Metabolomics of Escherichia coli for Disclosing Novel Metabolic Engineering Strategies for Enhancing Hydrogen and Ethanol Production
Abstract
:1. Introduction
2. Results
2.1. Metabolic Profile by Fourier Transformed Infrared (FT-IR) and GC-MS in the M4, M5, and Wild-Type Strains
2.2. Metabolome Overview Using the EcoCyc Omics Dashboard Tool
2.3. Evaluation of H2 and Ethanol in M5 Mutant Strains Overexpressing Citrate Lyase (CIT) and Co-Overexpressing PEPCK or MaeA
2.4. Succinate, Acetate, and Glycerol Assessment in the M5 Mutant without or with the Overexpression of Citrate Lyase (CIT) and/or the Co-Overexpression of PEPCK or MaeA
3. Discussion
4. Materials and Methods
4.1. Strains and Growth Conditions
4.2. Cloning of the E. coli Citrate Lyase (CIT) Operon and the Overexpression of CIT, hPEPCK, and MaeA
4.3. FT-IR Fingerprint Analysis
4.4. GC-MS Metabolic Profiling
4.5. Other Analytical Techniques for the Analysis of Footprinting Metabolites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beger, R.D.; Dunn, W.; Schmidt, M.A.; Gross, S.S.; Kirwan, J.A.; Cascante, M.; Brennan, L.; Wishart, D.S.; Oresic, M.; Hankemeier, T.; et al. Metabolomics enables precision medicine: “A White Paper, Community Perspective”. Metabolomics 2016, 12, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martien, J.I.; Amador-Noguez, D. Recent applications of metabolomics to advance microbial biofuel production. Curr. Opin. Biotechnol. 2017, 43, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Alseekh, S.; Bermudez, L.; de Haro, L.A.; Fernie, A.R.; Carrari, F. Crop metabolomics: From diagnostics to assisted breeding. Metabolomics 2018, 14, 148. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.J. Individual Metabolic Patterns and Human Disease: An Exploratory Study Utilizing Predominantly Paper Chromatographic Methods; University of Texas Publications: Austin, TX, USA, 1951. [Google Scholar]
- Begley, P.; Francis-McIntyre, S.; Dunn, W.B.; Broadhurst, D.I.; Halsall, A.; Tseng, A.; Knowles, J.; Goodacre, R.; Kell, D.B. Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Anal. Chem. 2009, 81, 7038–7046. [Google Scholar] [CrossRef]
- Nielsen, J.; Keasling, J.D. Engineering Cellular Metabolism. Cell 2016, 164, 1185–1197. [Google Scholar] [CrossRef] [Green Version]
- Valle, A.; Soto, Z.; Muhamadali, H.; Hollywood, K.A.; Xu, Y.; Lloyd, J.R.; Goodacre, R.; Cantero, D.; Cabrera, G.; Bolivar, J. Metabolomics for the design of new metabolic engineering strategies for improving aerobic succinic acid production in Escherichia coli. Metabolomics 2022, 18, 56. [Google Scholar] [CrossRef]
- Mishra, P.; Krishnan, S.; Rana, S.; Singh, L.; Sakinah, M.; Ab Wahid, Z. Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strateg. Rev. 2019, 24, 27–37. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Shiong Khoo, K.; Show, P.-L.; Femina Carolin, C.; Fetcia Jackulin, C.; Jeevanantham, S.; Karishma, S.; Show, K.-Y.; Lee, D.-J.; et al. Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects. Bioresour. Technol. 2021, 342, 126021. [Google Scholar] [CrossRef] [PubMed]
- Trchounian, K.; Trchounian, A. Hydrogen production from glycerol by Escherichia coli and other bacteria: An overview and perspectives. Appl. Energy 2015, 156, 174–184. [Google Scholar] [CrossRef]
- Valle, A.; Cantero, D.; Bolívar, J. Metabolic engineering for the optimization of hydrogen production in Escherichia coli: A review. Biotechnol. Adv. 2019, 37, 616–633. [Google Scholar] [CrossRef]
- Dharmadi, Y.; Murarka, A.; Gonzalez, R. Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotechnol. Bioeng. 2006, 94, 821–829. [Google Scholar] [CrossRef]
- Trchounian, K.; Poladyan, A.; Vassilian, A.; Trchounian, A. Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: Dependence on fermentation substrate, pH and the F0F1-ATPase. Crit. Rev. Biochem. Mol. Biol. 2012, 47, 236–249. [Google Scholar] [CrossRef]
- Trchounian, A. Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology. Crit. Rev. Biotechnol. 2015, 35, 103–113. [Google Scholar] [CrossRef]
- Sawers, R.G.; Clark, D.P. Fermentative pyruvate and acetyl-coenzyme A metabolism. EcoSal Plus 2004, 1. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2006, 2, 2006.0008. [Google Scholar] [CrossRef] [Green Version]
- Valle, A.; Cabrera, G.; Cantero, D.; Bolivar, J. Identification of enhanced hydrogen and ethanol Escherichia coli producer strains in a glycerol-based medium by screening in single-knock out mutant collections. Microb. Cell Fact. 2015, 14, 93. [Google Scholar] [CrossRef] [Green Version]
- Valle, A.; Cabrera, G.; Muhamadali, H.; Trivedi, D.K.; Ratray, N.J.; Goodacre, R.; Cantero, D.; Bolivar, J. A systematic analysis of TCA Escherichia coli mutants reveals suitable genetic backgrounds for enhanced hydrogen and ethanol production using glycerol as main carbon source. Biotechnol. J. 2015, 10, 1750–1761. [Google Scholar] [CrossRef]
- Valle, A.; Cabrera, G.; Cantero, D.; Bolivar, J. Heterologous expression of the human Phosphoenol Pyruvate Carboxykinase (hPEPCK-M) improves hydrogen and ethanol synthesis in the Escherichia coli dcuD mutant when grown in a glycerol-based medium. New Biotechnol. 2017, 35, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Valle, A.; Haïlaf, A.; Ceballos, A.; Cantero, D.; Bolivar, J. Co-overexpression of the malate dehydrogenase (Mdh) and the malic enzyme A (MaeA) in several Escherichia coli mutant backgrounds increases malate redirection towards hydrogen production. Int. J. Hydrog. Energy 2021, 46, 15337–15350. [Google Scholar] [CrossRef]
- Heßlinger, C.; Fairhurst, S.A.; Sawers, G. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol. Microbiol. 1998, 27, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Sawers, G.; Heßlinger, C.; Muller, N.; Kaiser, M. The glycyl radical enzyme TdcE can replace pyruvate formate-lyase in glucose fermentation. J. Bacteriol. 1998, 180, 3509–3516. [Google Scholar] [CrossRef]
- Muhamadali, H.; Xu, Y.; Ellis, D.I.; Trivedi, D.K.; Rattray, N.J.W.; Bernaerts, K.; Goodacre, R. Metabolomics investigation of recombinant mTNFaα production in Streptomyces lividans. Microb. Cell Fact. 2015, 14, 157. [Google Scholar] [CrossRef] [Green Version]
- Muhamadali, H.; Xu, Y.; Ellis, D.I.; Allwood, J.W.; Rattray, N.J.W.; Correa, E.; Alrabiah, H.; Lloyd, J.R.; Goodacre, R. Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up. Appl. Environ. Microbiol. 2015, 81, 3288–3298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, H.; Nielsen, J.P.; Engelsen, S.B. Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Anal. Chem. 2003, 75, 394–404. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant analysis—A marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23. [Google Scholar] [CrossRef]
- Wedge, D.; Allwood, J.W.; Dunn, W.; Vaughan, A.A.; Simpson, K.; Brown, M.; Priest, L.; Blackhall, F.H.; Whetton, A.D.; Dive, C.; et al. Is Serum or Plasma More Appropriate for Intersubject Comparisons Lung Cancer. Anal. Chem. 2011, 83, 6689–6697. [Google Scholar] [CrossRef] [PubMed]
- Pedrioli, P.G.A.; Eng, J.K.; Hubley, R.; Vogelzang, M.; Deutsch, E.W.; Raught, B.; Pratt, B.; Nilsson, E.; Angeletti, R.H.; Apweiler, R.; et al. A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 2004, 22, 1459–1466. [Google Scholar] [CrossRef]
- Domingo-Almenara, X.; Brezmes, J.; Vinaixa, M.; Samino, S.; Ramirez, N.; Ramon-Krauel, M.; Lerin, C.; Díaz, M.; Ibáñez, L.; Correig, X.; et al. ERah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC/MS-Based Metabolomics. Anal. Chem. 2016, 88, 9821–9829. [Google Scholar] [CrossRef]
- Paley, S.; Parker, K.; Spaulding, A.; Tomb, J.F.; O’Maille, P.; Karp, P.D. The omics dashboard for interactive exploration of gene-expression data. Nucleic Acids Res. 2017, 45, 12113–12124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Genetic Characteristic | Reference |
---|---|---|
Strains | ||
Wild type | E. coli K12 BW25113 | Keio Collection |
M4 | ∆ldhA∆gnd∆frdBC::FRT | Valle et al. [17] |
M5 | ∆ldhA∆gnd∆frdBC∆tdcE::FRT | Valle et al. [17] |
M5/pBK | ∆ldhA∆gnd∆frdBC∆tdcE/pBAD-A-Kan | This study |
M5/pBK+pT | ∆ldhA∆gnd∆frdBC∆tdcE/pBAD-Kan+pTrc99a | This study |
M5/pBK-CIT | ∆ldhA∆gnd∆frdBC∆tdcE/pBAD-Kan-CIT | This study |
M5/pBK-CIT+pT-pepck | ∆ldhA∆gnd∆frdBC∆tdcE/pBAD-Kan-CIT+pTrc99A-pepck | This study |
M5/pBK-CIT+pBA-maeA | ∆ldhA∆gnd∆frdBC∆tdcE/pBAD-Kan-CIT+ pBAD/His-A-maeA | This study |
Primers | ||
pBK-Cit-NheI-Fw | gggGCTAGCaggaggaattaaccATGTTCGGCAATGATATTTTCACCC | This study |
pBK-Cit-SalI-Rev | gggGTCGACCAAGTGCTTAAATAAttaAATCTGTGC | This study |
CitD-Fw | AGCTCGTCAAAAGACCCCCG | This study |
CitX-Rev | CATGCGGTTGAGTAAATCGG | This study |
Kt | CGGCCACAGTCGATGAATCC | Datsenko & Wanner [16] |
Plasmids | ||
pBK | pBAD-18-Kan vector under control of PBAD promoter induced by l-arabinose | J. Beckwith (Harvard) |
pT | pTrc99a empty vector under control Ptrc promoter induced by IPTG | Pharmacia |
pBK-CIT | pBAD-18-Kan vector ligated with citrate lyase (CitCDEFXG) operon | This study |
pBA-maeA | pBAD/His-A (ampicillin resistance) ligated with the malic enzyme (maeA) gene derived from E. coli BW25113 | Valle et al. [20] |
pT-pepck | pTrc99a (ampicillin resistance) ligated with phosphoenol pyruvate carboxykinase enzyme (Pepck) from Homo sapiens | Valle et al. [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valle, A.; de la Calle, M.E.; Muhamadali, H.; Hollywood, K.A.; Xu, Y.; Lloyd, J.R.; Goodacre, R.; Cantero, D.; Bolivar, J. Metabolomics of Escherichia coli for Disclosing Novel Metabolic Engineering Strategies for Enhancing Hydrogen and Ethanol Production. Int. J. Mol. Sci. 2023, 24, 11619. https://doi.org/10.3390/ijms241411619
Valle A, de la Calle ME, Muhamadali H, Hollywood KA, Xu Y, Lloyd JR, Goodacre R, Cantero D, Bolivar J. Metabolomics of Escherichia coli for Disclosing Novel Metabolic Engineering Strategies for Enhancing Hydrogen and Ethanol Production. International Journal of Molecular Sciences. 2023; 24(14):11619. https://doi.org/10.3390/ijms241411619
Chicago/Turabian StyleValle, Antonio, Maria Elena de la Calle, Howbeer Muhamadali, Katherine A. Hollywood, Yun Xu, Jonathan R. Lloyd, Royston Goodacre, Domingo Cantero, and Jorge Bolivar. 2023. "Metabolomics of Escherichia coli for Disclosing Novel Metabolic Engineering Strategies for Enhancing Hydrogen and Ethanol Production" International Journal of Molecular Sciences 24, no. 14: 11619. https://doi.org/10.3390/ijms241411619
APA StyleValle, A., de la Calle, M. E., Muhamadali, H., Hollywood, K. A., Xu, Y., Lloyd, J. R., Goodacre, R., Cantero, D., & Bolivar, J. (2023). Metabolomics of Escherichia coli for Disclosing Novel Metabolic Engineering Strategies for Enhancing Hydrogen and Ethanol Production. International Journal of Molecular Sciences, 24(14), 11619. https://doi.org/10.3390/ijms241411619