Challenges and Future Trends in Atopic Dermatitis
Abstract
:1. Introduction
2. Current and Future Molecular Targets in Atopic Dermatitis
2.1. Modulation of the Skin Microbiome
2.2. Targeting the Innate Immune System
2.2.1. Innate lymphoid Cells (ILCs)
2.2.2. Alarmins
Thymic Stromal Lymphopoietin (TSLP)
Interleukin-1 (IL-1) Family
- -
- Interleukin-1 subfamily
- Interleukin 1 (IL-1)
- Interleukin-36 subfamily (IL-36)
- 2.
- Interleukin-18 subfamily (IL-18)
Interleukin 33 (IL-33)
2.2.3. Aryl-Hydrocarbon Receptor (AHR)
2.3. Targeting the Adaptive Immune System
2.3.1. Antigen Presentation through OX40-OX40L
2.3.2. T-Helper-2-Related Cytokines
Interleukin-4 (IL-4) through Il-4Rα Receptor
Interleukin-13 (IL-13)
Interleukin-5 (IL-5) through IL-5rα Receptor
2.3.3. Interleukin-22 (IL-22)
2.3.4. Phosphodiesterase-4 (PDE4)
Topical Phosphodiesterase-4 (PDE4)
Oral Phosphodiesterase-4 (PDE4)
2.3.5. Histamine Receptors
2.3.6. Molecules Involved in Migration of T-Cells
Circulating Memory CLA+ T Lymphocytes
Sphingosine-1-Phosphate (S1P)
- Topical S1PR antagonist
- 2.
- Oral S1PR modulator
2.3.7. Bruton’s Tyrosine Kinase (BTK)
2.3.8. Liver X Receptor (LXR)
2.4. Targeting the Itch–Scratch Cycle
2.4.1. Interleukin-31 (IL-31)
2.4.2. Neurokinin 1 Receptor (NK1R)
2.4.3. P2X Purinoreceptor3 (P2XR3)
2.4.4. Transient Receptor Potential Channel (TRP)
Transient Receptor Potential Channel Ankyrin (TRPA)
Transient Receptor Potential Channel Vanilloid (TRPV)
- Transient receptor potential channel vanilloid 1 (TRPV1)
- 2.
- Transient receptor potential channel vanilloid 3 (TRPV3)
2.4.5. Cannabinoid Receptors (CBRs)
2.4.6. Protease-Activated Receptor 2 (PAR2)
2.5. Suppression of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) Pathway, along with the Activation of Suppressor of Cytokine Signaling (SOCS), Is Being Explored
2.5.1. JAK Inhibitors
Topical JAK Inhibitors
Oral JAK Inhibitors
2.5.2. Suppressor of Cytokine Signaling (SOCS)
Suppressor of Cytokine Signaling-1 (SOCS-1)
Suppressor of Cytokine Signaling-3 (SOCS-3)
Suppressor of Cytokine Signaling-5 (SOCS-5)
2.6. The Hippo-YAP Pathway
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.H.; Choi, A.; Noh, Y.; Oh, I.S.; Jeon, J.Y.; Yoo, H.J.; Shin, J.Y.; Son, S.W. Real-world treatment patterns for atopic dermatitis in South Korea. Sci. Rep. 2022, 12, 13626. [Google Scholar] [CrossRef] [PubMed]
- Son, S.W.; Lee, J.H.; Ahn, J.; Chang, S.E.; Choi, E.H.; Han, T.Y.; Jang, Y.H.; Kim, H.O.; Kim, M.B.; Kim, Y.C.; et al. Assessment of Disease Severity and Quality of Life in Patients with Atopic Dermatitis from South Korea. Ann. Dermatol. 2022, 34, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Hayano, S. Subtypes of atopic dermatitis: From phenotype to endotype. Allergol. Int. 2022, 71, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Son, S.W.; Cho, S.H. A Comprehensive Review of the Treatment of Atopic Eczema. Allergy Asthma Immunol. Res. 2016, 8, 181–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naik, P.P. Treatment-resistant atopic dermatitis: Novel therapeutics, digital tools, and precision medicine. Asia Pac. Allergy 2022, 12, e20. [Google Scholar] [CrossRef]
- Bieber, T. Atopic dermatitis: An expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov. 2022, 21, 21–40. [Google Scholar] [CrossRef]
- Weiss, A.; Delavenne, E.; Matias, C.; Lagler, H.; Simon, D.; Li, P.; Hansen, J.U.; Dos Santos, T.P.; Jana, B.; Priemel, P.; et al. Topical niclosamide (ATx201) reduces Staphylococcus aureus colonization and increases Shannon diversity of the skin microbiome in atopic dermatitis patients in a randomized, double-blind, placebo-controlled Phase 2 trial. Clin. Transl. Med. 2022, 12, e790. [Google Scholar] [CrossRef]
- Niemeyer-van der Kolk, T.; Buters, T.P.; Krouwels, L.; Boltjes, J.; de Kam, M.L.; van der Wall, H.; van Alewijk, D.; van den Munckhof, E.H.A.; Becker, M.J.; Feiss, G.; et al. Topical antimicrobial peptide omiganan recovers cutaneous dysbiosis but does not improve clinical symptoms in patients with mild to moderate atopic dermatitis in a phase 2 randomized controlled trial. J. Am. Acad. Dermatol. 2022, 86, 854–862. [Google Scholar] [CrossRef]
- Javia, A.; Misra, A.; Thakkar, H. Liposomes encapsulating novel antimicrobial peptide Omiganan: Characterization and its pharmacodynamic evaluation in atopic dermatitis and psoriasis mice model. Int. J. Pharm. 2022, 624, 122045. [Google Scholar] [CrossRef]
- Myles, I.A.; Williams, K.W.; Reckhow, J.D.; Jammeh, M.L.; Pincus, N.B.; Sastalla, I.; Saleem, D.; Stone, K.D.; Datta, S.K. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight. 2016, 1, e86955. [Google Scholar] [CrossRef] [Green Version]
- Zeldin, J.; Chaudhary, P.P.; Spathies, J.; Yadav, M.; D’Souza, B.N.; Alishahedani, M.E.; Gough, P.; Matriz, J.; Ghio, A.J.; Li, Y.; et al. Exposure to isocyanates predicts atopic dermatitis prevalence and disrupts therapeutic pathways in commensal bacteria. Sci. Adv. 2023, 9, eade8898. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Hata, T.R.; Tong, Y.; Cheng, J.Y.; Shafiq, F.; Butcher, A.M.; Salem, S.S.; Brinton, S.L.; Rudman Spergel, A.K.; Johnson, K.; et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat. Med. 2021, 27, 700–709. [Google Scholar] [CrossRef]
- A Pilot Study to Evaluate the Survival of Transplanted Staphylococcus Hominis A9 on the Skin of Adults with Moderate-to-Severe Atopic Dermatitis (ADRN-UCSD-001). Available online: https://ClinicalTrials.gov/show/NCT05177328 (accessed on 13 April 2023).
- Silverberg, J.I.; Lio, P.A.; Simpson, E.L.; Li, C.; Brownell, D.R.; Gryllos, I.; Ng-Cashin, J.; Krueger, T.; Swaidan, V.R.; Bliss, R.L.; et al. Efficacy and safety of topically applied therapeutic ammonia oxidising bacteria in adults with mild-to-moderate atopic dermatitis and moderate-to-severe pruritus: A randomised, double-blind, placebo-controlled, dose-ranging, phase 2b trial. Eclinicalmedicine 2023, 60, 102002. [Google Scholar] [CrossRef]
- Imai, Y. Interleukin-33 in atopic dermatitis. J. Dermatol. Sci. 2019, 96, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Tsoi, L.C.; Rodriguez, E.; Degenhardt, F.; Baurecht, H.; Wehkamp, U.; Volks, N.; Szymczak, S.; Swindell, W.R.; Sarkar, M.K.; Raja, K.; et al. Atopic Dermatitis Is an IL-13-Dominant Disease with Greater Molecular Heterogeneity Compared to Psoriasis. J. Investig. Dermatol. 2019, 139, 1480–1489. [Google Scholar] [CrossRef] [Green Version]
- Ricardo-Gonzalez, R.R.; Schneider, C.; Liao, C.; Lee, J.; Liang, H.E.; Locksley, R.M. Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. J. Exp. Med. 2020, 217, e20191172. [Google Scholar] [CrossRef]
- Leyva-Castillo, J.M.; Geha, R.S. Cutaneous Type 2 Innate Lymphoid Cells Come in Distinct Flavors. JID Innov. 2021, 1, 100059. [Google Scholar] [CrossRef]
- Dominguez-Huttinger, E.; Christodoulides, P.; Miyauchi, K.; Irvine, A.D.; Okada-Hatakeyama, M.; Kubo, M.; Tanaka, R.J. Mathematical modeling of atopic dermatitis reveals "double-switch" mechanisms underlying 4 common disease phenotypes. J. Allergy Clin. Immunol. 2017, 139, 1861–1872.e1867. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Zhu, Z.; Zhai, Y.; Zeng, J.; Li, L.; Wang, D.; Deng, F.; Chang, B.; Zhou, J.; Sun, L. The Role of TSLP in Atopic Dermatitis: From Pathogenetic Molecule to Therapeutical Target. Mediat. Inflamm 2023, 2023, 7697699. [Google Scholar] [CrossRef]
- Lee, E.B.; Kim, K.W.; Hong, J.Y.; Jee, H.M.; Sohn, M.H.; Kim, K.E. Increased serum thymic stromal lymphopoietin in children with atopic dermatitis. Pediatr. Allergy Immunol. 2010, 21, e457–e460. [Google Scholar] [CrossRef]
- FDA Approves Maintenance Treatment for Severe Asthma. Available online: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-maintenance-treatment-severe-asthma (accessed on 15 May 2023).
- Boutet, M.A.; Nerviani, A.; Pitzalis, C. IL-36, IL-37, and IL-38 Cytokines in Skin and Joint Inflammation: A Comprehensive Review of Their Therapeutic Potential. Int. J. Mol. Sci. 2019, 20, 1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Didovic, S.; Opitz, F.V.; Holzmann, B.; Forster, I.; Weighardt, H. Requirement of MyD88 signaling in keratinocytes for Langerhans cell migration and initiation of atopic dermatitis-like symptoms in mice. Eur. J. Immunol. 2016, 46, 981–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iznardo, H.; Puig, L. IL-1 Family Cytokines in Inflammatory Dermatoses: Pathogenetic Role and Potential Therapeutic Implications. Int. J. Mol. Sci. 2022, 23, 9479. [Google Scholar] [CrossRef] [PubMed]
- Hojen, J.F.; Kristensen, M.L.V.; McKee, A.S.; Wade, M.T.; Azam, T.; Lunding, L.P.; de Graaf, D.M.; Swartzwelter, B.J.; Wegmann, M.; Tolstrup, M.; et al. IL-1R3 blockade broadly attenuates the functions of six members of the IL-1 family, revealing their contribution to models of disease. Nat. Immunol. 2019, 20, 1138–1149. [Google Scholar] [CrossRef]
- Kanni, T.; Argyropoulou, M.; Dinarello, C.A.; Simard, J.; Giamarellos-Bourboulis, E.J. MABp1 targeting interleukin-1alpha in hidradenitis suppurativa ineligible for adalimumab treatment: Results of the open-label extension period. Clin. Exp. Dermatol. 2021, 46, 162–163. [Google Scholar] [CrossRef]
- Coleman, K.M.; Gudjonsson, J.E.; Stecher, M. Open-Label Trial of MABp1, a True Human Monoclonal Antibody Targeting Interleukin 1alpha, for the Treatment of Psoriasis. JAMA Dermatol. 2015, 151, 555–556. [Google Scholar] [CrossRef] [Green Version]
- A Phase 2b, Multicenter, Randomized, Placebo- and Active-Comparator-Controlled, Double-Blind Study to Evaluate the Safety and Efficacy of Bermekimab (JNJ-77474462) for the Treatment of Participants with Moderate to Severe Atopic Dermatitis. Available online: https://clinicaltrials.gov/ct2/show/NCT04791319 (accessed on 14 April 2023).
- Church, L.D.; McDermott, M.F. Canakinumab, a fully-human mAb against IL-1beta for the potential treatment of inflammatory disorders. Curr. Opin. Mol. Ther. 2009, 11, 81–89. [Google Scholar]
- Schwartz, C.; Moran, T.; Saunders, S.P.; Kaszlikowska, A.; Floudas, A.; Bom, J.; Nunez, G.; Iwakura, Y.; O’Neill, L.; Irvine, A.D.; et al. Spontaneous atopic dermatitis in mice with a defective skin barrier is independent of ILC2 and mediated by IL-1beta. Allergy 2019, 74, 1920–1933. [Google Scholar] [CrossRef] [Green Version]
- Krueger, J.; Puig, L.; Thaci, D. Treatment Options and Goals for Patients with Generalized Pustular Psoriasis. Am. J. Clin. Dermatol. 2022, 23, 51–64. [Google Scholar] [CrossRef]
- Fukaura, R.; Akiyama, M. Targeting IL-36 in Inflammatory Skin Diseases. BioDrugs 2023, 37, 279–293. [Google Scholar] [CrossRef]
- Boraschi, D.; Italiani, P.; Weil, S.; Martin, M.U. The family of the interleukin-1 receptors. Immunol. Rev. 2018, 281, 197–232. [Google Scholar] [CrossRef]
- Wang, W.; Yu, X.; Wu, C.; Jin, H. IL-36gamma inhibits differentiation and induces inflammation of keratinocyte via Wnt signaling pathway in psoriasis. Int. J. Med. Sci. 2017, 14, 1002–1007. [Google Scholar] [CrossRef] [Green Version]
- Patrick, G.J.; Liu, H.; Alphonse, M.P.; Dikeman, D.A.; Youn, C.; Otterson, J.C.; Wang, Y.; Ravipati, A.; Mazhar, M.; Denny, G.; et al. Epicutaneous Staphylococcus aureus induces IL-36 to enhance IgE production and ensuing allergic disease. J. Clin. Investig. 2021, 131, e143334. [Google Scholar] [CrossRef]
- Liu, H.; Archer, N.K.; Dillen, C.A.; Wang, Y.; Ashbaugh, A.G.; Ortines, R.V.; Kao, T.; Lee, S.K.; Cai, S.S.; Miller, R.J.; et al. Staphylococcus aureus Epicutaneous Exposure Drives Skin Inflammation via IL-36-Mediated T Cell Responses. Cell Host Microbe 2017, 22, 653–666.e655. [Google Scholar] [CrossRef]
- Bissonnette, R.; Abramovits, W.; Saint-Cyr Proulx, E.; Lee, P.; Guttman-Yassky, E.; Zovko, E.; Sigmund, R.; Willcox, J.; Bieber, T. Spesolimab, an anti-interleukin-36 receptor antibody, in patients with moderate-to-severe atopic dermatitis: Results from a multicentre, randomized, double-blind, placebo-controlled, phase IIa study. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 549–557. [Google Scholar] [CrossRef]
- Dinarello, C.A.; Novick, D.; Kim, S.; Kaplanski, G. Interleukin-18 and IL-18 binding protein. Front. Immunol. 2013, 4, 289. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Cho, D.H.; Park, H.J. IL-18 and Cutaneous Inflammatory Diseases. Int. J. Mol. Sci. 2015, 16, 29357–29369. [Google Scholar] [CrossRef] [Green Version]
- Novak, N.; Valenta, R.; Bohle, B.; Laffer, S.; Haberstok, J.; Kraft, S.; Bieber, T. FcepsilonRI engagement of Langerhans cell-like dendritic cells and inflammatory dendritic epidermal cell-like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro. J. Allergy Clin. Immunol. 2004, 113, 949–957. [Google Scholar] [CrossRef]
- Ohnishi, H.; Kato, Z.; Watanabe, M.; Fukutomi, O.; Inoue, R.; Teramoto, T.; Kondo, N. Interleukin-18 is associated with the severity of atopic dermatitis. Allergol. Int. 2003, 52, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Open-label, Multicenter, Dose-Escalating Phase II Study to Investigate the Safety, Tolerability, and Early Signs of Efficacy of Subcutaneous Admin-Istrations of Tadekinig Alfa (IL-18BP) in Patients With Adult -Onset Still’s Disease (AoSD) during 12 Weeks. Available online: https://www.clinicaltrials.gov/ct2/show/NCT02398435 (accessed on 14 April 2023).
- Savinko, T.; Matikainen, S.; Saarialho-Kere, U.; Lehto, M.; Wang, G.; Lehtimaki, S.; Karisola, P.; Reunala, T.; Wolff, H.; Lauerma, A.; et al. IL-33 and ST2 in atopic dermatitis: Expression profiles and modulation by triggering factors. J. Investig. Dermatol. 2012, 132, 1392–1400. [Google Scholar] [CrossRef] [Green Version]
- Cayrol, C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Wang, K.; Siracusa, M.C.; Saenz, S.A.; Brestoff, J.R.; Monticelli, L.A.; Noti, M.; Tait Wojno, E.D.; Fung, T.C.; Kubo, M.; et al. Basophils promote innate lymphoid cell responses in inflamed skin. J. Immunol. 2014, 193, 3717–3725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guttman-Yassky, E.; Bissonnette, R.; Ungar, B.; Suárez-Fariñas, M.; Ardeleanu, M.; Esaki, H.; Suprun, M.; Estrada, Y.; Xu, H.; Peng, X.; et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 143, 155–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamagawa-Mineoka, R.; Okuzawa, Y.; Masuda, K.; Katoh, N. Increased serum levels of interleukin 33 in patients with atopic dermatitis. J. Am. Acad. Dermatol. 2014, 70, 882–888. [Google Scholar] [CrossRef]
- Chen, Y.L.; Gutowska-Owsiak, D.; Hardman, C.S.; Westmoreland, M.; MacKenzie, T.; Cifuentes, L.; Waithe, D.; Lloyd-Lavery, A.; Marquette, A.; Londei, M.; et al. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci. Transl. Med. 2019, 11, eaax2945. [Google Scholar] [CrossRef]
- Anaptysbio. Anaptysbio Reports Etokimab ATLAS Phase 2b Clinical Trial in Moderate-to-Severe Atopic Dermatitis Fails to Meet Primary Endpoint. Available online: https://ir.anaptysbio.com/news-releases/news-release-details/anaptysbio-reports-etokimab-atlas-phase-2b-clinical-trial (accessed on 15 May 2023).
- A Phase 2b, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Dose-Ranging Study Investigating the Efficacy, Safety, and Pharmacokinetic Profiles of REGN3500 Administered to Adult Patients with Moderate-to-Severe Atopic Dermatitis. Available online: https://clinicaltrials.gov/ct2/show/NCT03738423 (accessed on 14 April 2023).
- Maurer, M.; Cheung, D.S.; Theess, W.; Yang, X.; Dolton, M.; Guttman, A.; Choy, D.F.; Dash, A.; Grimbaldeston, M.A.; Soong, W. Phase 2 randomized clinical trial of astegolimab in patients with moderate to severe atopic dermatitis. J. Allergy Clin. Immunol. 2022, 150, 1517–1524. [Google Scholar] [CrossRef]
- A Phase 2 Randomized, Double-Blinded, Placebo-Controlled Study to Evaluate the Efficacy and Safety of MEDI3506 in Adult Subjects with Moderate-to-Severe Atopic Dermatitis. Available online: https://clinicaltrials.gov/ct2/show/NCT04212169 (accessed on 14 April 2023).
- England, E.; Rees, D.G.; Scott, I.C.; Carmen, S.; Chan, D.T.Y.; Huntington, C.E.C.; Houslay, K.F.; Erngren, T.; Penney, M.; Majithiya, J.B.; et al. Tozorakimab (MEDI3506): A dual-pharmacology anti-IL-33 antibody that inhibits IL-33 signalling via ST2 and RAGE/EGFR to reduce inflammation and epithelial dysfunction. bioRxiv 2023. [Google Scholar] [CrossRef]
- Helm, E.Y.; Zhou, L. Transcriptional regulation of innate lymphoid cells and T cells by aryl hydrocarbon receptor. Front. Immunol. 2023, 14, 1056267. [Google Scholar] [CrossRef]
- An Open-Label, Long-Term Extension Study to Evaluate the Safety and Efficacy of Tapinarof Cream, 1% in Subjects With Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05142774 (accessed on 1 May 2023).
- Lé, A.M.; Torres, T. OX40-OX40L Inhibition for the Treatment of Atopic Dermatitis-Focus on Rocatinlimab and Amlitelimab. Pharmaceutics 2022, 14, 2753. [Google Scholar] [CrossRef]
- Iriki, H.; Takahashi, H.; Amagai, M. Diverse Role of OX40 on T Cells as a Therapeutic Target for Skin Diseases. J. Investig. Dermatol. 2023, 143, 545–553. [Google Scholar] [CrossRef]
- Fu, N.; Xie, F.; Sun, Z.; Wang, Q. The OX40/OX40L Axis Regulates T Follicular Helper Cell Differentiation: Implications for Autoimmune Diseases. Front. Immunol. 2021, 12, 670637. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Pavel, A.B.; Zhou, L.; Estrada, Y.D.; Zhang, N.; Xu, H.; Peng, X.; Wen, H.C.; Govas, P.; Gudi, G.; et al. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 144, 482–493.e487. [Google Scholar] [CrossRef] [Green Version]
- Sher, L.; Rewerska, B.; Acocella, A.; Gudi, G.; Salhi, Y.; Mbow, M.; Changela, K.; Mozaffarian, N. 472 Telazorlimab in atopic dermatitis: Phase 2b study shows improvement at 16 weeks. J. Investig. Dermatol. 2021, 141, S82. [Google Scholar] [CrossRef]
- A Phase 2, Multicenter, Randomized, Double-Blind, Parallel-Group, Place-Bo-Controlled Study of an Anti-OX40 Monoclonal Antibody (KHK4083) in Subjects with Moderate to Severe Atopic Dermatitis (AD). Available online: https://www.clinicaltrials.gov/ct2/show/NCT03703102 (accessed on 13 April 2023).
- A Phase 3, 24-Week, Randomized, Placebo-Controlled, Double-Blind Study to Assess the Efficacy, Safety and Tolerability of Rocatinlimab (AMG 451) Monotherapy in Adult Subjects with Moderate-to-Severe Atopic Dermatitis (AD). Available online: https://www.clinicaltrials.gov/ct2/show/NCT05398445 (accessed on 25 April 2023).
- Saghari, M.; Gal, P.; Gilbert, S.; Yateman, M.; Porter-Brown, B.; Brennan, N.; Quaratino, S.; Wilson, R.; Grievink, H.W.; Klaassen, E.S.; et al. OX40L Inhibition Suppresses KLH-driven Immune Responses in Healthy Volunteers: A Randomized Controlled Trial Demonstrating Proof-of-Pharmacology for KY1005. Clin. Pharmacol. Ther. 2022, 111, 1121–1132. [Google Scholar] [CrossRef]
- Weidinger, S.; Bieber, T.; Cork, M. 34312 Treatment with amlitelimab (KY1005, SAR445229): A novel nondepleting anti-OX40Ligand (OX40L) mAb reduces IL-13 serum levels in a phase 2a randomized placebo-controlled trial in patients with moderate to severe atopic dermatitis. J. Am. Acad. Dermatol. 2022, 87, AB123. [Google Scholar] [CrossRef]
- Weidinger, S.; Cork, M.; Reich, A.; Bieber, T.; Gilbert, S.; Brennan, N.; Wilson, R.; Lucchesi, D.; Rynkiewicz, N.; Stebegg, M.; et al. 345 Treatment with amlitelimab—A novel non-depleting, non-cytotoxic anti-OX40Ligand monoclonal antibody—Reduces IL-22 serum levels in a phase 2a randomized, placebo-controlled trial in patients with moderate-to-severe atopic dermatitis. Br. J. Dermatol. 2023, 188, 345. [Google Scholar] [CrossRef]
- A Long-Term Extension Study to Evaluate the Long-Term Safety, Tolerability and Efficacy of Subcutaneous Amlitelimab in Adult Participants with Moderate to Severe Atopic Dermatitis Who Participated in KY1005-CT05 (DRI17366). Available online: https://www.clinicaltrials.gov/ct2/show/NCT05492578 (accessed on 13 April 2023).
- Oetjen, L.K.; Mack, M.R.; Feng, J.; Whelan, T.M.; Niu, H.; Guo, C.J.; Chen, S.; Trier, A.M.; Xu, A.Z.; Tripathi, S.V.; et al. Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell 2017, 171, 217–228.e213. [Google Scholar] [CrossRef] [Green Version]
- McCormick, S.M.; Heller, N.M. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 2015, 75, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Vadevoo, S.M.P.; Kim, J.E.; Gunassekaran, G.R.; Jung, H.K.; Chi, L.; Kim, D.E.; Lee, S.H.; Im, S.H.; Lee, B. IL4 Receptor-Targeted Proapoptotic Peptide Blocks Tumor Growth and Metastasis by Enhancing Antitumor Immunity. Mol. Cancer Ther. 2017, 16, 2803–2816. [Google Scholar] [CrossRef] [Green Version]
- LaPorte, S.L.; Juo, Z.S.; Vaclavikova, J.; Colf, L.A.; Qi, X.; Heller, N.M.; Keegan, A.D.; Garcia, K.C. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 2008, 132, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Hershey, G.K. IL-13 receptors and signaling pathways: An evolving web. J. Allergy Clin. Immunol. 2003, 111, 677–690, quiz 691. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, P.; Guo, J.; Yun, J.; Yun, J.; Wei, Z.; Pan, W.; Collazo, R.; Lee, C. CBP-201, a next-generation IL-4Rα antibody, achieved all primary and sec-ondary efficacy endpoints in the treatment of adults with moderate-to-severe atopic dermatitis (AD): A randomized, double-blind, pivotal trial in China (CBP-201-CN002). In Proceedings of the American Academy of Dermatology 2023 Annual Meeting, New Orleans, LA, USA, 17–21 March 2023. [Google Scholar]
- A Phase 2, Multi-Center, Randomized, Placebo-Controlled, Double-Blind, Parallel-Group, Dose-Ranging Study to Evaluate the Efficacy and Safety of AK120 in Adult Subjects with Moderate-to-Severe Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05048056 (accessed on 15 April 2023).
- Facheris, P.; Jeffery, J.; Del Duca, E.; Guttman-Yassky, E. The translational revolution in atopic dermatitis: The paradigm shift from pathogenesis to treatment. Cell Mol. Immunol. 2023, 20, 448–474. [Google Scholar] [CrossRef] [PubMed]
- Lytvyn, Y.; Gooderham, M. Targeting Interleukin 13 for the Treatment of Atopic Dermatitis. Pharmaceutics 2023, 15, 568. [Google Scholar] [CrossRef] [PubMed]
- Bieber, T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy 2020, 75, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Tralokinumab Monotherapy for Children With Moderate-to-Severe Atopic Dermatitis—TRAPEDS 1 (TRAlokinumab PEDiatric Trial No. 1). Available online: https://www.clinicaltrials.gov/ct2/show/NCT05388760?term=NCT05388760&draw=2&rank=1 (accessed on 15 May 2023).
- A Phase 3, Multicenter, Multinational, Open-Label Extension Study to Evaluate the Long-Term Safety of CC-93538 in Adult and Adolescent Subjects with Eosinophilic Esophagitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04991935 (accessed on 1 May 2023).
- A Phase 3, Multicenter, Randomized, Double-Blind, Placebo-Controlled In-duction and Maintenance Study to Evaluate the Efficacy and Safety of CC-93538 in Adult and Adolescent Japanese Subjects with Eosinophilic Gastroenteritis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05214768 (accessed on 1 May 2023).
- A Phase 2, Multicenter, Global, Randomized, Double-blind, Place-bo-Controlled, Parallel-Group Study to Evaluate the Safety and Efficacy of Cendakimab (CC-93538) in Adult Subjects with Moderate to Severe Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04800315 (accessed on 1 May 2023).
- Silverberg, J.I.; Guttman-Yassky, E.; Thaci, D.; Irvine, A.D.; Stein Gold, L.; Blauvelt, A.; Simpson, E.L.; Chu, C.Y.; Liu, Z.; Gontijo Lima, R.; et al. Two Phase 3 Trials of Lebrikizumab for Moderate-to-Severe Atopic Dermatitis. N Engl. J. Med. 2023, 388, 1080–1091. [Google Scholar] [CrossRef]
- Blauvelt, A.; Thyssen, J.P.; Guttman-Yassky, E.; Bieber, T.; Serra-Baldrich, E.; Simpson, E.; Rosmarin, D.; Elmaraghy, H.; Meskimen, E.; Natalie, C.R.; et al. Efficacy and safety of lebrikizumab in moderate-to-severe atopic dermatitis: 52-week results of two randomized double-blinded placebo-controlled phase III trials. Br. J. Dermatol. 2023, 188, 740–748. [Google Scholar] [CrossRef]
- A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial to Evaluate the Efficacy and Safety of Eblasakimab in Male or Female Moderate-to-Severe Atopic Dermatitis Patients Previously Treated with Dupilumab. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05694884 (accessed on 1 May 2023).
- Kusano, S.; Kukimoto-Niino, M.; Hino, N.; Ohsawa, N.; Ikutani, M.; Takaki, S.; Sakamoto, K.; Hara-Yokoyama, M.; Shirouzu, M.; Takatsu, K.; et al. Structural basis of interleukin-5 dimer recognition by its alpha receptor. Protein. Sci. 2012, 21, 850–864. [Google Scholar] [CrossRef] [Green Version]
- Kang, E.G.; Narayana, P.K.; Pouliquen, I.J.; Lopez, M.C.; Ferreira-Cornwell, M.C.; Getsy, J.A. Efficacy and safety of mepolizumab administered subcutaneously for moderate to severe atopic dermatitis. Allergy 2020, 75, 950–953. [Google Scholar] [CrossRef]
- Study 205050: A Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study to Investigate the Efficacy and Safety of Mepolizumab Administered Subcutaneously in Subjects with Moderate to Severe Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03055195 (accessed on 1 May 2023).
- A Phase 2 Multinational, Randomized, Double-Blind, Parallel-Group, 16-Week Placebo-Controlled Study with a 36-Week Extension to Investigate the Use of Benralizumab for Patients with Moderate to Severe Atopic Dermatitis Despite Treatment With Topical Medications (The HILLIER Study). Available online: https://www.clinicaltrials.gov/ct2/show/NCT04605094 (accessed on 1 May 2023).
- Fujita, H. The role of IL-22 and Th22 cells in human skin diseases. J. Dermatol. Sci. 2013, 72, 3–8. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Brunner, P.M.; Neumann, A.U.; Khattri, S.; Pavel, A.B.; Malik, K.; Singer, G.K.; Baum, D.; Gilleaudeau, P.; Sullivan-Whalen, M.; et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: A randomized, double-blind, phase 2a trial. J. Am. Acad. Dermatol. 2018, 78, 872–881.e876. [Google Scholar] [CrossRef]
- Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacol. Rev. 2006, 58, 488–520. [Google Scholar] [CrossRef] [Green Version]
- Manning, C.D.; Burman, M.; Christensen, S.B.; Cieslinski, L.B.; Essayan, D.M.; Grous, M.; Torphy, T.J.; Barnette, M.S. Suppression of human inflammatory cell function by subtype-selective PDE4 inhibitors correlates with inhibition of PDE4A and PDE4B. Br. J. Pharmacol. 1999, 128, 1393–1398. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front. Pharmacol. 2018, 9, 1048. [Google Scholar] [CrossRef] [Green Version]
- A Phase 2b, Randomized, Double Blind, Vehicle Controlled, Parallel Group Study to Assess the Efficacy, Safety, Tolerability and Pharmacokinetics of Multiple Dose Levels of PF-07038124 Ointment for 12 Weeks in Participants 12 Years and Older and with Mild-to-Moderate Atopic Dermatitis or Mild-to-Severe Plaque Psoriasis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05375955 (accessed on 1 May 2023).
- Assess Hemay808 Concentration of Different Dosage Regimen for Mild and Moderate Atopic Dermatitis Patients the Safety and Efficacy of Multicenter, Randomized, Blinded, Excipient Parallel-Group Phase Ⅱ Clinical Study. Available online: https://www.clinicaltrials.gov/ct2/show/NCT043525955 (accessed on 1 May 2023).
- Saeki, H.; Baba, N.; Ito, K.; Yokota, D.; Tsubouchi, H. Difamilast, a selective phosphodiesterase 4 inhibitor, ointment in paediatric patients with atopic dermatitis: A phase III randomized double-blind, vehicle-controlled trial. Br. J. Dermatol. 2022, 186, 40–49. [Google Scholar] [CrossRef]
- Saeki, H.; Ito, K.; Yokota, D.; Tsubouchi, H. Difamilast ointment in adult patients with atopic dermatitis: A phase 3 randomized, double-blind, vehicle-controlled trial. J. Am. Acad. Dermatol. 2022, 86, 607–614. [Google Scholar] [CrossRef]
- FDA Approves Roflumilast Cream 0.3% for Plaque Psoriasis. Available online: https://www.dermatologytimes.com/view/fda-approves-roflumilast-cream-0-3-for-plaque-psoriasis. (accessed on 12 June 2023).
- Gooderham, M.; Kircik, L.; Zirwas, M.; Lee, M.; Kempers, S.; Draelos, Z.; Ferris, L.; Jones, T.; Saint-Cyr Proulx, E.; Bissonnette, R.; et al. The Safety and Efficacy of Roflumilast Cream 0.15% and 0.05% in Patients With Atopic Dermatitis: Randomized, Double-Blind, Phase 2 Proof of Concept Study. J. Drugs. Dermatol. 2023, 22, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Trial of PDE4 Inhibition with Roflumilast for the Management of Atopic Dermatitis (INTEGUMENT-II). Available online: https://clinicaltrials.gov/ct2/show/NCT04773600 (accessed on 12 June 2023).
- Trial of PDE4 Inhibition with Roflumilast for the Management of Atopic Dermatitis (Integument-PED). Available online: https://clinicaltrials.gov/ct2/show/NCT04845620 (accessed on 12 June 2023).
- Simpson, E.L.; Imafuku, S.; Poulin, Y.; Ungar, B.; Zhou, L.; Malik, K.; Wen, H.C.; Xu, H.; Estrada, Y.D.; Peng, X.; et al. A Phase 2 Randomized Trial of Apremilast in Patients with Atopic Dermatitis. J. Investig. Dermatol. 2019, 139, 1063–1072. [Google Scholar] [CrossRef] [Green Version]
- A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Phase 2b Dose-Ranging Study to Evaluate the Efficacy and Safety of Orismilast in Adults with Moderate to Severe Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05469464 (accessed on 1 May 2023).
- Gutzmer, R.; Mommert, S.; Gschwandtner, M.; Zwingmann, K.; Stark, H.; Werfel, T. The histamine H4 receptor is functionally expressed on T(H)2 cells. J. Allergy Clin. Immunol. 2009, 123, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Miszta, P.; Rzodkiewicz, P.; Michalak, O.; Krzeczyński, P.; Filipek, S. Enigmatic Histamine Receptor H(4) for Potential Treatment of Multiple Inflammatory, Autoimmune, and Related Diseases. Life 2020, 10, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kollmeier, A.; Francke, K.; Chen, B.; Dunford, P.J.; Greenspan, A.J.; Xia, Y.; Xu, X.L.; Zhou, B.; Thurmond, R.L. The histamine H(4) receptor antagonist, JNJ 39758979, is effective in reducing histamine-induced pruritus in a randomized clinical study in healthy subjects. J. Pharmacol. Exp. Ther. 2014, 350, 181–187. [Google Scholar] [CrossRef]
- Kollmeier, A.P.; Greenspan, A.; Xu, X.L.; Silkoff, P.E.; Barnathan, E.S.; Loza, M.J.; Jiang, J.; Zhou, B.; Chen, B.; Thurmond, R.L. Phase 2a, randomized, double-blind, placebo-controlled, multicentre, parallel-group study of an H(4) R-antagonist (JNJ-39758979) in adults with uncontrolled asthma. Clin. Exp. Allergy 2018, 48, 957–969. [Google Scholar] [CrossRef]
- Werfel, T.; Layton, G.; Yeadon, M.; Whitlock, L.; Osterloh, I.; Jimenez, P.; Liu, W.; Lynch, V.; Asher, A.; Tsianakas, A.; et al. Efficacy and safety of the histamine H(4) receptor antagonist ZPL-3893787 in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 143, 1830–1837.e1834. [Google Scholar] [CrossRef]
- A Randomized, Double Blind, Multicenter Extension to CZPL389A2203 Dose-Ranging Study to Assess the Short-Term and Long-term Safety and Efficacy of Oral ZPL389 with Concomitant Use of TCS and/or TCI in Adult Patients With Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03948334 (accessed on 1 May 2023).
- A Phase 2 Trial to Evaluate the Efficacy and Safety of Orally Administered LEO 152020 Tablets Compared with Placebo Tablets for up to 16 Weeks of Treatment in Adults with Moderate to Severe Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05117060 (accessed on 1 May 2023).
- Ohsawa, Y.; Hirasawa, N. The antagonism of histamine H1 and H4 receptors ameliorates chronic allergic dermatitis via anti-pruritic and anti-inflammatory effects in NC/Nga mice. Allergy 2012, 67, 1014–1022. [Google Scholar] [CrossRef]
- Ferran, M.; Santamaria-Babi, L.F. Pathological mechanisms of skin homing T cells in atopic dermatitis. World Allergy Organ J. 2010, 3, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Wakugawa, M.; Nakamura, K.; Kakinuma, T.; Onai, N.; Matsushima, K.; Tamaki, K. CC chemokine receptor 4 expression on peripheral blood CD4+ T cells reflects disease activity of atopic dermatitis. J. Investig. Dermatol. 2001, 117, 188–196. [Google Scholar] [CrossRef]
- A Phase 1, Randomized, Double-Blind, Placebo-Controlled, Single-dose Escalation, Mul-Tiple-Dose Escalation, and Food Effect Study of RPT193 in Healthy Subjects and Patients with Moderate to Severe Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04271514 (accessed on 13 April 2023).
- A Phase 2 Study to Evaluate the Efficacy and Safety of RPT193 as Monotherapy in Adults with Moderate-to-Severe Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05399368 (accessed on 1 May 2023).
- Song, J.; Dagan, A.; Yakhtin, Z.; Gatt, S.; Riley, S.; Rosen, H.; Or, R.; Almogi-Hazan, O. The novel sphingosine-1-phosphate receptors antagonist AD2900 affects lymphocyte activation and inhibits T-cell entry into the lymph nodes. Oncotarget 2017, 8, 53563–53580. [Google Scholar] [CrossRef]
- Hill, R.Z.; Morita, T.; Brem, R.B.; Bautista, D.M. S1PR3 Mediates Itch and Pain via Distinct TRP Channel-Dependent Pathways. J. Neurosci. 2018, 38, 7833–7843. [Google Scholar] [CrossRef] [Green Version]
- Gray, N.; Limberg, M.M.; Brauer, A.U.; Raap, U. Novel functions of S1P in chronic itchy and inflammatory skin diseases. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 365–372. [Google Scholar] [CrossRef]
- Sakai, T.; Herrmann, N.; Maintz, L.; Numm, T.J.; Welchowski, T.; Claus, R.A.; Graler, M.H.; Bieber, T. Serum sphingosine-1-phosphate is elevated in atopic dermatitis and associated with severity. Allergy 2021, 76, 2592–2595. [Google Scholar] [CrossRef]
- Yoon, S.B.; Lee, C.H.; Kim, H.Y.; Jeong, D.; Jeon, M.K.; Cho, S.A.; Kim, K.; Lee, T.; Yang, J.Y.; Gong, Y.D.; et al. A novel sphingosylphosphorylcholine and sphingosine-1-phosphate receptor 1 antagonist, KRO-105714, for alleviating atopic dermatitis. J. Inflamm. 2020, 17, 20. [Google Scholar] [CrossRef]
- Kang, J.; Lee, J.H.; Im, D.S. Topical Application of S1P(2) Antagonist JTE-013 Attenuates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis in Mice. Biomol. Ther. 2020, 28, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I.; Bissonnette, R.; Kircik, L.; Murrell, D.F.; Selfridge, A.; Liu, K.; Ahluwalia, G.; Guttman-Yassky, E. Efficacy and safety of etrasimod, a sphingosine 1-phosphate receptor modulator, in adults with moderate-to-severe atopic dermatitis (ADVISE). J. Eur. Acad. Dermatol. Venereol. 2023, 37, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Won Lee, S.; Hwang, I.; Oh, J.; Lee, S.; Jang, I.J.; Yu, K.S. Single-dose of LC51-0255, a selective S1P(1) receptor modulator, showed dose-dependent and reversible reduction of absolute lymphocyte count in humans. Clin. Transl. Sci. 2022, 15, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- A Phase 2, Randomized, Double-Blinded, Placebo-Controlled, 5 Parallel-Group Study of BMS-986166 or Branebrutinib for the Treatment of Patients with Moderate to Severe Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05014438 (accessed on 1 May 2023).
- GlobalData. Udifitimod hydrochloride by Bristol-Myers Squibb for Atopic Dermatitis (Atopic Eczema): Likelihood of Approval. Available online: https://www.pharmaceutical-technology.com/data-insights/udifitimod-hydrochloride-bristol-myers-squibb-atopic-dermatitis-atopic-eczema-likelihood-of-approval/ (accessed on 12 June 2023).
- A Randomized, Double-Blind, Placebo-Controlled Study to Assess the Efficacy and Safety of SCD-044 in the Treatment of Moderate to Severe Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04684485 (accessed on 1 May 2023).
- Satterthwaite, A.B.; Witte, O.N. The role of Bruton’s tyrosine kinase in B-cell development and function: A genetic perspective. Immunol. Rev. 2000, 175, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Chu, K.A.; Wadhwa, J.; Chen, W.; Zhu, J.; Bradshaw, J.M.; Shu, J.; Foulke, M.C.; Loewenstein, N.; Nunn, P.; et al. Preclinical Mechanisms of Topical PRN473, a Bruton Tyrosine Kinase Inhibitor, in Immune-Mediated Skin Disease Models. Immunohorizons 2021, 5, 581–589. [Google Scholar] [CrossRef]
- A Randomized, Intra-Patient, Double-Blind, Placebo-Controlled Study to Evaluate the Safety, Tolerability, and Pharmacokinetics of Topically Administered PRN473 (SAR444727) in Patients with Mild to Moderate Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04992546 (accessed on 1 May 2023).
- Watterson, S.H.; Liu, Q.; Beaudoin Bertrand, M.; Batt, D.G.; Li, L.; Pattoli, M.A.; Skala, S.; Cheng, L.; Obermeier, M.T.; Moore, R.; et al. Discovery of Branebrutinib (BMS-986195): A Strategy for Identifying a Highly Potent and Selective Covalent Inhibitor Providing Rapid in Vivo Inactivation of Bruton’s Tyrosine Kinase (BTK). J. Med. Chem. 2019, 62, 3228–3250. [Google Scholar] [CrossRef] [Green Version]
- A Phase 2, Randomized, Double-Blind, Placebo-Controlled, Multicenter Proof-of-Concept Study Evaluating Efficacy and Safety of Rilzabrutinib in Adult Patients with Moderate-to-Severe Atopic Dermatitis Who are Inadequate Re-Sponders or Intolerant to Topical Corticosteroids. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05018806 (accessed on 1 May 2023).
- Mendes-Bastos, P.; Brasileiro, A.; Kolkhir, P.; Frischbutter, S.; Scheffel, J.; Monino-Romero, S.; Maurer, M. Bruton’s tyrosine kinase inhibition-An emerging therapeutic strategy in immune-mediated dermatological conditions. Allergy 2022, 77, 2355–2366. [Google Scholar] [CrossRef]
- Czarnowicki, T.; Dohlman, A.B.; Malik, K.; Antonini, D.; Bissonnette, R.; Chan, T.C.; Zhou, L.; Wen, H.C.; Estrada, Y.; Xu, H.; et al. Effect of short-term liver X receptor activation on epidermal barrier features in mild to moderate atopic dermatitis: A randomized controlled trial. Ann. Allergy Asthma Immunol. 2018, 120, 631–640.e611. [Google Scholar] [CrossRef]
- Pinto, L.M.; Chiricozzi, A.; Calabrese, L.; Mannino, M.; Peris, K. Novel Therapeutic Strategies in the Topical Treatment of Atopic Dermatitis. Pharmaceutics 2022, 14, 2767. [Google Scholar] [CrossRef]
- A Multicenter, Randomized, Double-Blind, Bilateral, Vehicle-Controlled Study of the Safety and Efficacy of ALX-101 Topical Gel Administered Twice Daily in Adult and Adolescent Subjects with Moderate Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03175354 (accessed on 1 May 2023).
- A Phase 2, Randomized, Double-Blind, Vehicle-Controlled, Parallel-Group Study To Evaluate The Safety and Efficacy Of ALX-101 Topical Gel Administered Twice Daily in Adult and Adolescent Subjects with Moderate Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03859986 (accessed on 1 May 2023).
- Datsi, A.; Steinhoff, M.; Ahmad, F.; Alam, M.; Buddenkotte, J. Interleukin-31: The “itchy” cytokine in inflammation and therapy. Allergy 2021, 76, 2982–2997. [Google Scholar] [CrossRef]
- Bagci, I.S.; Ruzicka, T. IL-31: A new key player in dermatology and beyond. J. Allergy Clin. Immunol. 2018, 141, 858–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Jegga, A.G.; Shanmukhappa, K.S.; Edukulla, R.; Khurana Hershey, G.H.; Medvedovic, M.; Dillon, S.R.; Madala, S.K. IL-31-Driven Skin Remodeling Involves Epidermal Cell Proliferation and Thickening That Lead to Impaired Skin-Barrier Function. PLoS ONE 2016, 11, e0161877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabashima, K.; Matsumura, T.; Komazaki, H.; Kawashima, M. Trial of Nemolizumab and Topical Agents for Atopic Dermatitis with Pruritus. N. Engl. J. Med. 2020, 383, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Kabashima, K.; Matsumura, T.; Komazaki, H.; Kawashima, M.; Nemolizumab JP01 andJP02 Study Group. Nemolizumab plus topical agents in patients with atopic dermatitis (AD) and moderate-to-severe pruritus provide improvement in pruritus and signs of AD for up to 68 weeks: Results from two phase III, long-term studies. Br. J. Dermatol. 2022, 186, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Sofen, H.; Bissonnette, R.; Yosipovitch, G.; Silverberg, J.I.; Tyring, S.; Loo, W.J.; Zook, M.; Lee, M.; Zou, L.; Jiang, G.L.; et al. Efficacy and safety of vixarelimab, a human monoclonal oncostatin M receptor beta antibody, in moderate-to-severe prurigo nodularis: A randomised, double-blind, placebo-controlled, phase 2a study. EClinicalMedicine 2023, 57, 101826. [Google Scholar] [CrossRef]
- Tey, H.L.; Yosipovitch, G. Targeted treatment of pruritus: A look into the future. Br. J. Dermatol. 2011, 165, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Junger, H.; Sorkin, L.S. Nociceptive and inflammatory effects of subcutaneous TNFalpha. Pain 2000, 85, 145–151. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Greaves, M.W.; Schmelz, M. Itch. Lancet 2003, 361, 690–694. [Google Scholar] [CrossRef]
- Welsh, S.E.; Xiao, C.; Kaden, A.R.; Brzezynski, J.L.; Mohrman, M.A.; Wang, J.; Smieszek, S.P.; Przychodzen, B.; Ständer, S.; Polymeropoulos, C.; et al. Neurokinin-1 receptor antagonist tradipitant has mixed effects on itch in atopic dermatitis: Results from EPIONE, a randomized clinical trial. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e338–e340. [Google Scholar] [CrossRef]
- A Randomized, Double-Blind, Placebo Controlled Study of the Efficacy, Safety, and Tolerability of Serlopitant for the Treatment of Pruritus in Adults and Adolescents with A History of Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT02975206 (accessed on 1 May 2023).
- Pelleg, A.; Sirtori, E.; Rolland, J.F.; Mahadevan, A. DT-0111: A novel P2X3 receptor antagonist. Purinergic. Signal. 2023, 1–13. [Google Scholar] [CrossRef]
- Shiratori-Hayashi, M.; Hasegawa, A.; Toyonaga, H.; Andoh, T.; Nakahara, T.; Kido-Nakahara, M.; Furue, M.; Kuraishi, Y.; Inoue, K.; Dong, X.; et al. Role of P2X3 receptors in scratching behavior in mouse models. J. Allergy Clin. Immunol. 2019, 143, 1252–1254.e1258. [Google Scholar] [CrossRef] [Green Version]
- A Randomized, Double-Blind, Placebo-Controlled, Parallel Study to Evaluate the Efficacy, Safety, and Tolerability of BLU-5937 for the Treatment of Chronic Pruritus in Adult Subjects With Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04693195 (accessed on 1 May 2023).
- Bonchak, J.G.; Swerlick, R.A. Emerging therapies for atopic dermatitis: TRPV1 antagonists. J. Am. Acad. Dermatol. 2018, 78, S63–S66. [Google Scholar] [CrossRef]
- Mahmoud, O.; Soares, G.B.; Yosipovitch, G. Transient Receptor Potential Channels and Itch. Int. J. Mol. Sci. 2022, 24, 420. [Google Scholar] [CrossRef]
- Oh, M.H.; Oh, S.Y.; Lu, J.; Lou, H.; Myers, A.C.; Zhu, Z.; Zheng, T. TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis. J. Immunol. 2013, 191, 5371–5382. [Google Scholar] [CrossRef] [Green Version]
- Fialho, M.F.P.; Brum, E.D.S.; Pegoraro, N.S.; Couto, A.C.G.; Trevisan, G.; Cruz, L.; Oliveira, S.M. Topical transient receptor potential ankyrin 1 antagonist treatment attenuates nociception and inflammation in an ultraviolet B radiation-induced burn model in mice. J. Dermatol. Sci. 2020, 97, 135–142. [Google Scholar] [CrossRef]
- Xie, Z.; Hu, H. TRP Channels as Drug Targets to Relieve Itch. Pharmaceuticals 2018, 11, 100. [Google Scholar] [CrossRef] [Green Version]
- Karki, T.; Tojkander, S. TRPV Protein Family-From Mechanosensing to Cancer Invasion. Biomolecules 2021, 11, 1019. [Google Scholar] [CrossRef]
- Pumroy, R.A.; Fluck, E.C., 3rd; Ahmed, T.; Moiseenkova-Bell, V.Y. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium. 2020, 87, 102168. [Google Scholar] [CrossRef]
- Naert, R.; López-Requena, A.; Talavera, K. TRPA1 Expression and Pathophysiology in Immune Cells. Int. J. Mol. Sci. 2021, 22, 11460. [Google Scholar] [CrossRef]
- Lee, Y.W.; Won, C.H.; Jung, K.; Nam, H.J.; Choi, G.; Park, Y.H.; Park, M.; Kim, B. Efficacy and safety of PAC-14028 cream—A novel, topical, nonsteroidal, selective TRPV1 antagonist in patients with mild-to-moderate atopic dermatitis: A phase IIb randomized trial. Br. J. Dermatol. 2019, 180, 1030–1038. [Google Scholar] [CrossRef] [Green Version]
- Roblin, D.; Yosipovitch, G.; Boyce, B.; Robinson, J.; Sandy, J.; Mainero, V.; Wickramasinghe, R.; Anand, U.; Anand, P. Topical TrkA Kinase Inhibitor CT327 is an Effective, Novel Therapy for the Treatment of Pruritus due to Psoriasis: Results from Experimental Studies, and Efficacy and Safety of CT327 in a Phase 2b Clinical Trial in Patients with Psoriasis. Acta Derm. Venereol. 2015, 95, 542–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.W.; Kim, B.J.; Lee, Y.W.; Won, C.; Park, C.O.; Chung, B.Y.; Lee, D.H.; Jung, K.; Nam, H.J.; Choi, G.; et al. Asivatrep, a TRPV1 antagonist, for the topical treatment of atopic dermatitis: Phase 3, randomized, vehicle-controlled study (CAPTAIN-AD). J. Allergy Clin. Immunol. 2022, 149, 1340–1347.e1344. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.H.; Kim, S.; Kim, S.E.; Chung, S.; Lee, S.E. Enhanced Thermal Sensitivity of TRPV3 in Keratinocytes Underlies Heat-Induced Pruritogen Release and Pruritus in Atopic Dermatitis. J. Investig. Dermatol. 2020, 140, 2199–2209.e2196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cao, Y.; Luo, Q.; Wang, P.; Shi, P.; Song, C.E.M.; Ren, J.; Fu, B.; Sun, H. The transient receptor potential vanilloid-3 regulates hypoxia-mediated pulmonary artery smooth muscle cells proliferation via PI3K/AKT signaling pathway. Cell Prolif. 2018, 51, e12436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baswan, S.M.; Klosner, A.E.; Glynn, K.; Rajgopal, A.; Malik, K.; Yim, S.; Stern, N. Therapeutic Potential of Cannabidiol (CBD) for Skin Health and Disorders. Clin. Cosmet. Investig. Dermatol. 2020, 13, 927–942. [Google Scholar] [CrossRef]
- Stander, S.; Schmelz, M.; Metze, D.; Luger, T.; Rukwied, R. Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J. Dermatol. Sci. 2005, 38, 177–188. [Google Scholar] [CrossRef]
- Sheriff, T.; Lin, M.J.; Dubin, D.; Khorasani, H. The potential role of cannabinoids in dermatology. J. Dermatolog. Treat. 2020, 31, 839–845. [Google Scholar] [CrossRef]
- Gaffal, E.; Glodde, N.; Jakobs, M.; Bald, T.; Tuting, T. Cannabinoid 1 receptors in keratinocytes attenuate fluorescein isothiocyanate-induced mouse atopic-like dermatitis. Exp. Dermatol. 2014, 23, 401–406. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, B.; Park, B.M.; Jeon, J.E.; Lee, S.H.; Mann, S.; Ahn, S.K.; Hong, S.P.; Jeong, S.K. Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone-induced atopic dermatitis model. Int. J. Dermatol. 2015, 54, e401–e408. [Google Scholar] [CrossRef]
- Nam, G.; Jeong, S.K.; Park, B.M.; Lee, S.H.; Kim, H.J.; Hong, S.P.; Kim, B.; Kim, B.W. Selective Cannabinoid Receptor-1 Agonists Regulate Mast Cell Activation in an Oxazolone-Induced Atopic Dermatitis Model. Ann. Dermatol. 2016, 28, 22–29. [Google Scholar] [CrossRef] [Green Version]
- A Phase Ib/IIa, Multiple-Dose, Double-Blind, Randomized, Placebo-Controlled Study to Assess the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of S-777469 in Subjects With Mild to Moderate Atopic Dermatitis. Available online: https://www.clinicaltrials.gov/ct2/show/NCT00697710 (accessed on 1 May 2023).
- Sharma, R.; Singh, S.; Whiting, Z.M.; Molitor, M.; Vernall, A.J.; Grimsey, N.L. Novel Cannabinoid Receptor 2 (CB2) Low Lipophilicity Agonists Produce Distinct cAMP and Arrestin Signalling Kinetics without Bias. Int. J. Mol. Sci. 2023, 24, 6406. [Google Scholar] [CrossRef]
- Cork, M.J.; Danby, S.G.; Vasilopoulos, Y.; Hadgraft, J.; Lane, M.E.; Moustafa, M.; Guy, R.H.; Macgowan, A.L.; Tazi-Ahnini, R.; Ward, S.J. Epidermal barrier dysfunction in atopic dermatitis. J. Investig. Dermatol. 2009, 129, 1892–1908. [Google Scholar] [CrossRef]
- Zhao, J.; Munanairi, A.; Liu, X.Y.; Zhang, J.; Hu, L.; Hu, M.; Bu, D.; Liu, L.; Xie, Z.; Kim, B.S.; et al. PAR2 Mediates Itch via TRPV3 Signaling in Keratinocytes. J. Investig. Dermatol. 2020, 140, 1524–1532. [Google Scholar] [CrossRef]
- Smith, L.; Gatault, S.; Casals-Diaz, L.; Kelly, P.A.; Camerer, E.; Metais, C.; Knaus, U.G.; Eissner, G.; Steinhoff, M. House dust mite-treated PAR2 over-expressor mouse: A novel model of atopic dermatitis. Exp. Dermatol. 2019, 28, 1298–1308. [Google Scholar] [CrossRef]
- Buhl, T.; Ikoma, A.; Kempkes, C.; Cevikbas, F.; Sulk, M.; Buddenkotte, J.; Akiyama, T.; Crumrine, D.; Camerer, E.; Carstens, E.; et al. Protease-Activated Receptor-2 Regulates Neuro-Epidermal Communication in Atopic Dermatitis. Front. Immunol. 2020, 11, 1740. [Google Scholar] [CrossRef]
- Nishimoto, R.; Kodama, C.; Yamashita, H.; Hattori, F. Human Induced Pluripotent Stem Cell-Derived Keratinocyte-Like Cells for Research on Protease-Activated Receptor 2 in Nonhistaminergic Cascades of Atopic Dermatitis. J. Pharmacol. Exp. Ther. 2023, 384, 248–253. [Google Scholar] [CrossRef]
- Steinhoff, M.; Neisius, U.; Ikoma, A.; Fartasch, M.; Heyer, G.; Skov, P.S.; Luger, T.A.; Schmelz, M. Proteinase-activated receptor-2 mediates itch: A novel pathway for pruritus in human skin. J. Neurosci. 2003, 23, 6176–6180. [Google Scholar] [CrossRef] [Green Version]
- Vander Does, A.; Ju, T.; Mohsin, N.; Chopra, D.; Yosipovitch, G. How to get rid of itching. Pharmacol. Ther. 2023, 243, 108355. [Google Scholar] [CrossRef]
- Cao, T.; Tan, W.D.; Kim, H.; Tey, H.L. Efficacy of a topical proteinase-activated receptor-2 inhibitor on cowhage-induced pruritus: A randomized placebo-controlled double-blind study. J. Eur. Acad. Dermatol. Venereol. 2017, 31, e191–e192. [Google Scholar] [CrossRef]
- Huang, I.H.; Chung, W.H.; Wu, P.C.; Chen, C.B. JAK-STAT signaling pathway in the pathogenesis of atopic dermatitis: An updated review. Front. Immunol. 2022, 13, 1068260. [Google Scholar] [CrossRef]
- Blauvelt, A.; Teixeira, H.D.; Simpson, E.L.; Costanzo, A.; De Bruin-Weller, M.; Barbarot, S.; Prajapati, V.H.; Lio, P.; Hu, X.; Wu, T.; et al. Efficacy and Safety of Upadacitinib vs Dupilumab in Adults With Moderate-to-Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA Dermatol. 2021, 157, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Owji, S.; Caldas, S.A.; Ungar, B. Management of Atopic Dermatitis: Clinical Utility of Ruxolitinib. J. Asthma Allergy 2022, 15, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Sideris, N.; Paschou, E.; Bakirtzi, K.; Kiritsi, D.; Papadimitriou, I.; Tsentemeidou, A.; Sotiriou, E.; Vakirlis, E. New and Upcoming Topical Treatments for Atopic Dermatitis: A Review of the Literature. J. Clin. Med. 2022, 11, 4974. [Google Scholar] [CrossRef] [PubMed]
- Bissonnette, R.; Papp, K.A.; Poulin, Y.; Gooderham, M.; Raman, M.; Mallbris, L.; Wang, C.; Purohit, V.; Mamolo, C.; Papacharalambous, J.; et al. Topical tofacitinib for atopic dermatitis: A phase IIa randomized trial. Br. J. Dermatol. 2016, 175, 902–911. [Google Scholar] [CrossRef]
- Nakagawa, H.; Nemoto, O.; Igarashi, A.; Saeki, H.; Kabashima, K.; Oda, M.; Nagata, T. Delgocitinib ointment in pediatric patients with atopic dermatitis: A phase 3, randomized, double-blind, vehicle-controlled study and a subsequent open-label, long-term study. J. Am. Acad. Dermatol. 2021, 85, 854–862. [Google Scholar] [CrossRef]
- Tsai, H.R.; Lu, J.W.; Chen, L.Y.; Chen, T.L. Application of Janus Kinase Inhibitors in Atopic Dermatitis: An Updated Systematic Review and Meta-Analysis of Clinical Trials. J. Pers. Med. 2021, 11, 279. [Google Scholar] [CrossRef]
- Nakagawa, H.; Igarashi, A.; Saeki, H.; Kabashima, K.; Tamaki, T.; Kaino, H.; Miwa, Y. Safety, efficacy, and pharmacokinetics of delgocitinib ointment in infants with atopic dermatitis: A phase 3, open-label, and long-term study. Allergol. Int. 2023, in press. [CrossRef]
- Landis, M.N.; Arya, M.; Smith, S.; Draelos, Z.; Usdan, L.; Tarabar, S.; Pradhan, V.; Aggarwal, S.; Banfield, C.; Peeva, E.; et al. Efficacy and safety of topical brepocitinib for the treatment of mild-to-moderate atopic dermatitis: A phase IIb, randomized, double-blind, vehicle-controlled, dose-ranging and parallel-group study. Br. J. Dermatol. 2022, 187, 878–887. [Google Scholar] [CrossRef]
- Smith, S.; Bhatia, N.; Shanler, S.D.; DeMoor, R.; Schnyder, J. 16089 Safety of ATI-502, a novel topical JAK1/3 inhibitor, in adults with moderate to severe atopic dermatitis: Results from a phase 2a open-label trial. J. Am. Acad. Dermatol. 2020, 83, AB170. [Google Scholar] [CrossRef]
- Levy, L.L.; Urban, J.; King, B.A. Treatment of recalcitrant atopic dermatitis with the oral Janus kinase inhibitor tofacitinib citrate. J. Am. Acad. Dermatol. 2015, 73, 395–399. [Google Scholar] [CrossRef]
- Administration (FDA). FDA Drug Safety Communication: FDA Approves Boxed Warning about Increased Risk of Blood Clots and Death with Higher Dose of Arthritis and Ulcerative Colitis Medicine Tofacitinib (Xeljanz, Xeljanz XR). Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-requires-warnings-about-increased-risk-serious-heart-related-events-cancer-blood-clots-and-death (accessed on 1 May 2023).
- Bieber, T.; Reich, K.; Paul, C.; Tsunemi, Y.; Augustin, M.; Lacour, J.P.; Ghislain, P.D.; Dutronc, Y.; Liao, R.; Yang, F.E.; et al. Efficacy and safety of baricitinib in combination with topical corticosteroids in patients with moderate-to-severe atopic dermatitis with inadequate response, intolerance or contraindication to ciclosporin: Results from a randomized, placebo-controlled, phase III clinical trial (BREEZE-AD4). Br. J. Dermatol. 2022, 187, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Torrelo, A.; Rewerska, B.; Galimberti, M.; Paller, A.; Yang, C.Y.; Prakash, A.; Zhu, D.; Pontes Filho, M.A.G.; Wu, W.S.; Eichenfield, L. Efficacy and safety of baricitinib in combination with topical corticosteroids in pediatric patients with moderate-to-severe atopic dermatitis with inadequate response to topical corticosteroids: Results from a phase 3, randomized, double-blind, placebo-controlled study (BREEZE-AD PEDS). Br. J. Dermatol. 2023, 187, 338–352. [Google Scholar] [CrossRef]
- Ferreira, S.; Guttman-Yassky, E.; Torres, T. Selective JAK1 Inhibitors for the Treatment of Atopic Dermatitis: Focus on Upadacitinib and Abrocitinib. Am. J. Clin. Dermatol. 2020, 21, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Stander, S.; Kwatra, S.G.; Silverberg, J.I.; Simpson, E.L.; Thyssen, J.P.; Yosipovitch, G.; Zhang, F.; Cameron, M.C.; Cella, R.R.; Valdez, H.; et al. Early Itch Response with Abrocitinib Is Associated with Later Efficacy Outcomes in Patients with Moderate-to-Severe Atopic Dermatitis: Subgroup Analysis of the Randomized Phase III JADE COMPARE Trial. Am. J. Clin. Dermatol. 2023, 24, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Alexis, A.; de Bruin-Weller, M.; Weidinger, S.; Soong, W.; Barbarot, S.; Ionita, I.; Zhang, F.; Valdez, H.; Clibborn, C.; Yin, N. Rapidity of Improvement in Signs/Symptoms of Moderate-to-Severe Atopic Dermatitis by Body Region with Abrocitinib in the Phase 3 JADE COMPARE Study. Dermatol. Ther. 2022, 12, 771–785. [Google Scholar] [CrossRef]
- Pavel, A.B.; Song, T.; Kim, H.J.; Del Duca, E.; Krueger, J.G.; Dubin, C.; Peng, X.; Xu, H.; Zhang, N.; Estrada, Y.D.; et al. Oral Janus kinase/SYK inhibition (ASN002) suppresses inflammation and improves epidermal barrier markers in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 144, 1011–1024. [Google Scholar] [CrossRef] [Green Version]
- Esaki, H.; Brunner, P.M.; Renert-Yuval, Y.; Czarnowicki, T.; Huynh, T.; Tran, G.; Lyon, S.; Rodriguez, G.; Immaneni, S.; Johnson, D.B.; et al. Early-onset pediatric atopic dermatitis is T(H)2 but also T(H)17 polarized in skin. J. Allergy Clin. Immunol. 2016, 138, 1639–1651. [Google Scholar] [CrossRef] [Green Version]
- Noda, S.; Suarez-Farinas, M.; Ungar, B.; Kim, S.J.; de Guzman Strong, C.; Xu, H.; Peng, X.; Estrada, Y.D.; Nakajima, S.; Honda, T.; et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J. Allergy Clin. Immunol. 2015, 136, 1254–1264. [Google Scholar] [CrossRef]
- Kaufman, B.P.; Guttman-Yassky, E.; Alexis, A.F. Atopic dermatitis in diverse racial and ethnic groups-Variations in epidemiology, genetics, clinical presentation and treatment. Exp. Dermatol. 2018, 27, 340–357. [Google Scholar] [CrossRef] [Green Version]
- Bissonnette, R.; Maari, C.; Forman, S.; Bhatia, N.; Lee, M.; Fowler, J.; Tyring, S.; Pariser, D.; Sofen, H.; Dhawan, S.; et al. The oral Janus kinase/spleen tyrosine kinase inhibitor ASN002 demonstrates efficacy and improves associated systemic inflammation in patients with moderate-to-severe atopic dermatitis: Results from a randomized double-blind placebo-controlled study. Br. J. Dermatol. 2019, 181, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, L.; Ding, Y.; Tao, X.; Ji, C.; Dong, X.; Lu, J.; Wu, L.; Wang, R.; Lu, Q.; et al. Efficacy and Safety of SHR0302, a Highly Selective Janus Kinase 1 Inhibitor, in Patients with Moderate to Severe Atopic Dermatitis: A Phase II Randomized Clinical Trial. Am. J. Clin. Dermatol. 2021, 22, 877–889. [Google Scholar] [CrossRef]
- Liu, J.; Lv, B.; Yin, H.; Zhu, X.; Wei, H.; Ding, Y. A Phase I, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose, Multiple Ascending Dose and Food Effect Study to Evaluate the Tolerance, Pharmacokinetics of Jaktinib, a New Selective Janus Kinase Inhibitor in Healthy Chinese Volunteers. Front. Pharmacol. 2020, 11, 604314. [Google Scholar] [CrossRef]
- Clinical Study of Jaktinib in the Treatment of Patients with Moderate and Severe Atopic Dermatitis (AD). Available online: https://clinicaltrials.gov/ct2/show/NCT04539639 (accessed on 12 June 2023).
- A Phase III Study of Jaktinib in Adults with Moderate and Severe Atopic Dermatitis. Available online: https://clinicaltrials.gov/ct2/show/NCT05526222 (accessed on 12 June 2023).
- Federici, M.; Giustizieri, M.L.; Scarponi, C.; Girolomoni, G.; Albanesi, C. Impaired IFN-gamma-dependent inflammatory responses in human keratinocytes overexpressing the suppressor of cytokine signaling 1. J. Immunol. 2002, 169, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Coelho, D.R.; Palma, F.R.; Paviani, V.; LaFond, K.M.; Huang, Y.; Wang, D.; Wray, B.; Rao, S.; Yue, F.; Bonini, M.G.; et al. SOCS1 regulates a subset of NFkappaB-target genes through direct chromatin binding and defines macrophage functional phenotypes. iScience 2023, 26, 106442. [Google Scholar] [CrossRef]
- Giordanetto, F.; Kroemer, R.T. A three-dimensional model of Suppressor Of Cytokine Signalling 1 (SOCS-1). Protein. Eng. 2003, 16, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Seki, Y.; Inoue, H.; Nagata, N.; Hayashi, K.; Fukuyama, S.; Matsumoto, K.; Komine, O.; Hamano, S.; Himeno, K.; Inagaki-Ohara, K.; et al. SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses. Nat. Med. 2003, 9, 1047–1054. [Google Scholar] [CrossRef]
- Kinjyo, I.; Inoue, H.; Hamano, S.; Fukuyama, S.; Yoshimura, T.; Koga, K.; Takaki, H.; Himeno, K.; Takaesu, G.; Kobayashi, T.; et al. Loss of SOCS3 in T helper cells resulted in reduced immune responses and hyperproduction of interleukin 10 and transforming growth factor-beta 1. J. Exp. Med. 2006, 203, 1021–1031. [Google Scholar] [CrossRef] [Green Version]
- Berlato, C.; Cassatella, M.A.; Kinjyo, I.; Gatto, L.; Yoshimura, A.; Bazzoni, F. Involvement of suppressor of cytokine signaling-3 as a mediator of the inhibitory effects of IL-10 on lipopolysaccharide-induced macrophage activation. J. Immunol. 2002, 168, 6404–6411. [Google Scholar] [CrossRef]
- Babon, J.J.; Kershaw, N.J.; Murphy, J.M.; Varghese, L.N.; Laktyushin, A.; Young, S.N.; Lucet, I.S.; Norton, R.S.; Nicola, N.A. Suppression of cytokine signaling by SOCS3: Characterization of the mode of inhibition and the basis of its specificity. Immunity 2012, 36, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.D.; Nickl, C.K.; Kang, H.; Ornatowski, W.; Brown, R.; Ness, S.A.; Loh, M.L.; Mullighan, C.G.; Winter, S.S.; Hunger, S.P.; et al. Epigenetic silencing of SOCS5 potentiates JAK-STAT signaling and progression of T-cell acute lymphoblastic leukemia. Cancer Sci. 2019, 110, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Porro, C.; Cianciulli, A.; Trotta, T.; Lofrumento, D.D.; Panaro, M.A. Curcumin Regulates Anti-Inflammatory Responses by JAK/STAT/SOCS Signaling Pathway in BV-2 Microglial Cells. Biology 2019, 8, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.M.; Xu, R.; Huang, X.Y.; Cheng, S.M.; Huang, M.F.; Yue, H.Y.; Wang, X.; Zou, Y.; Lu, A.P.; Liu, D.Y. Curcumin Suppressed Activation of Dendritic Cells via JAK/STAT/SOCS Signal in Mice with Experimental Colitis. Front. Pharmacol. 2016, 7, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wu, J.; Ye, B.; Wang, Q.; Xie, X.; Shen, H. Protective effect of curcumin on TNBS-induced intestinal inflammation is mediated through the JAK/STAT pathway. BMC Complement. Altern. Med. 2016, 16, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Sethi, G.S.; Naura, A.S. Curcumin Ameliorates Ovalbumin-Induced Atopic Dermatitis and Blocks the Progression of Atopic March in Mice. Inflammation 2020, 43, 358–369. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, L.; Liu, X.; Lu, T.; Xie, C.; Jia, J. Resveratrol Attenuates Microglial Activation via SIRT1-SOCS1 Pathway. Evid. Based Complement. Alternat. Med. 2017, 2017, 8791832. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Wang, Y.; Shen, A.; Cai, W. Resveratrol upregulates SOCS1 production by lipopolysaccharide-stimulated RAW264.7 macrophages by inhibiting miR-155. Int. J. Mol. Med. 2017, 39, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358. [Google Scholar] [CrossRef]
- Baolin, L.; Weiwei, W.; Ning, T. Topical application of luteolin inhibits scratching behavior associated with allergic cutaneous reaction in mice. Planta Med. 2005, 71, 424–428. [Google Scholar] [CrossRef]
- Liu, H.M.; Guo, C.L.; Zhang, Y.F.; Chen, J.F.; Liang, Z.P.; Yang, L.H.; Ma, Y.P. Leonurine-Repressed miR-18a-5p/SOCS5/JAK2/STAT3 Axis Activity Disrupts CML malignancy. Front. Pharmacol. 2021, 12, 657724. [Google Scholar] [CrossRef]
- Kotani, M.; Matsumoto, M.; Fujita, A.; Higa, S.; Wang, W.; Suemura, M.; Kishimoto, T.; Tanaka, T. Persimmon leaf extract and astragalin inhibit development of dermatitis and IgE elevation in NC/Nga mice. J. Allergy Clin. Immunol. 2000, 106, 159–166. [Google Scholar] [CrossRef]
- Matsumoto, M.; Kotani, M.; Fujita, A.; Higa, S.; Kishimoto, T.; Suemura, M.; Tanaka, T. Oral administration of persimmon leaf extract ameliorates skin symptoms and transepidermal water loss in atopic dermatitis model mice, NC/Nga. Br. J. Dermatol. 2002, 146, 221–227. [Google Scholar] [CrossRef]
- Koga, C.; Kabashima, K.; Shiraishi, N.; Kobayashi, M.; Tokura, Y. Possible pathogenic role of Th17 cells for atopic dermatitis. J. Investig. Dermatol. 2008, 128, 2625–2630. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Mo, X.; Yan, F.; Liu, J.; Ye, S.; Zhang, Y.; Lin, Y.; Li, H.; Chen, D. Role of YAP-related T cell imbalance and epidermal keratinocyte dysfunction in the pathogenesis of atopic dermatitis. J. Dermatol. Sci. 2021, 101, 164–173. [Google Scholar] [CrossRef]
- Ni, X.; Tao, J.; Barbi, J.; Chen, Q.; Park, B.V.; Li, Z.; Zhang, N.; Lebid, A.; Ramaswamy, A.; Wei, P.; et al. YAP Is Essential for Treg-Mediated Suppression of Antitumor Immunity. Cancer Discov. 2018, 8, 1026–1043. [Google Scholar] [CrossRef] [Green Version]
- Schlegelmilch, K.; Mohseni, M.; Kirak, O.; Pruszak, J.; Rodriguez, J.R.; Zhou, D.; Kreger, B.T.; Vasioukhin, V.; Avruch, J.; Brummelkamp, T.R.; et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 2011, 144, 782–795. [Google Scholar] [CrossRef] [Green Version]
- Kumamoto, J.; Nakanishi, S.; Makita, M.; Uesaka, M.; Yasugahira, Y.; Kobayashi, Y.; Nagayama, M.; Denda, S.; Denda, M. Mathematical-model-guided development of full-thickness epidermal equivalent. Sci. Rep. 2018, 8, 17999. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatmaitan, J.G.; Lee, J.H. Challenges and Future Trends in Atopic Dermatitis. Int. J. Mol. Sci. 2023, 24, 11380. https://doi.org/10.3390/ijms241411380
Gatmaitan JG, Lee JH. Challenges and Future Trends in Atopic Dermatitis. International Journal of Molecular Sciences. 2023; 24(14):11380. https://doi.org/10.3390/ijms241411380
Chicago/Turabian StyleGatmaitan, Julius Garcia, and Ji Hyun Lee. 2023. "Challenges and Future Trends in Atopic Dermatitis" International Journal of Molecular Sciences 24, no. 14: 11380. https://doi.org/10.3390/ijms241411380
APA StyleGatmaitan, J. G., & Lee, J. H. (2023). Challenges and Future Trends in Atopic Dermatitis. International Journal of Molecular Sciences, 24(14), 11380. https://doi.org/10.3390/ijms241411380