Sex Differences in the Frequencies of B and T Cell Subpopulations of Human Cord Blood
Abstract
:1. Introduction
2. Results
2.1. B Cells
2.2. T Cells
3. Discussion
4. Materials and Methods
4.1. Patient Samples
4.2. Cell Isolation, Storage, and Counting
Cell Isolation and Storage
4.3. Flow Cytometry
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LeBien, T.W.; Tedder, T.F. B lymphocytes: How they develop and function. Blood 2008, 112, 1570–1580. [Google Scholar] [CrossRef] [Green Version]
- Rackaityte, E.; Halkias, J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front. Immunol. 2020, 11, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prescott, S.; Saffery, R. The role of epigenetic dysregulation in the epidemic of allergic disease. Clin. Epigenet. 2011, 2, 223–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogan, V.; Millstein, J.; London, S.J.; Ober, C.; White, S.R.; Naureckas, E.T.; Gauderman, W.J.; Jackson, D.J.; Barraza-Villarreal, A.; Romieu, I.; et al. Genetic-Epigenetic Interactions in Asthma Revealed by a Genome-Wide Gene-Centric Search. Hum. Hered. 2018, 83, 130–152. [Google Scholar] [CrossRef]
- Wilson, A.G. Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J. Periodontol. 2008, 79, 1514–1519. [Google Scholar] [CrossRef] [Green Version]
- Henneke, P.; Kierdorf, K.; Hall, L.J.; Sperandio, M.; Hornef, M. Perinatal development of innate immune topology. eLife 2021, 10, e67793. [Google Scholar] [CrossRef]
- Cerutti, A.; Cols, M.; Puga, I. Marginal zone B cells: Virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 2013, 13, 118–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maródi, L. Neonatal Innate Immunity to Infectious Agents. Infect. Immun. 2006, 74, 1999–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrieta, M.-C.; Stiemsma, L.T.; Dimitriu, P.A.; Thorson, L.; Russell, S.; Yurist-Doutsch, S.; Kuzeljevic, B.; Gold, M.J.; Britton, H.M.; Lefebvre, D.L.; et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 2015, 7, 307ra152. [Google Scholar] [CrossRef]
- Kumar, S.K.M.; Bhat, B.V. Distinct mechanisms of the newborn innate immunity. Immunol. Lett. 2016, 173, 42–54. [Google Scholar] [CrossRef]
- Basha, S.; Surendran, N.; Pichichero, M. Immune Responses in Neonates. Expert Rev. Clin. Immunol. 2014, 10, 1171–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, A.K.; Hollander, G.A.; McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 2015, 282, 20143085. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.O.; Holodick, N.E.; Rothstein, T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70−. J. Exp. Med. 2011, 208, 67–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhu, S.B.; Rathore, D.K.; Nair, D.; Chaudhary, A.; Raza, S.; Kanodia, P.; Sopory, S.; George, A.; Rath, S.; Bal, V.; et al. Comparison of Human Neonatal and Adult Blood Leukocyte Subset Composition Phenotypes. PLoS ONE 2016, 11, e0162242. [Google Scholar] [CrossRef] [Green Version]
- Lopes-Carvalho, T.; Kearney, J.F. Development and selection of marginal zone B cells. Immunol. Rev. 2004, 197, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Weaver, C. Die Entwicklung der B- und T-Lymphocyten. Janeway Immunol. 2018, 9, 377–440. [Google Scholar] [CrossRef]
- Lind, E.F.; Prockop, S.E.; Porritt, H.E.; Petrie, H.T. Mapping Precursor Movement through the Postnatal Thymus Reveals Specific Microenvironments Supporting Defined Stages of Early Lymphoid Development. J. Exp. Med. 2001, 194, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Cooper, G.S.; Stroehla, B.C. The epidemiology of autoimmune diseases. Autoimmun. Rev. 2003, 2, 119–125. [Google Scholar] [CrossRef]
- Jacobson, D.L.; Gange, S.J.; Rose, N.R.; Graham, N.M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 1997, 84, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Libert, C.; Dejager, L.; Pinheiro, I. The X chromosome in immune functions: When a chromosome makes the difference. Nat. Rev. Immunol. 2010, 10, 594–604. [Google Scholar] [CrossRef]
- Bereshchenko, O.; Bruscoli, S.; Riccardi, C. Glucocorticoids, Sex Hormones, and Immunity. Front. Immunol. 2018, 9, 1332. [Google Scholar] [CrossRef] [Green Version]
- Spitzer, J.A. Gender differences in some host defense mechanisms. Lupus 1999, 8, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Carrel, L.; Willard, H.F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 2005, 434, 400–404. [Google Scholar] [CrossRef]
- Lyn-Cook, B.D.; Xie, C.; Oates, J.; Treadwell, E.; Word, B.; Hammons, G.; Wiley, K. Increased expression of Toll-like receptors (TLRs) 7 and 9 and other cytokines in systemic lupus erythematosus (SLE) patients: Ethnic differences and potential new targets for therapeutic drugs. Mol. Immunol. 2014, 61, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Lott, N.; Gebhard, C.E.; Bengs, S.; Haider, A.; Kuster, G.M.; Regitz-Zagrosek, V.; Gebhard, C. Sex hormones in SARS-CoV-2 susceptibility: Key players or confounders? Nat. Rev. Endocrinol. 2023, 19, 217–231. [Google Scholar] [CrossRef]
- Lai, J.-J.; Lai, K.-P.; Zeng, W.; Chuang, K.-H.; Altuwaijri, S.; Chang, C. Androgen Receptor Influences on Body Defense System via Modulation of Innate and Adaptive Immune Systems: Lessons from Conditional AR Knockout Mice. Am. J. Pathol. 2012, 181, 1504–1512. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.; Chai, P.-S.; Chong, M.-Y.; Tohit, E.R.M.; Ramasamy, R.; Pei, C.P.; Vidyadaran, S. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell. Immunol. 2012, 272, 214–219. [Google Scholar] [CrossRef]
- Forest, M.G.; Cathiard, A.M.; Bertrand, J.A. Evidence of testicular activity in early infancy. J. Clin. Endocrinol. Metab. 1973, 37, 148–151. [Google Scholar] [CrossRef]
- Laffont, S.; Rouquié, N.; Azar, P.; Seillet, C.; Plumas, J.; Aspord, C.; Guéry, J.-C. X-Chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-α production of plasmacytoid dendritic cells from women. J. Immunol. 2014, 193, 5444–5452. [Google Scholar] [CrossRef] [Green Version]
- Johnnidis, J.B.; Harris, M.H.; Wheeler, R.T.; Stehling-Sun, S.; Lam, M.H.; Kirak, O.; Brummelkamp, T.R.; Fleming, M.D.; Camargo, F.D. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008, 451, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Haneklaus, M.; Gerlic, M.; O’Neill, L.A.J.; Masters, S.L. miR-223: Infection, inflammation and cancer. J. Intern. Med. 2013, 274, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Chamekh, M.; Deny, M.; Romano, M.; Lefèvre, N.; Corazza, F.; Duchateau, J.; Casimir, G. Differential Susceptibility to Infectious Respiratory Diseases between Males and Females Linked to Sex-Specific Innate Immune Inflammatory Response. Front. Immunol. 2017, 8, 1806. [Google Scholar] [CrossRef]
- Lamason, R.; Zhao, P.; Rawat, R.; Davis, A.; Hall, J.C.; Chae, J.J.; Agarwal, R.; Cohen, P.; Rosen, A.; Hoffman, E.P.; et al. Sexual dimorphism in immune response genes as a function of puberty. BMC Immunol. 2006, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scotland, R.S.; Stables, M.J.; Madalli, S.; Watson, P.; Gilroy, D.W. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 2011, 118, 5918–5927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, Y.; Miyazato, A.; Okamoto, K.; Tanaka, H. Impact of Sex Differences on Mortality in Patients with Sepsis after Trauma: A Nationwide Cohort Study. Front. Immunol. 2021, 12, 678156. [Google Scholar] [CrossRef]
- Comans-Bitter, W.M.; de Groot, R.; van den Beemd, R.; Neijens, H.J.; Hop, W.C.; Groeneveld, K.; Hooijkaas, H.; van Dongen, J.J. Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. J. Pediatr. 1997, 130, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Baumgarth, N. The double life of a B-1 cell: Self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 2011, 11, 34–46. [Google Scholar] [CrossRef]
- Rothstein, T.L.; Griffin, D.O.; Holodick, N.E.; Quach, T.D.; Kaku, H. Human B-1 cells take the stage. Ann. N. Y. Acad. Sci. 2013, 1285, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Kawikova, I.; Paliwal, V.; Szczepanik, M.; Itakura, A.; Fukui, M.; Campos, R.A.; Geba, G.P.; Homer, R.J.; Iliopoulou, B.P.; Pober, J.S.; et al. Airway hyper-reactivity mediated by B-1 cell immunoglobulin M antibody generating complement C5a at 1 day post-immunization in a murine hapten model of non-atopic asthma. Immunology 2004, 113, 234–245. [Google Scholar] [CrossRef]
- Deng, J.; Wang, X.; Chen, Q.; Sun, X.; Xiao, F.; Ko, K.-H.; Zhang, M.; Lu, L. B1a cells play a pathogenic role in the development of autoimmune arthritis. Oncotarget 2016, 7, 19299–19311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, C. Where Do T Cells Stand in Rheumatoid Arthritis? Jt. Bone Spine 2005, 72, 527–532. [Google Scholar] [CrossRef] [PubMed]
Sex | Mean ± Standard Deviation [%] | p-Value | |
---|---|---|---|
Innate B cells | Male | 6.6 ± 4.0 | 0.8 |
(percentage of CD19+ cells) | Female | 6.2 ± 3.7 | |
Naïve B cells | Male | 72.0 ± 11.7 | 0.53 |
(percentage of CD19+ cells) | Female | 75.3 ± 8.3 | |
Marginal zone memory B cells | Male | 1.7 ± 2.1 | 0.01 |
(percentage of CD19+ cells) | Female | 0.8 ± 1.2 | |
Class-switched memory B cells | Male | 5.7 ± 4.1 | 0.84 |
(percentage of CD19 + cells) | Female | 5.3 ± 2.6 | |
Late memory B cells | Male | 3.2 ± 2.7 | 0.073 |
(percentage of CD19+ cells) | Female | 1.7 ± 1.4 | |
Plasmablasts | Male | 5.5 ± 4.0 | 0.84 |
(percentage of CD19+ cells) | Female | 5.2 ± 2.6 | |
Transitonal B cells | Male | 82.7 ± 11.0 | 0.89 |
(percentage of CD19+ cells) | Female | 85.4 ± 6.7 | |
B1 cells | Male | 3.7 ± 2.9 | 0.023 |
(percentage of CD20+ cells) | Female | 1.8 ± 1.5 | |
B2 cells | Male | 0.3 ± 0.3 | 0.13 |
(percentage of CD20+ cells) | Female | 0.2 ± 0.3 |
n | Sex | Mean ± Standard Deviation [%] | p-Value | |
---|---|---|---|---|
Th cells | 16 | Male | 74.4 ± 6.6 | 0.22 |
(percentage of CD3+ cells) | 21 | Female | 76.8 ± 7.2 | |
Cytotoxic T cells | 16 | Male | 27.9 ± 7.6 | 0.12 |
(percentage of CD3+ cells) | 21 | Female | 24.2 ± 7.7 | |
Th cells with αβ-TCR CD4+ CD3+ | 16 | Male | 76.0 ± 6.4 | 0.5 |
(percentage of TCR αβ + cells) | 21 | Female | 77.3 ± 7.1 | |
Activated cytotoxic Th-cells with αβ-TCR | 16 | Male | 0.6 ± 0.6 | 0.27 |
(percentage of TCR αβ + cells) | 21 | Female | 0.9 ± 0.8 | |
Memory effector Th cells | 16 | Male | 49.5 ± 13.6 | 0.48 |
(percentage of CD3+ CD4+ cells) | 21 | Female | 52.1 ± 15.8 | |
Memory central Th cells | 16 | Male | 5.7 ± 2.8 | 0.58 |
(percentage of CD3+ CD4+ cells) | 21 | Female | 6.7 ± 4.1 | |
Naïve effector Th cells | 16 | Male | 40.9 ± 15.2 | 0.17 |
(percentage of CD3+ CD4+ cells) | 21 | Female | 34.9 ± 11.8 | |
Naïve central Th cells | 16 | Male | 3.9 ± 1.4 | 0.62 |
(percentage of CD3+ CD4+ cells) | 21 | Female | 6.4 ± 9.4 | |
Memory effector cytotoxic T cells | 16 | Male | 50.8 ± 13.8 | 0.4 |
( percentage of CD3+ CD8+ cells) | 21 | Female | 53.7 ± 14.1 | |
Memory central cytotoxic T cells | 16 | Male | 6.2 ± 4.3 | 0.66 |
(percentage of CD3+ CD8+ cells) | 21 | Female | 7.8 ± 6.4 | |
Naïve effector cytotoxic T cells | 16 | Male | 39.4 ± 14.6 | 0.24 |
( percentage of CD3+ CD8+ cells) | 21 | Female | 34.1 ±1 0.6 | |
Naïve central cytotoxic T cells | 16 | Male | 3.6 ± 1.6 | 0.73 |
(percentage of CD3+ CD8+ cells) | 21 | Female | 4.5 ± 4.1 | |
Naïve thymus negative Th cells | 16 | Male | 24.4 ± 9.8 | 0.005 |
(percentage of CD3+ CD4+ cells) | 21 | Female | 15.9 ± 5.7 | |
Naïve thymus-positive Th cells CD31+ | 16 | Male | 65.7 ± 9.4 | 0.055 |
(percentage of CD3+ CD4+ cells) | 21 | Female | 70.8 ± 9.6 | |
Th1 cells | 11 | Male | 2.8 ± 1.6 | 0.61 |
(percentage of CD3+ cells) | 16 | Female | 2.8 ± 1.9 | |
Naïve Th1 cells | 11 | Male | 87.2 ± 7.0 | 0.54 |
(percentage of CD3+ CD4+ CD183+ CD196+ cells) | 16 | Female | 88.1 ± 6.8 | |
Memory Th1 cells | 11 | Male | 12.8 ± 7.0 | 0.51 |
(percentage of CD3+ CD4+ CD183+ CD196+ cells) | 16 | Female | 11.9 ± 6.8 | |
Th2 cells | 11 | Male | 0.7 ± 0.5 | 0.54 |
(percentage of number of CD3+ cells) | 16 | Female | 0.5 ± 0.3 | |
Naïve Th2 cells | 11 | Male | 66.8 ± 8.6 | 0.9 |
(percentage of CD3+ CD4+ CD294+ CD194+ cells) | 16 | Female | 67.6 ± 11.2 | |
Memory Th2 cells | 11 | Male | 33.2 ± 8.6 | 0.9 |
(percentage of CD3+ CD4+ CD294+ CD194+ cells) | 16 | Female | 32.4 ± 11.2 | |
Regulatory T cells | 11 | Male | 2.3 ± 0.6 | 0.8 |
(percentage of CD3+ cells) | 16 | Female | 2.4 ± 0.7 |
Lymphocyte Subsets | Definition | |
---|---|---|
B lymphocytes | B cells | CD19+ |
Innate B cells | CD19+ CD27− IgD− IgM− | |
Naïve B cells | CD19+ CD27− IgD+ IgM+ | |
Memory B1 cells | CD19+ CD27+ | |
Marginal zone memory B cells | CD19+ CD27+ IgD+ IgM+ | |
Class-switched memory B cells | CD19+ CD27+ IgD− IgM− | |
Late memory B cells | CD19+ CD27+ CD38+ IgM+ | |
Plasmablasts | CD19+ CD27+ CD38++ IgM− | |
Transitional B cells | CD19+ CD20+ CD27− CD38+ | |
B1 cells | CD20+ CD27+ CD43+ | |
B2 cells | CD20+ CD27+ CD43− | |
T lymphocytes | T cells | CD3+ |
T helper cells | CD3+ CD4+ | |
Cytotoxic T cells | CD3+ CD8+ | |
T helper cells with αβ-TCR | TCRαβ+ CD4+ | |
Cytotoxic T helper cells with αβ-TCR | TCRαβ+ CD8+ | |
Activated T helper cells αβ-TCR | TCRαβ+ CD4+ CD69+ | |
Activated cytotoxic T helper cells with αβ-TCR | TCRαβ+ CD8+ CD69+ | |
Memory effector T helper cells | CD3+ CD4+ CD62L− CD45RO+ | |
Memory central T helper cells | CD3+ CD4+ CD62L+ CD45RO+ | |
Naive effector T helper cells | CD3+ CD4+ CD62L− CD45RO− | |
Naive central T helper cells | CD3+ CD4+ CD62L+ CD45RO− | |
Memory effector cytotoxic T cells | CD3+ CD8+ CD62L− CD45RO+ | |
Memory central cytotoxic T cells | CD3+ CD8+ CD62L+ CD45RO+ | |
Naïve effector cytotoxic T cells | CD3+ CD8+ CD62L− CD45RO− | |
Naïve central cytotoxic T cells | CD3+ CD8+ CD62L+ CD45RO− | |
Naïve thymus negative T helper cells | CD3+ CD4+ CD31− CD45RO− | |
Naïve thymus positive T helper cells | CD3+ CD4+ CD31+ CD45RO− | |
T helper cells 1 | CD3+ CD4+ CD183+ CD196+ | |
Naive T helper cells 1 | CD3+ CD4+ CD183+ CD196+ CD45RO− | |
Memory T helper cells 1 | CD3+ CD4+ CD183+ CD196+ CD45RO+ | |
T helper cells 2 | CD3+ CD4+ CD194+ CD294+ | |
Naïve T helper cells 2 | CD3+ CD4 + CD45RO− CD194+ CD294+ | |
Memory T helper cells 2 | CD3+ CD4+ CD45RO+ CD194+ CD294+ | |
Regulatory T cells | CD3+ CD4+ CD25+ CD127− |
Marker | Fluorophore | Clone | Vendor | Catalog | Panel |
---|---|---|---|---|---|
CD127 | Alexa-Fluor 647 | HIL-7R-M21 | BD | 55,8598 | T cells-panel 2 |
CD183 | BV480 | CXCR3 | BD | 74,6283 | T cells-panel 2 |
CD19 | APC-R700 | HIB19 | BD | 56,4977 | B cells-panel 1 |
CD194 (CCR4) | PE | 1G1 | BD | 55,1120 | T cells-panel 2 |
CD196 (CCR6) | APC-R700 | CCR6 | BD | 56,5173 | T cells-panel 2 |
CD20 | BB700 | 2H7 | BD | 74,5889 | B cells-panel 1 |
CD21 | BV421 | B-Ly4 | BD | 56,2966 | B cells-panel 1 |
CD25 | BV421 | M-A251 | BD | 56,2442 | T cells-panel 2 |
CD27 | APC | L128 | BD | 33,7169 | B cells-panel 1 |
CD294 (CRTH2) | BV650 | BM16 | BD | 74,0616 | T cells-panel 2 |
CD3 | BV786 | SK7 | BD | 56,3800 | T cells-panel 1 T cells-panel 2 |
CD31 | BV421 | L133.1 | BD | 74,4801 | T cells-panel 1 |
CD38 | PE | HB-7 | BD | 34,5806 | B cells-panel 1 |
CD4 | PE-CF594 | SK3 | BD | 56,6317 | T cells-panel 1 T cells-panel 2 |
CD43 | BV605 | 1G10 | BD | 56,3378 | B cells-panel 1 |
CD45RO | BV605 | UCHL1 | BD | 56,2791 | T cells-panel 1 T cells-panel 2 |
CD5 | BV650 | L17F12 | BD | 74,2551 | T cells-panel 1 |
CD62L | BB700 | SK11 | BD | 74,5995 | T cells-panel 1 |
CD69 | BV480 | FN50 | BD | 74,7519 | T cells-panel 1 |
CD8 | APC-R700 | SK1 | BD | 56,5192 | T cells-panel 1 |
IgD | PE-CF594 | IA6-2 | BD | 56,2540 | B cells-panel 1 |
IgM | BV480 | G20-127 | BD | 56,6146 | B cells-panel 1 |
TCRαβ | FITC | WT31 | BD | 33,3140 | T cells-panel 1 |
TCRγδ | PE | 11F2 | BD | 33,3141 | T cells-panel 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bous, M.; Schmitt, C.; Hans, M.C.; Weber, R.; Nourkami-Tutdibi, N.; Tenbruck, S.; Haj Hamoud, B.; Wagenpfeil, G.; Kaiser, E.; Solomayer, E.-F.; et al. Sex Differences in the Frequencies of B and T Cell Subpopulations of Human Cord Blood. Int. J. Mol. Sci. 2023, 24, 11511. https://doi.org/10.3390/ijms241411511
Bous M, Schmitt C, Hans MC, Weber R, Nourkami-Tutdibi N, Tenbruck S, Haj Hamoud B, Wagenpfeil G, Kaiser E, Solomayer E-F, et al. Sex Differences in the Frequencies of B and T Cell Subpopulations of Human Cord Blood. International Journal of Molecular Sciences. 2023; 24(14):11511. https://doi.org/10.3390/ijms241411511
Chicago/Turabian StyleBous, Michelle, Charline Schmitt, Muriel Charlotte Hans, Regine Weber, Nasenien Nourkami-Tutdibi, Sebastian Tenbruck, Bashar Haj Hamoud, Gudrun Wagenpfeil, Elisabeth Kaiser, Erich-Franz Solomayer, and et al. 2023. "Sex Differences in the Frequencies of B and T Cell Subpopulations of Human Cord Blood" International Journal of Molecular Sciences 24, no. 14: 11511. https://doi.org/10.3390/ijms241411511
APA StyleBous, M., Schmitt, C., Hans, M. C., Weber, R., Nourkami-Tutdibi, N., Tenbruck, S., Haj Hamoud, B., Wagenpfeil, G., Kaiser, E., Solomayer, E. -F., Zemlin, M., & Goedicke-Fritz, S. (2023). Sex Differences in the Frequencies of B and T Cell Subpopulations of Human Cord Blood. International Journal of Molecular Sciences, 24(14), 11511. https://doi.org/10.3390/ijms241411511