Preparation and Characterisation of Acid–Base-Change-Sensitive Binary Biopolymer Films with Olive Oil and Ozonated Olive Oil Nano/Microcapsules and Added Hibiscus Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR-ATR Spectrophotometry of the Composites Obtained
2.2. UV-Vis Spectroscopy
2.3. Emissions
2.4. Scanning Electron Microscopy (SEM) of the Obtained Composites
2.5. Water Content and Water Solubility of Obtained Composites
2.6. Thermal Properties
2.7. Mechanical Properties of the Films
2.8. Optical Properties of Composites
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Extraction and Emulsification
3.2.2. Preparation of Polysaccharide Gels
3.2.3. Preparation of Films
CA Series
AC Series
3.2.4. Water Content and Solubility
3.2.5. Mechanical Properties of Composites
3.2.6. Thickness Measurement
3.2.7. Surface Colour Measurements
3.2.8. FTIR-ATR Spectrophotometry
3.2.9. UV-Vis Absorption Spectrophotometry and Opacity
3.2.10. Photoluminescence Spectroscopy
3.2.11. Differential Scanning Calorimetry (DSC)
3.2.12. Thermogravimetric Analysis (TGA)
3.2.13. Scanning Electron Microscopy (SEM)
3.2.14. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Battacchi, D.; Verkerk, R.; Pellegrini, N.; Fogliano, V.; Steenbekkers, B. The state of the art of food ingredients’ naturalness evaluation: A review of proposed approaches and their relation with consumer trends. Trends Food Sci. Technol. 2020, 106, 434–444. [Google Scholar] [CrossRef]
- Al-Hilifi, S.A.; Al-Ali, R.M.; Al-Ibresam, O.T.; Kumar, N.; Paidari, S.; Trajkovska Petkoska, A.; Agarwal, V. Physicochemical, Morphological, and Functional Characterization of Edible Anthocyanin-Enriched Aloevera Coatings on Fresh Figs (Ficus carica L.). Gels 2022, 8, 645. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Zannou, O.; Bahmid, N.A.; Fidan, H.; Alamou, A.F.; Nagdalian, A.A.; Hassoun, A.; Fernando, I.; Ibrahim, S.A.; Arsyad, M. Consumer behavior towards nanopackaging-A new trend in the food industry. Futur. Foods 2022, 6, 100191. [Google Scholar] [CrossRef]
- Gvozdenko, A.A.; Siddiqui, S.A.; Blinov, A.V.; Golik, A.B.; Nagdalian, A.A.; Maglakelidze, D.G.; Statsenko, E.N.; Pirogov, M.A.; Blinova, A.A.; Sizonenko, M.N.; et al. Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications. Sci. Rep. 2022, 12, 12843. [Google Scholar] [CrossRef]
- Jabeur, I.; Pereira, E.; Caleja, C.; Calhelha, R.C.; Soković, M.; Catarino, L.; Barros, L.; Ferreira, I.C.F.R. Exploring the chemical and bioactive properties of Hibiscus sabdariffa L. calyces from Guinea-Bissau (West Africa). Food Funct. 2019, 10, 2234–2243. [Google Scholar] [CrossRef] [Green Version]
- Mak, Y.W.; Chuah, L.O.; Ahmad, R.; Bhat, R. Antioxidant and antibacterial activities of hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicapsularis L.) flower extracts. J. King Saud Univ.-Sci. 2013, 25, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Riaz, G.; Chopra, R. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed. Pharmacother. 2018, 102, 575–586. [Google Scholar] [CrossRef]
- Hekmati, M.; Bonyasi, F.; Javaheri, H.; Hemmati, S. Green synthesis of palladium nanoparticles using Hibiscus sabdariffa L. flower extract: Heterogeneous and reusable nanocatalyst in Suzuki coupling reactions. Appl. Organomet. Chem. 2017, 31, e3757. [Google Scholar] [CrossRef]
- Vankar, P.S.; Shukla, D. Natural dyeing with anthocyanins from Hibiscus rosa sinensis flowers. J. Appl. Polym. Sci. 2011, 122, 3361–3368. [Google Scholar] [CrossRef]
- Singh, P.; Khan, M. Csir-Central, Nutritional and Health Importance of Hibiscus sabdariffa: A Review and Indication for Research Needs Diet-Gut microbiota-Brain axis and IgE mediated food allergy View project Nutritional and Health Importance of Hibiscus sabdariffa: A Review and Indication for Research Needs. J. Nutr. Health Food Eng. 2017, 2017, 212. [Google Scholar] [CrossRef] [Green Version]
- Hapsari, B.W.; Setyaningsih, W.; Editors, A.; Archbold, D.D.; Nicola, S. Methodologies in the Analysis of Phenolic Compounds in Roselle (Hibiscus sabdariffa L.): Composition, Biological Activity, and Beneficial Effects on Human Health. Horticulture 2021, 7, 35. [Google Scholar] [CrossRef]
- Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L.–A phytochemical and pharmacological review. Food Chem. 2014, 165, 424–443. [Google Scholar] [CrossRef] [Green Version]
- Tsai, P.J.; McIntosh, J.; Pearce, P.; Camden, B.; Jordan, B.R. Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa L.) extract. Food Res. Int. 2002, 35, 351–356. [Google Scholar] [CrossRef]
- Jamrozik, D.; Borymska, W.; Kaczmarczyk-Żebrowska, I. Hibiscus sabdariffa in Diabetes Prevention and Treatment—Does It Work? An Evidence-Based Review. Foods 2022, 11, 2134. [Google Scholar] [CrossRef]
- Hopkins, A.L.; Lamm, M.G.; Funk, J.L.; Ritenbaugh, C. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: A comprehensive review of animal and human studies. Fitoterapia 2013, 85, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Zangeneh, M.M.; Zangeneh, A. Novel green synthesis of Hibiscus sabdariffa flower extract conjugated gold nanoparticles with excellent anti-acute myeloid leukemia effect in comparison to daunorubicin in a leukemic rodent model. Appl. Organomet. Chem. 2020, 34, e5271. [Google Scholar] [CrossRef]
- Alawfi, A.A.; Henari, F.Z.; Younis, A.; Manaa, H. Bio-inspired synthesis of silver nanoparticles using Hibiscus tiliaceus L. flower extracts for improved optical characteristics. J. Mater. Sci. Mater. Electron. 2020, 31, 21073–21081. [Google Scholar] [CrossRef]
- Philip, D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E Low-Dimens. Syst. Nanostruct. 2010, 42, 1417–1424. [Google Scholar] [CrossRef]
- Thovhogi, N.; Park, E.; Manikandan, E.; Maaza, M.; Gurib-Fakim, A. Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus sabdariffa flower extract. J. Alloys Compd. 2016, 655, 314–320. [Google Scholar] [CrossRef]
- Chaudhary, A.; Pathak, D.K.; Kandpal, S.; Ghosh, T.; Tanwar, M.; Kumar, R. Raw hibiscus extract as redox active biomaterial for novel herbal electrochromic device. Sol. Energy Mater. Sol. Cells 2020, 215, 110588. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Li, L. Enhanced stability and mechanical strength of sodium alginate composite films. Carbohydr. Polym. 2017, 160, 62–70. [Google Scholar] [CrossRef]
- Bano, I.; Arshad, M.; Yasin, T.; Ghauri, M.A.; Younus, M. Chitosan: A potential biopolymer for wound management. Int. J. Biol. Macromol. 2017, 102, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Deepa, B.; Abraham, E.; Pothan, L.A.; Cordeiro, N.; Faria, M.; Thomas, S. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils. Material 2016, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, M.S.; Tomar, M.; Punia, S.; Kukula-Koch, W.; Kumar, M. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int. J. Biol. Macromol. 2020, 164, 304–320. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.L.; Khor, E.; Lim, L.Y. Chitosan-alginate films prepared with chitosans of different molecular weights. J. Biomed. Mater. Res. 2001, 58, 358–365. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Cozzolino, R.; Martignetti, A.; Malorni, L.; Feo, V.D.; Cruz, A.G.; D’acierno, A. Antibacterial Activity of Three Extra Virgin Olive Oils of the Campania Region, Southern Italy, Related to Their Polyphenol Content and Composition. Microorganism 2019, 7, 321. [Google Scholar] [CrossRef] [Green Version]
- Kapellakis, I.E.; Tsagarakis, K.P.; Crowther, J.C. Olive oil history, production and by-product management. Rev. Environ. Sci. Biotechnol. 2008, 7, 1–26. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Medina, E.; De Castro, A.; Romero, C.; Brenes, M. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: Correlation with antimicrobial activity. J. Agric. Food Chem. 2006, 54, 4954–4961. [Google Scholar] [CrossRef]
- Yu, D.; Qiao, W.; Li, Q.; Pei, G. Preparation and Properties of Olive Oil Microcapsules. J. Fiber Bioeng. Inform. 2012, 5, 67–76. [Google Scholar] [CrossRef]
- Radzimierska-Kazmierczak, M.; Smigielski, K.; Sikora, M.; Nowak, A.; Plucinska, A.; Kunicka-Styczynska, A.; Czarnecka-Chrebelska, K.H. Olive Oil with Ozone-Modified Properties and Its Application. Molecules 2021, 26, 3074. [Google Scholar] [CrossRef] [PubMed]
- Gohar, K.; Khachatryan, L.; Krystyjan, M.; Lenart-Boró, N.A.; Krzan, M.; Kulik, K.; Białecka, A.; Grabacka, M.; Nowak, N.; Khachatryan, K. Preparation of Nano/Microcapsules of Ozonated Olive Oil in Hyaluronan Matrix and Analysis of Physicochemical and Microbiological (Biological) Properties of the Obtained Biocomposite. Int. J. Mol. Sci. 2022, 23, 14005. [Google Scholar] [CrossRef]
- Coscueta, E.R.; Sousa, A.S.; Reis, C.A.; Pintado, M. Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery: Optimal formulation. PLoS ONE 2021, 16, e0248257. [Google Scholar] [CrossRef]
- Vehapi, M.; Yilmaz, A.; Özçimen, D. Fabrication of Oregano-Olive Oil Loaded PVA/Chitosan Nanoparticles via Electrospraying Method. J. Nat. Fibers 2020, 18, 1359–1373. [Google Scholar] [CrossRef]
- Vieira, T.M.; Moldão-Martins, M.; Alves, V.D. Design of Chitosan and Alginate Emulsion-Based Formulations for the Production of Monolayer Crosslinked Edible Films and Coatings. Foods 2021, 10, 1654. [Google Scholar] [CrossRef]
- Toprakçı, İ.; Şahin, S. Encapsulation of olive leaf antioxidants in microbeads: Application of alginate and chitosan as wall materials. Sustain. Chem. Pharm. 2022, 27, 100707. [Google Scholar] [CrossRef]
- Vieira, T.M.; Moldão-Martins, M.; Alves, V.D. Composite Coatings of Chitosan and Alginate Emulsions with Olive Oil to Enhance Postharvest Quality and Shelf Life of Fresh Figs (Ficus carica L. cv. ‘Pingo De Mel’). Foods 2021, 10, 718. [Google Scholar] [CrossRef]
- Khachatryan, G.; Khachatryan, K.; Szczepankowska, J.; Krzan, M.; Krystyjan, M. Design of Carbon Nanocomposites Based on Sodium Alginate/Chitosan Reinforced with Graphene Oxide and Carbon Nanotubes. Polymers 2023, 15, 925. [Google Scholar] [CrossRef]
- Andrade, J.; Pereira, C.G.; de Almeida Junior, J.C.; Viana, C.C.R.; de Oliveira Neves, L.N.; da Silva, P.H.F.; Bell, M.J.V.; dos Anjos, V.D.C. FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT 2019, 99, 166–172. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int. 2010, 43, 886–892. [Google Scholar] [CrossRef]
- Omrani, Z.; Dadkhah Tehrani, A. New cyclodextrin-based supramolecular nanocapsule for codelivery of curcumin and gallic acid. Polym. Bull. 2020, 77, 2003–2019. [Google Scholar] [CrossRef]
- Oliveira, H.; Basílio, N.; Pina, F.; Fernandes, I.; de Freitas, V.; Mateus, N. Purple-fleshed sweet potato acylated anthocyanins: Equilibrium network and photophysical properties. Food Chem. 2019, 288, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Sani, A.; Khezerlou, M.; Ehsani, A.; Jahed-Khaniki, A.; Mcclements, G.; Tavassoli, M.; Sani, M.A.; Khezerlou, A.; Ehsani, A.; Jahed-Khaniki, G.; et al. Smart Biopolymer-Based Nanocomposite Materials Containing pH-Sensing Colorimetric Indicators for Food Freshness Monitoring. Molecules 2022, 27, 3168. [Google Scholar] [CrossRef]
- Lakshmi, P.R.; Mohan, B.; Kang, P.; Nanjan, P.; Shanmugaraju, S. Recent advances in fluorescence chemosensors for ammonia sensing in the solution and vapor phases. Chem. Commun. 2023, 59, 1728–1743. [Google Scholar] [CrossRef]
- Hamedi, H.; Moradi, S.; Tonelli, A.E.; Hudson, S.M. Preparation and Characterization of Chitosan–Alginate Polyelectrolyte Complexes Loaded with Antibacterial Thyme Oil Nanoemulsions. Appl. Sci. 2019, 9, 3933. [Google Scholar] [CrossRef] [Green Version]
- Pereda, M.; Dufresne, A.; Aranguren, M.I.; Marcovich, N.E. Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr. Polym. 2014, 101, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Wu, H.; Guo, T.; Jin Park, H.; Li, J. Zinc insulin hexamer loaded alginate zinc hydrogel: Preparation, characterization and in vivo hypoglycemic ability. Eur. J. Pharm. Biopharm. 2022, 179, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Kulig, D.; Zimoch-Korzycka, A.; Jarmoluk, A.; Marycz, K. Study on Alginate–Chitosan Complex Formed with Different Polymers Ratio. Polymers 2016, 8, 167. [Google Scholar] [CrossRef]
- Balau, L.; Lisa, G.; Popa, M.I.; Tura, V.; Melnig, V. Physico-chemical properties of Chitosan films. Cent. Eur. J. Chem. 2004, 2, 638–647. [Google Scholar] [CrossRef]
- Krystyjan, M.; Khachatryan, G.; Grabacka, M.; Krzan, M.; Witczak, M.; Grzyb, J.; Woszczak, L. Physicochemical, Bacteriostatic, and Biological Properties of Starch/Chitosan Polymer Composites Modified by Graphene Oxide, Designed as New Bionanomaterials. Polymers 2021, 13, 2327. [Google Scholar] [CrossRef] [PubMed]
- Shiku, Y.; Hamaguchi, P.Y.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Effect of surimi quality on properties of edible films based on Alaska pollack. Food Chem. 2004, 86, 493–499. [Google Scholar] [CrossRef]
- Liakos, I.; Rizzello, L.; Scurr, D.J.; Pompa, P.P.; Bayer, I.S.; Athanassiou, A. All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int. J. Pharm. 2014, 463, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Domene-López, D.; García-Quesada, J.C.; Martin-Gullon, I.; Montalbán, M.G. Influence of Starch Composition and Molecular Weight on Physicochemical Properties of Biodegradable Films. Polymers 2019, 11, 1084. [Google Scholar] [CrossRef] [Green Version]
- Shruthi, V.H.; Ramachandra, C.T. Roselle (Hibiscus sabdariffa L.) Calyces: A Potential Source of Natural Color and Its Health Benefits. In Food Bioactives; Apple Academic Press: New Jersey, NJ, USA, 2019; pp. 169–190. [Google Scholar] [CrossRef]
- Sharma, S.; Sanpui, P.; Chattopadhyay, A.; Ghosh, S.S. Fabrication of antibacterial silver nanoparticle-Sodium alginate-chitosan composite films. RSC Adv. 2012, 2, 5837–5843. [Google Scholar] [CrossRef]
- ISO-ISO 527-1:2019-Plastics—Determination of Tensile Properties—Part 1: General Principles. Available online: https://www.iso.org/standard/75824.html (accessed on 1 December 2022).
- Krystyjan, M.; Khachatryan, G.; Ciesielski, W.; Buksa, K.; Sikora, M. Preparation and characteristics of mechanical and functional properties of starch/Plantago psyllium seeds mucilage films. Starch/Staerke 2017, 69, 1700014. [Google Scholar] [CrossRef]
- Khachatryan, G.; Khachatryan, K.; Krystyjan, M.; Krzan, M.; Khachatryan, L. Functional properties of composites containing silver nanoparticles embedded in hyaluronan and hyaluronan-lecithin matrix. Int. J. Biol. Macromol. 2020, 149, 417–423. [Google Scholar] [CrossRef]
Sample | Water Content | Water Solubility |
---|---|---|
CA-0 | 11.23 ± 0.18 a | 68.47 ± 4.36 a |
CA-1 | 9.72 ± 0.09 b | 47.54 ± 0.98 b |
CA-2 | 8.57 ± 0.41 c | 48.33 ± 0.40 b |
CA-3 | 8.55 ± 0.13 c | 53.09 ± 1.65 c |
AC-0 | 10.18 ± 0.26 d | 66.86 ± 3.78 a |
AC-1 | 8.68 ± 0.06 c | 50.03 ± 0.80 bc |
AC-2 | 8.56 ± 0.16 cd | 49.97 ± 2.24 bc |
AC-3 | 8.50 ± 0.17 c | 47.55 ± 0.73 b |
1st Decomposition | 2nd Decomposition | 3rd Decomposition | ||||
---|---|---|---|---|---|---|
Film Type | Tm (°C) | ΔT (°C) | Tm (°C) | ΔT (°C) | Tm (°C) | ΔT (°C) |
CA-0 | 107.71 | 59.73–86.83 | - | - | - | - |
CA-1 | 97.39 | 96.84–98.78 | 127.04 | 126.55–28.57 | 191.54 | 191.05–192.65 |
CA-2 | 103.23 | 73.24–20.89 | - | - | - | - |
CA-3 | 108.38 | 59.77–59.59 | 184.39 | 167.69–199.36 | - | - |
AC-0 | 95.41 | 52.36–133.84 | 173.59 | 167.26–97.77 | - | - |
AC-1 | 111.69 | 104.23–72.4 | - | - | - | - |
AC-2 | 109.69 | 74.03–157.6 | - | - | - | - |
AC-3 | 115.69 | 77.04–147.64 | 186.35 | 167.47–199.77 | - | - |
1st Decomposition | 2nd Decomposition | 3rd Decomposition | 4th Decomposition | |||||
---|---|---|---|---|---|---|---|---|
Film Type | Tm (°C) | ΔT (°C) | Tm (°C) | ΔT (°C) | Tm (°C) | ΔT (°C) | Tm (°C) | ΔT (°C) |
CA-0 | 114.27 | 46.37–169.94 | 222.92 | 171.73–495.19 | - | - | - | - |
CA-1 | 108.21 | 34.56–175.23 | 211.57 | 177.40–309.23 | 331.23 | 310.05–387.19 | 463.18–477.76 | 388.50–499.84 |
CA-2 | 109.16 | 42.77–178.12 | 216.56 | 180.83–311.89 | 334.09 | 312.08–393.20 | 472.88 | 396.07–499.87 |
CA-3 | 109.67 | 40.23–177.35 | 212.65 | 178.98–388.40 | 468.70 | 389.71–499.80 | - | - |
AC-0 | 109.82 | 41.73–171.10 | 216.39 | 172.46–499.83 | - | - | - | - |
AC-1 | 117.55 | 37.60–174.71 | 215.59–238.42 | 175.79–312.17 | 341.19 | 312.17–385.69 | 471.70 | 385.69–499.94 |
AC-2 | 119.72 | 38.72–174.34 | 215.93–238.02 | 175.16–315.76 | 344.10 | 316.02–386.36 | 473.89 | 386.62–499.84 |
AC-3 | 118.27 | 33.02–178.34 | 215.98–240.76 | 179.42–317.15 | 335.45 | 317.68–394.76 | 475.75 | 395.01–499.85 |
Sample | Thickness (mm) | TS (MPa) | EAB (%) |
---|---|---|---|
CA-0 | 0.144 ± 0.007 c | 61.79 ± 6.74 a | 31.28 ± 4.91 a |
CA-1 | 0.192 ± 0.005 b | 43.22 ± 3.12 b | 22.61 ± 1.94 b |
CA-2 | 0.202 ± 0.006 a | 33.80 ± 5.91 c | 23.93 ± 3.39 b |
CA-3 | 0.189 ± 0.010 b | 36.40 ± 7.87 c | 20.13 ± 4.96 b |
AC-0 | 0.145 ± 0.008 b | 61.30 ± 4.34 a | 31.82 ± 3.22 a |
AC-1 | 0.217 ± 0.015 a | 32.29 ± 4.56 b | 15.06 ± 5.18 b |
AC-2 | 0.220 ± 0.016 a | 29.31 ± 5.23 b | 13.75 ± 1.63 b |
AC-3 | 0.231 ± 0.018 a | 28.40 ± 4.62 b | 16.04 ± 3.05 b |
Sample | L* (D65) | a* (D65) | b* (D65) | Opacity |
---|---|---|---|---|
CA-0 | 97.28 ± 0.09 b | −0.54 ± 0.02 g | 8.09 ± 0.10 f | 3.85 |
CA-1 | 81.64 ± 0.21 d | 0.82 ± 0.05 c | 17.22 ± 0.12 b | 8.78 |
CA-2 | 75.48 ± 0.11 e | 0.24 ± 0.07 d | 15.97 ± 0.15 c | 9.18 |
CA-3 | 83.10 ± 0.15 c | 0.84 ± 0.01 c | 16.05 ± 0.11 c | 7.95 |
AC-0 | 97.62 ± 0.10 a | −0.48 ± 0.01 f | 7.11 ± 0.01 g | 5.74 |
AC-1 | 75.09 ± 0.31 f | 0.97 ± 0.00 b | 15.75 ± 0.06 d | 8.81 |
AC-2 | 69.43 ± 0.14 g | 0.17 ± 0.03 e | 12.62 ± 0.14 e | 8.29 |
AC-3 | 75.13 ± 0.31 f | 2.48 ± 0.04 a | 20.00 ± 0.08 a | 7.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janik, M.; Khachatryan, K.; Khachatryan, G.; Krystyjan, M.; Żarska, S.; Ciesielski, W. Preparation and Characterisation of Acid–Base-Change-Sensitive Binary Biopolymer Films with Olive Oil and Ozonated Olive Oil Nano/Microcapsules and Added Hibiscus Extract. Int. J. Mol. Sci. 2023, 24, 11502. https://doi.org/10.3390/ijms241411502
Janik M, Khachatryan K, Khachatryan G, Krystyjan M, Żarska S, Ciesielski W. Preparation and Characterisation of Acid–Base-Change-Sensitive Binary Biopolymer Films with Olive Oil and Ozonated Olive Oil Nano/Microcapsules and Added Hibiscus Extract. International Journal of Molecular Sciences. 2023; 24(14):11502. https://doi.org/10.3390/ijms241411502
Chicago/Turabian StyleJanik, Magdalena, Karen Khachatryan, Gohar Khachatryan, Magdalena Krystyjan, Sandra Żarska, and Wojciech Ciesielski. 2023. "Preparation and Characterisation of Acid–Base-Change-Sensitive Binary Biopolymer Films with Olive Oil and Ozonated Olive Oil Nano/Microcapsules and Added Hibiscus Extract" International Journal of Molecular Sciences 24, no. 14: 11502. https://doi.org/10.3390/ijms241411502
APA StyleJanik, M., Khachatryan, K., Khachatryan, G., Krystyjan, M., Żarska, S., & Ciesielski, W. (2023). Preparation and Characterisation of Acid–Base-Change-Sensitive Binary Biopolymer Films with Olive Oil and Ozonated Olive Oil Nano/Microcapsules and Added Hibiscus Extract. International Journal of Molecular Sciences, 24(14), 11502. https://doi.org/10.3390/ijms241411502