, A.; Colby, T.V. Pathology of Sarcoidosis. Clin. Rev. Allergy Immunol. 2015, 49, 36–44. [Google Scholar] [CrossRef]
- Xu, L.; Kligerman, S.; Burke, A. End-Stage Sarcoid Lung Disease Is Distinct from Usual Interstitial Pneumonia. Am. J. Surg. Pathol. 2013, 37, 593–600. [Google Scholar] [CrossRef]
- Zhang, C.; Chan, K.M.; Schmidt, L.A.; Myers, J.L. Histopathology of Explanted Lungs from Patients with a Diagnosis of Pulmonary Sarcoidosis. Chest 2016, 149, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Denning, D.W.; Pleuvry, A.; Cole, D.C. Global Burden of Chronic Pulmonary Aspergillosis Complicating Sarcoidosis. Eur. Respir. J. 2013, 41, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Uzunhan, Y.; Nunes, H.; Jeny, F.; Lacroix, M.; Brun, S.; Brillet, P.Y.; Martinod, E.; Carette, M.F.; Bouvry, D.; Charlier, C.; et al. Chronic Pulmonary Aspergillosis Complicating Sarcoidosis. Eur. Respir. J. 2017, 49, 1602396. [Google Scholar] [CrossRef]
- Rivera, N.V.; Patasova, K.; Kullberg, S.; Diaz-Gallo, L.M.; Iseda, T.; Bengtsson, C.; Alfredsson, L.; Eklund, A.; Kockum, I.; Grunewald, J.; et al. A Gene-Environment Interaction Between Smoking and Gene Polymorphisms Provides a High Risk of Two Subgroups of Sarcoidosis. Sci. Rep. 2019, 9, 18633. [Google Scholar] [CrossRef] [Green Version]
- Spagnolo, P.; Maier, L.A. Genetics in Sarcoidosis. Curr. Opin. Pulm. Med. 2021, 27, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Calender, A.; Weichhart, T.; Valeyre, D.; Pacheco, Y. Current Insights in Genetics of Sarcoidosis: Functional and Clinical Impacts. J. Clin. Med. 2020, 9, 2633. [Google Scholar] [CrossRef] [PubMed]
- Moller, D.R.; Rybicki, B.A.; Hamzeh, N.Y.; Montgomery, C.G.; Chen, E.S.; Drake, W.; Fontenot, A.P. Genetic, Immunologic, and Environmental Basis of Sarcoidosis. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. S6), S429–S436. [Google Scholar] [CrossRef] [PubMed]
- Calender, A.; Lim, C.X.; Weichhart, T.; Buisson, A.; Besnard, V.; Rollat-Farnier, P.A.; Bardel, C.; Roy, P.; Cottin, V.; Devouassoux, G.; et al. Exome Sequencing and Pathogenicity-Network Analysis of Five French Families Implicate MTOR Signalling and Autophagy in Familial Sarcoidosis. Eur. Respir. J. 2019, 54, 1900430. [Google Scholar] [CrossRef] [PubMed]
- Heron, M.; van Moorsel, C.H.M.; Grutters, J.C.; Huizinga, T.W.J.; van der Helm-van Mil, A.H.M.; Nagtegaal, M.M.; Ruven, H.J.T.; van den Bosch, J.M.M. Genetic Variation in GREM1 Is a Risk Factor for Fibrosis in Pulmonary Sarcoidosis. Tissue Antigens 2011, 77, 112–117. [Google Scholar] [CrossRef]
- Sato, H.; Williams, H.R.T.; Spagnolo, P.; Abdallah, A.; Ahmad, T.; Orchard, T.R.; Copley, S.J.; Desai, S.R.; Wells, A.U.; du Bois, R.M.; et al. CARD15/NOD2 Polymorphisms Are Associated with Severe Pulmonary Sarcoidosis. Eur. Respir. J. 2010, 35, 324–330. [Google Scholar] [CrossRef]
- Hill, M.R.; Papafili, A.; Booth, H.; Lawson, P.; Hubner, M.; Beynon, H.; Read, C.; Lindahl, G.; Marshall, R.P.; McAnulty, R.J.; et al. Functional Prostaglandin-Endoperoxide Synthase 2 Polymorphism Predicts Poor Outcome in Sarcoidosis. Am. J. Respir. Crit. Care Med. 2006, 174, 915–922. [Google Scholar] [CrossRef]
- Kruit, A.; Grutters, J.C.; Ruven, H.J.T.; van Moorsel, C.H.M.; Weiskirchen, R.; Mengsteab, S.; van den Bosch, J.M.M. Transforming Growth Factor-Beta Gene Polymorphisms in Sarcoidosis Patients with and without Fibrosis. Chest 2006, 129, 1584–1591. [Google Scholar] [CrossRef]
- Stock, C.J.; Sato, H.; Fonseca, C.; Banya, W.A.S.; Molyneaux, P.L.; Adamali, H.; Russell, A.-M.; Denton, C.P.; Abraham, D.J.; Hansell, D.M.; et al. Mucin 5B Promoter Polymorphism Is Associated with Idiopathic Pulmonary Fibrosis but Not with Development of Lung Fibrosis in Systemic Sclerosis or Sarcoidosis. Thorax 2013, 68, 436–441. [Google Scholar] [CrossRef] [Green Version]
- Rybicki, B.A.; Iannuzzi, M.C.; Frederick, M.M.; Thompson, B.W.; Rossman, M.D.; Bresnitz, E.A.; Terrin, M.L.; Moller, D.R.; Barnard, J.; Baughman, R.P.; et al. Familial Aggregation of Sarcoidosis. A Case-Control Etiologic Study of Sarcoidosis (ACCESS). Am. J. Respir. Crit. Care Med. 2001, 164, 2085–2091. [Google Scholar] [CrossRef]
- McGrath, D.S.; Daniil, Z.; Foley, P.; du Bois, J.L.; Lympany, P.A.; Cullinan, P.; du Bois, R.M. Epidemiology of Familial Sarcoidosis in the UK. Thorax 2000, 55, 751–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossides, M.; Grunewald, J.; Eklund, A.; Kullberg, S.; Di Giuseppe, D.; Askling, J.; Arkema, E.V. Familial Aggregation and Heritability of Sarcoidosis: A Swedish Nested Case-Control Study. Eur. Respir. J. 2018, 52, 1800385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valeyre, D.; Prasse, A.; Nunes, H.; Uzunhan, Y.; Brillet, P.-Y.; Müller-Quernheim, J. Sarcoidosis. Lancet Lond. Engl. 2014, 383, 1155–1167. [Google Scholar] [CrossRef]
- Rotsinger, J.E.; Celada, L.J.; Polosukhin, V.V.; Atkinson, J.B.; Drake, W.P. Molecular Analysis of Sarcoidosis Granulomas Reveals Antimicrobial Targets. Am. J. Respir. Cell Mol. Biol. 2016, 55, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Polverino, F.; Balestro, E.; Spagnolo, P. Clinical Presentations, Pathogenesis, and Therapy of Sarcoidosis: State of the Art. J. Clin. Med. 2020, 9, 2363. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A. Fibrotic Disease and the T(H)1/T(H)2 Paradigm. Nat. Rev. Immunol. 2004, 4, 583–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pechkovsky, D.V.; Prasse, A.; Kollert, F.; Engel, K.M.Y.; Dentler, J.; Luttmann, W.; Friedrich, K.; Müller-Quernheim, J.; Zissel, G. Alternatively Activated Alveolar Macrophages in Pulmonary Fibrosis-Mediator Production and Intracellular Signal Transduction. Clin. Immunol. Orlando Fla 2010, 137, 89–101. [Google Scholar] [CrossRef]
- Ramstein, J.; Broos, C.E.; Simpson, L.J.; Ansel, K.M.; Sun, S.A.; Ho, M.E.; Woodruff, P.G.; Bhakta, N.R.; Christian, L.; Nguyen, C.P.; et al. IFN-γ-Producing T-Helper 17.1 Cells Are Increased in Sarcoidosis and Are More Prevalent than T-Helper Type 1 Cells. Am. J. Respir. Crit. Care Med. 2016, 193, 1281–1291. [Google Scholar] [CrossRef] [Green Version]
- Broos, C.E.; Koth, L.L.; van Nimwegen, M.; In ’t Veen, J.C.C.M.; Paulissen, S.M.J.; van Hamburg, J.P.; Annema, J.T.; Heller-Baan, R.; Kleinjan, A.; Hoogsteden, H.C.; et al. Increased T-Helper 17.1 Cells in Sarcoidosis Mediastinal Lymph Nodes. Eur. Respir. J. 2018, 51, 1701124. [Google Scholar] [CrossRef] [Green Version]
- Rappl, G.; Pabst, S.; Riemann, D.; Schmidt, A.; Wickenhauser, C.; Schütte, W.; Hombach, A.A.; Seliger, B.; Grohé, C.; Abken, H. Regulatory T Cells with Reduced Repressor Capacities Are Extensively Amplified in Pulmonary Sarcoid Lesions and Sustain Granuloma Formation. Clin. Immunol. Orlando Fla 2011, 140, 71–83. [Google Scholar] [CrossRef]
- Shamaei, M.; Mortaz, E.; Pourabdollah, M.; Garssen, J.; Tabarsi, P.; Velayati, A.; Adcock, I.M. Evidence for M2 Macrophages in Granulomas from Pulmonary Sarcoidosis: A New Aspect of Macrophage Heterogeneity. Hum. Immunol. 2018, 79, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Locke, L.W.; Crouser, E.D.; White, P.; Julian, M.W.; Caceres, E.G.; Papp, A.C.; Le, V.T.; Sadee, W.; Schlesinger, L.S. IL-13-Regulated Macrophage Polarization during Granuloma Formation in an in vitro Human Sarcoidosis Model. Am. J. Respir. Cell Mol. Biol. 2019, 60, 84–95. [Google Scholar] [CrossRef]
- Coker, R.K.; Laurent, G.J.; Jeffery, P.K.; du Bois, R.M.; Black, C.M.; McAnulty, R.J. Localisation of Transforming Growth Factor Beta1 and Beta3 MRNA Transcripts in Normal and Fibrotic Human Lung. Thorax 2001, 56, 549–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, J.; Harada, N.; Nagashima, O.; Makino, F.; Usui, Y.; Yagita, H.; Okumura, K.; Dorscheid, D.R.; Atsuta, R.; Akiba, H.; et al. Wound-Induced TGF-Β1 and TGF-Β2 Enhance Airway Epithelial Repair via HB-EGF and TGF-α. Biochem. Biophys. Res. Commun. 2011, 412, 109–114. [Google Scholar] [CrossRef]
- Piotrowski, W.J.; Kiszałkiewicz, J.; Pastuszak-Lewandoska, D.; Antczak, A.; Górski, P.; Migdalska-Sęk, M.; Górski, W.; Czarnecka, K.; Nawrot, E.; Domańska, D.; et al. TGF-β and SMADs MRNA Expression in Pulmonary Sarcoidosis. Adv. Exp. Med. Biol. 2015, 852, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Casanova, N.; Pouladi, N.; Wang, T.; Lussier, Y.; Knox, K.S.; Garcia, J.G.N. Identification of Jak-STAT Signaling Involvement in Sarcoidosis Severity via a Novel MicroRNA-Regulated Peripheral Blood Mononuclear Cell Gene Signature. Sci. Rep. 2017, 7, 4237. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Xu, Q.; Wan, H.; Hu, Y.; Xing, S.; Yang, H.; Gao, Y.; He, Z. PI3K-Akt-MTOR/PFKFB3 Pathway Mediated Lung Fibroblast Aerobic Glycolysis and Collagen Synthesis in Lipopolysaccharide-Induced Pulmonary Fibrosis. Lab. Investig. J. Tech. Methods Pathol. 2020, 100, 801–811. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, J.; Qing, G.; Liu, D.; Wang, X.; Chen, Y.; Li, Y.; Guo, S. S100A2 Silencing Relieves Epithelial-Mesenchymal Transition in Pulmonary Fibrosis by Inhibiting the Wnt/β-Catenin Signaling Pathway. DNA Cell Biol. 2021, 40, 18–25. [Google Scholar] [CrossRef]
- Ma, Y.; Gal, A.; Koss, M.N. The Pathology of Pulmonary Sarcoidosis: Update. Semin. Diagn. Pathol. 2007, 24, 150–161. [Google Scholar] [CrossRef]
- Wahlström, J.; Katchar, K.; Wigzell, H.; Olerup, O.; Eklund, A.; Grunewald, J. Analysis of Intracellular Cytokines in CD4+ and CD8+ Lung and Blood T Cells in Sarcoidosis. Am. J. Respir. Crit. Care Med. 2001, 163, 115–121. [Google Scholar] [CrossRef]
- Teirstein, A.T.; Morgenthau, A.S. “End-Stage” Pulmonary Fibrosis in Sarcoidosis. Mt. Sinai J. Med. N. Y. 2009, 76, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Moller, D.R. Cells and Cytokines Involved in the Pathogenesis of Sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. Off. J. WASOG 1999, 16, 24–31. [Google Scholar]
- Kunkel, S.L.; Lukacs, N.W.; Strieter, R.M.; Chensue, S.W. Th1 and Th2 Responses Regulate Experimental Lung Granuloma Development. Sarcoidosis Vasc. Diffuse Lung Dis. Off. J. WASOG 1996, 13, 120–128. [Google Scholar]
- Hauber, H.-P.; Gholami, D.; Meyer, A.; Pforte, A. Increased Interleukin-13 Expression in Patients with Sarcoidosis. Thorax 2003, 58, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Patterson, K.C.; Franek, B.S.; Müller-Quernheim, J.; Sperling, A.I.; Sweiss, N.J.; Niewold, T.B. Circulating Cytokines in Sarcoidosis: Phenotype-Specific Alterations for Fibrotic and Non-Fibrotic Pulmonary Disease. Cytokine 2013, 61, 906–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alparslan Bekir, S.; Sonkaya, E.; Ozbaki, F.; Aydogan Eroglu, S.; Sertcelik, L.; Duman, D.; Kavas, M.; Agca, M.; Erdem, I.; Ozmen, I.; et al. The Utility of Neutrophil-to-Lymphocyte Ratio Determined at Initial Diagnosis in Predicting Disease Stage and Discriminating between Active and Stable Disease in Patients with Sarcoidosis: A Cross-Sectional Study. Postgrad. Med. 2022, 134, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Palchevskiy, V.; Hashemi, N.; Weigt, S.S.; Xue, Y.Y.; Derhovanessian, A.; Keane, M.P.; Strieter, R.M.; Fishbein, M.C.; Deng, J.C.; Lynch, J.P.; et al. Immune Response CC Chemokines CCL2 and CCL5 Are Associated with Pulmonary Sarcoidosis. Fibrogenesis Tissue Repair 2011, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef] [Green Version]
- Cinetto, F.; Agostini, C. Advances in Understanding the Immunopathology of Sarcoidosis and Implications on Therapy. Expert Rev. Clin. Immunol. 2016, 12, 973–988. [Google Scholar] [CrossRef]
- Lepzien, R.; Liu, S.; Czarnewski, P.; Nie, M.; Österberg, B.; Baharom, F.; Pourazar, J.; Rankin, G.; Eklund, A.; Bottai, M.; et al. Monocytes in Sarcoidosis Are Potent Tumour Necrosis Factor Producers and Predict Disease Outcome. Eur. Respir. J. 2021, 58, 2003468. [Google Scholar] [CrossRef]
- Fraser, S.D.; Sadofsky, L.R.; Kaye, P.M.; Hart, S.P. Reduced Expression of Monocyte CD200R Is Associated with Enhanced Proinflammatory Cytokine Production in Sarcoidosis. Sci. Rep. 2016, 6, 38689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Ma, H.; Qiu, L.; Li, L.; Cao, Y.; Ma, J.; Zhao, Y. Phenotypic and Functional Switch of Macrophages Induced by Regulatory CD4+CD25+ T Cells in Mice. Immunol. Cell Biol. 2011, 89, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Prasse, A.; Pechkovsky, D.V.; Toews, G.B.; Jungraithmayr, W.; Kollert, F.; Goldmann, T.; Vollmer, E.; Müller-Quernheim, J.; Zissel, G. A Vicious Circle of Alveolar Macrophages and Fibroblasts Perpetuates Pulmonary Fibrosis via CCL18. Am. J. Respir. Crit. Care Med. 2006, 173, 781–792. [Google Scholar] [CrossRef] [Green Version]
- Munder, M.; Eichmann, K.; Modolell, M. Alternative Metabolic States in Murine Macrophages Reflected by the Nitric Oxide Synthase/Arginase Balance: Competitive Regulation by CD4+ T Cells Correlates with Th1/Th2 Phenotype. J. Immunol. 1998, 160, 5347–5354. [Google Scholar] [CrossRef] [PubMed]
- Prokop, S.; Heppner, F.L.; Goebel, H.H.; Stenzel, W. M2 Polarized Macrophages and Giant Cells Contribute to Myofibrosis in Neuromuscular Sarcoidosis. Am. J. Pathol. 2011, 178, 1279–1286. [Google Scholar] [CrossRef]
- Saito, A.; Horie, M.; Nagase, T. TGF-β Signaling in Lung Health and Disease. Int. J. Mol. Sci. 2018, 19, 2460. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.-T.; Meng, X.-M. TGF-β/Smad and Renal Fibrosis. Adv. Exp. Med. Biol. 2019, 1165, 347–364. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chung, C.-L.; Hu, T.-H.; Chen, J.-J.; Liu, P.-F.; Chen, C.-L. Recent Progress in TGF-β Inhibitors for Cancer Therapy. Biomed. Pharmacother. 2021, 134, 111046. [Google Scholar] [CrossRef]
- Xu, F.; Liu, C.; Zhou, D.; Zhang, L. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis. J. Histochem. Cytochem. Off. J. Histochem. Soc. 2016, 64, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, A.; Jenkins, G. Role of Integrin-Mediated TGFbeta Activation in the Pathogenesis of Pulmonary Fibrosis. Biochem. Soc. Trans. 2009, 37, 849–854. [Google Scholar] [CrossRef] [Green Version]
- Herpin, A.; Lelong, C.; Favrel, P. Transforming Growth Factor-Beta-Related Proteins: An Ancestral and Widespread Superfamily of Cytokines in Metazoans. Dev. Comp. Immunol. 2004, 28, 461–485. [Google Scholar] [CrossRef] [PubMed]
- Bonniaud, P.; Margetts, P.J.; Ask, K.; Flanders, K.; Gauldie, J.; Kolb, M. TGF-Beta and Smad3 Signaling Link Inflammation to Chronic Fibrogenesis. J. Immunol. 2005, 175, 5390–5395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuai, K.; Liu, B. Regulation of JAK-STAT Signalling in the Immune System. Nat. Rev. Immunol. 2003, 3, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Rotenberg, C.; Besnard, V.; Brillet, P.-Y.; Giraudier, S.; Nunes, H.; Valeyre, D. Dramatic Response of Refractory Sarcoidosis under Ruxolitinib in a Patient with Associated JAK2-Mutated Polycythemia. Eur. Respir. J. 2018, 52, 1801482. [Google Scholar] [CrossRef]
- Linke, M.; Fritsch, S.D.; Sukhbaatar, N.; Hengstschläger, M.; Weichhart, T. MTORC1 and MTORC2 as Regulators of Cell Metabolism in Immunity. FEBS Lett. 2017, 591, 3089–3103. [Google Scholar] [CrossRef] [Green Version]
- Laplante, M.; Sabatini, D.M. MTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Celada, L.J.; Rotsinger, J.E.; Young, A.; Shaginurova, G.; Shelton, D.; Hawkins, C.; Drake, W.P. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4+ T Cell Proliferation. Am. J. Respir. Cell Mol. Biol. 2017, 56, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Pizzini, A.; Bacher, H.; Aichner, M.; Franchi, A.; Watzinger, K.; Tancevski, I.; Sonnweber, T.; Mosheimer-Feistritzer, B.; Duftner, C.; Zelger, B.; et al. High Expression of MTOR Signaling in Granulomatous Lesions Is Not Predictive for the Clinical Course of Sarcoidosis. Respir. Med. 2021, 177, 106294. [Google Scholar] [CrossRef]
- Nusse, R.; Clevers, H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef] [Green Version]
- Chilosi, M.; Poletti, V.; Zamò, A.; Lestani, M.; Montagna, L.; Piccoli, P.; Pedron, S.; Bertaso, M.; Scarpa, A.; Murer, B.; et al. Aberrant Wnt/Beta-Catenin Pathway Activation in Idiopathic Pulmonary Fibrosis. Am. J. Pathol. 2003, 162, 1495–1502. [Google Scholar] [CrossRef]
- Königshoff, M.; Balsara, N.; Pfaff, E.-M.; Kramer, M.; Chrobak, I.; Seeger, W.; Eickelberg, O. Functional Wnt Signaling Is Increased in Idiopathic Pulmonary Fibrosis. PLoS ONE 2008, 3, e2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levänen, B.; Wheelock, A.M.; Eklund, A.; Grunewald, J.; Nord, M. Increased Pulmonary Wnt (Wingless/Integrated)-Signaling in Patients with Sarcoidosis. Respir. Med. 2011, 105, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Shigemitsu, H.; Oblad, J.M.; Sharma, O.P.; Koss, M.N. Chronic Interstitial Pneumonitis in End-Stage Sarcoidosis. Eur. Respir. J. 2010, 35, 695–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verleden, S.E.; Vanstapel, A.; De Sadeleer, L.; Dubbeldam, A.; Goos, T.; Gyselinck, I.; Geudens, V.; Kaes, J.; Van Raemdonck, D.E.; Ceulemans, L.J.; et al. Distinct Airway Involvement in Subtypes of End-Stage Fibrotic Pulmonary Sarcoidosis. Chest 2021, 160, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Collins, B.F.; McClelland, R.L.; Ho, L.A.; Mikacenic, C.R.; Hayes, J.; Spada, C.; Raghu, G. Sarcoidosis and IPF in the Same Patient-a Coincidence, an Association or a Phenotype? Respir. Med. 2018, 144, S20–S27. [Google Scholar] [CrossRef] [PubMed]
- Bergantini, L.; Nardelli, G.; d’Alessandro, M.; Montuori, G.; Piccioli, C.; Rosi, E.; Gangi, S.; Cavallaro, D.; Cameli, P.; Bargagli, E. Combined Sarcoidosis and Idiopathic Pulmonary Fibrosis (CSIPF): A New Phenotype or a Fortuitous Overlap? Scoping Review and Case Series. J. Clin. Med. 2022, 11, 2065. [Google Scholar] [CrossRef]
- Paramothayan, S.; Jones, P.W. Corticosteroid Therapy in Pulmonary Sarcoidosis: A Systematic Review. JAMA 2002, 287, 1301–1307. [Google Scholar] [CrossRef]
- Baughman, R.P.; Valeyre, D.; Korsten, P.; Mathioudakis, A.G.; Wuyts, W.A.; Wells, A.; Rottoli, P.; Nunes, H.; Lower, E.E.; Judson, M.A.; et al. ERS Clinical Practice Guidelines on Treatment of Sarcoidosis. Eur. Respir. J. 2021, 58, 2004079. [Google Scholar] [CrossRef]
- Miedema, J.R.; Bonella, F.; Grunewald, J.; Spagnolo, P. Looking into the Future of Sarcoidosis: What Is next for Treatment? Curr. Opin. Pulm. Med. 2020, 26, 598–607. [Google Scholar] [CrossRef]
- Flaherty, K.R.; Wells, A.U.; Cottin, V.; Devaraj, A.; Walsh, S.L.F.; Inoue, Y.; Richeldi, L.; Kolb, M.; Tetzlaff, K.; Stowasser, S.; et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N. Engl. J. Med. 2019, 381, 1718–1727. [Google Scholar] [CrossRef] [Green Version]
- Maher, T.M.; Corte, T.J.; Fischer, A.; Kreuter, M.; Lederer, D.J.; Molina-Molina, M.; Axmann, J.; Kirchgaessler, K.-U.; Samara, K.; Gilberg, F.; et al. Pirfenidone in Patients with Unclassifiable Progressive Fibrosing Interstitial Lung Disease: A Double-Blind, Randomised, Placebo-Controlled, Phase 2 Trial. Lancet Respir. Med. 2020, 8, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Gangemi, A.J.; Myers, C.N.; Zheng, M.; Brown, J.; Butler-LeBair, M.; Cordova, F.; Marchetti, N.; Criner, G.J.; Gupta, R.; Mamary, A.J. Mortality for Sarcoidosis Patients on the Transplant Wait List in the Lung Allocation Score Era: Experience from a High Volume Center. Respir. Med. 2019, 157, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.C. Lung Transplantation for Pulmonary Sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 2019, 36, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Leard, L.E.; Holm, A.M.; Valapour, M.; Glanville, A.R.; Attawar, S.; Aversa, M.; Campos, S.V.; Christon, L.M.; Cypel, M.; Dellgren, G.; et al. Consensus Document for the Selection of Lung Transplant Candidates: An Update from the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2021, 40, 1349–1379. [Google Scholar] [CrossRef]
- Le Pavec, J.; Valeyre, D.; Gazengel, P.; Holm, A.M.; Schultz, H.H.; Perch, M.; Le Borgne, A.; Reynaud-Gaubert, M.; Knoop, C.; Godinas, L.; et al. Lung Transplantation for Sarcoidosis: Outcome and Prognostic Factors. Eur. Respir. J. 2021, 58, 2003358. [Google Scholar] [CrossRef]
Features | Role/Function | Type of Studies/Methods | References |
---|---|---|---|
Genes | |||
GREM1 rs1919364 polymorphism | Patients homozygous for the C allele present a greater risk for fibrosis | Haplotype comparison in human sarcoidosis patients | [35] |
CARD15 rs2066844 polymorphism | Carriers of the T allele present a greater risk for stage IV CXR | Haplotype comparison in human sarcoidosis patients | [36] |
CCR5 HCC haplotype | Carriers of both HCC haplotype and CARD15 rs2066844 T haplotype always presented stage IV CXR | Haplotype comparison in human sarcoidosis patients | [36] |
PTGS2 rs20417 polymorphism | Carriers of the C allele present a greater risk for sarcoidosis and a poorer prognosis | Haplotype comparison in human and within sarcoidosis patients | [37] |
TGF-β3 rs3917165 polymorphism | Carriers of the A allele present a greater risk for fibrosis | Haplotype comparison in human sarcoidosis patients | [38] |
TGF-β3 rs3917200 polymorphism | Carriers of the C allele present a greater risk for fibrosis | Haplotype comparison in human sarcoidosis patients | [38] |
MUC5B rs35705950 polymorphism | No association to fibrosis | Haplotype comparison in human sarcoidosis patients | [39] |
Cells | |||
T cells | T cells are polarized to a Th1/Th17 phenotype, leading to granuloma formation. | Evaluation of Th 17.1 and Th 17 lymphocytes in BALF of sarcoidosis patients compared to control. | [48] |
Evaluation of Th 17.1 in lung mediastinal lymph nodes of sarcoidosis patients. | [49] | ||
T cells evaluation in BALF and blood of sarcoidosis patients. | [50] | ||
Macrophages | evidence suggests the transition from a M1 to a dominant M2 phenotype in more advanced stages of sarcoidosis | Evaluation of M2 macrophages in tissues specimens of sarcoidosis patients compared with tuberculosis patients. In vitro comparison of PBMCs from sarcoidosis patients and controls | [51,52] |
Signaling | |||
TGF-β/SMAD signaling | Key role during inflammatory mitigation and wound healing. Three forms of TGF-β:
| In vitro evaluation on human AEC Transcription evaluation in cells from pulmonary fibrosis patients and controls Gene expression evaluation in BALF cells and blood lymphocytes from sarcoidosis patients | [53,54,55] |
JAK-STAT signaling | Regulates the release of INF-γ. The pathway is over expressed in patients with sarcoidosis. | microRNA expression in PBMCs of controls and sarcoidosis patients | [56] |
mTOR signaling | mTOR signaling promotes collagen synthesis in the lung fibroblasts through aerobic glycolysis and represents a powerful autophagy inhibitor. Its role in sarcoidosis is still unclear. | In vitro evaluation on human lung fibroblasts | [57] |
Wnt signaling | This pathway seems to be associated with fibrosis and progression. | Gene expression in lung sample from fibrotic patients and controls, in vitro evaluation of gene downregulation in human AECs | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocconcelli, E.; Bernardinello, N.; Castelli, G.; Petrarulo, S.; Bellani, S.; Saetta, M.; Spagnolo, P.; Balestro, E. Molecular Mechanism in the Development of Pulmonary Fibrosis in Patients with Sarcoidosis. Int. J. Mol. Sci. 2023, 24, 10767. https://doi.org/10.3390/ijms241310767
Cocconcelli E, Bernardinello N, Castelli G, Petrarulo S, Bellani S, Saetta M, Spagnolo P, Balestro E. Molecular Mechanism in the Development of Pulmonary Fibrosis in Patients with Sarcoidosis. International Journal of Molecular Sciences. 2023; 24(13):10767. https://doi.org/10.3390/ijms241310767
Chicago/Turabian StyleCocconcelli, Elisabetta, Nicol Bernardinello, Gioele Castelli, Simone Petrarulo, Serena Bellani, Marina Saetta, Paolo Spagnolo, and Elisabetta Balestro. 2023. "Molecular Mechanism in the Development of Pulmonary Fibrosis in Patients with Sarcoidosis" International Journal of Molecular Sciences 24, no. 13: 10767. https://doi.org/10.3390/ijms241310767
APA StyleCocconcelli, E., Bernardinello, N., Castelli, G., Petrarulo, S., Bellani, S., Saetta, M., Spagnolo, P., & Balestro, E. (2023). Molecular Mechanism in the Development of Pulmonary Fibrosis in Patients with Sarcoidosis. International Journal of Molecular Sciences, 24(13), 10767. https://doi.org/10.3390/ijms241310767