Crystal Structure and Thermal Properties of Double-Complex Salts [M1(NH3)6][M2(C2O4)3] (M1, M2 = Co, Rh) and K3[Rh(NH3)6][Rh(C2O4)3]2∙6H2O
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Information about DCS
2.2. The Features of [Rh(NH3)6][Rh(C2O4)3] Synthesis
2.3. Crystal Structures of Complex Compounds
2.3.1. The Crystal Structure of [Rh(NH3)6][Co(C2O4)3]
2.3.2. The Crystal Structure of Compounds with P-3 Space Group
2.3.3. The Crystal Structure of K3[Rh(NH3)6][Rh(C2O4)3]2·6H2O
2.4. Thermal Decomposition of Complex Salts
2.4.1. The Decomposition of [Rh(NH3)6][Rh(C2O4)3] in Inert and Reducing Atmospheres
2.4.2. The Decomposition of [Co(NH3)6][Rh(C2O4)3] in Inert and Reducing Atmospheres
2.4.3. The Decomposition of [Rh(NH3)6][Co(C2O4)3] in Inert and Reducing Atmospheres
2.4.4. The Decomposition of K3[Rh(NH3)6][Rh(C2O4)3]2·6H2O in Inert and Reducing Atmospheres
3. Materials and Methods
3.1. The Synthesis of Compounds
3.1.1. The Synthesis of [Rh(NH3)6][Rh(C2O4)3]
3.1.2. The Synthesis of [Rh(NH3)6][Co(C2O4)3] and [Rh(NH3)6][Co(C2O4)3]·3H2O
3.1.3. The Synthesis of [Co(NH3)6][Rh(C2O4)3]
3.1.4. The Synthesis of K3[Rh(NH3)6][Rh(C2O4)3]2·6H2O
3.2. Characterisation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usman, M.; Daud, W.W.; Abbas, H.F. Dry reforming of methane: Influence of process parameters—A review. Renew. Sustain. Energy Rev. 2015, 45, 710–744. [Google Scholar]
- Hou, Z.; Chen, P.; Fang, H.; Zheng, X.; Yashima, T. Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. Int. J. Hydrogen Energy 2006, 31, 555–561. [Google Scholar] [CrossRef]
- Crisafulli, C.; Scirè, S.; Minicò, S.; Solarino, L. Ni–Ru bimetallic catalysts for the CO2 reforming of methane. Appl. Catal. A Gen. 2002, 225, 1–9. [Google Scholar] [CrossRef]
- Marzun, G.; Levish, A.; Mackert, V.; Kallio, T.; Barcikowski, S.; Wagener, P. Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis. J. Colloid Interface Sci. 2017, 489, 57–67. [Google Scholar] [PubMed]
- March, N.H. Chemical Bonds Outside Metal Surfaces; Plenum Press: New York, NY, USA, 1986. [Google Scholar]
- Filatov, E.; Smirnov, P.; Potemkin, D.; Pishchur, D.; Kryuchkova, N.; Plyusnin, P.; Korenev, S. Formation of catalytically active nanoparticles under thermolysis of silver chloroplatinate (II) and chloroplatinate (IV). Molecules 2022, 27, 1173. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, S.Y.; Kim, S.M.; Chung, Y.K. Cobalt–Rhodium Heterobimetallic Nanoparticle-Catalyzed Synthesis of α, β-Unsaturated Amides from Internal Alkynes, Amines, and Carbon Monoxide. Org. Lett. 2007, 9, 2465–2468. [Google Scholar] [CrossRef] [PubMed]
- Rengshausen, S.; Van Stappen, C.; Levin, N.; Tricard, S.; Luska, K.L.; DeBeer, S.; Leitner, W. Organometallic Synthesis of Bimetallic Cobalt-Rhodium Nanoparticles in Supported Ionic Liquid Phases (CoxRh100− x@ SILP) as Catalysts for the Selective Hydrogenation of Multifunctional Aromatic Substrates. Small 2021, 17, 2006683. [Google Scholar] [CrossRef] [PubMed]
- Korenev, S.V. Synthesis, Structure and Physicochemical Properties of Double Complex Salts of Platinum Metals with Ammonia and Halide Ions. Ph.D. Thesis, Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia, 2003. [Google Scholar]
- Vedyagin, A.A.; Plusnin, P.E.; Shubin, Y.V.; Rychkov, V.N.; Bereskina, P.A. Method of Bimetallic Palladium-Rhodium Catalysts Preparation (Versions): Patent of Invention.2021. Available online: http://hdl.handle.net/10995/104799 (accessed on 29 June 2023).
- Gladysheva, M.V.; Plyusnin, P.E.; Vorobyeva, S.N.; Komarov, V.Y.; Tkachev, S.V.; Shubin, Y.V.; Korenev, S.V. Complex salt [Pd(NH3)4][Pd(NH3)3NO2][RhOx3]·H2O as a prospective precursor of Pd–Rh nanoalloys. Crystal structure of Na3[RhOx3]·4H2O. J. Struct. Chem. 2021, 62, 782–793. [Google Scholar] [CrossRef]
- Filatov, E.Y.; Yusenko, K.V.; Vikulova, E.S.; Plyusnin, P.E.; Shubin, Y.V. XRD investigation and thermal properties of [Ir(NH3)6][Co(C2O4)3]•H2O and [Co(NH3)6][Ir(C2O4)3]-precursors for Co0.50Ir0.50. In Eleventh European Powder Diffraction Conference; Oldenbourg Wissenschaftsverlag: Munich, Germany, 2015; pp. 263–268. [Google Scholar]
- Yusenko, K.V.; Pechenyuk, S.I.; Vikulova, E.S.; Semushina, Y.P.; Baidina, I.A.; Filatov, E.Y. Isostructurality and Thermal Properties in the Series of Double Complex Salts [M1(NH3)6][M2(C2O4)3]·3H2O (M1= Co, Ir, M2= Fe, Cr). J. Struct. Chem. 2019, 60, 1062–1071. [Google Scholar]
- Filatov, E.; Lagunova, V.; Kochetygov, I.; Plyusnin, P.; Kuratieva, N.; Kostin, G.; Korenev, S. Synthesis and investigation of the thermal properties of [Co(NH3)6][Co(C2O4)3]·3H2O and [Ir(NH3)6][Ir(C2O4)3]. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2022, 78, 537–545. [Google Scholar]
- Khranenko, S.P.; Bykova, E.A.; Alexeyev, A.V.; Tyutyunnik, A.P.; Gromilov, S.A. Complex salts with participation of [Rh(NH3)6]3+ cations. J. Struct. Chem. 2012, 53, 521–526. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Organic Compounds; John Wiley & Sons, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Ingier-Stocka, E.; Maciejewski, M. Thermal decomposition of [Co(NH3)6]2(C2O4)3·4H2O: I. Identification of the solid products. Thermochim. Acta 2000, 354, 45–57. [Google Scholar] [CrossRef]
- Ingier-Stocka, E.; Maciejewski, M. Thermal decomposition of [Co(NH3)6]2(C2O4)3·4H2O: II. Identification of the gaseous products. Thermochim. Acta 2005, 432, 56–69. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Galwey, A.K.; Halawy, S.A. The activities of some metal oxides in promoting the thermal decomposition of potassium oxalate. Thermochim. Acta 2002, 387, 63–74. [Google Scholar] [CrossRef]
- Brauer, G. Handbook of Preparative Inorganiv Chemistry; Academic Press: New York, NY, USA, 1963; 1906p. [Google Scholar]
- Nomiya, K.; Ochiai, T.; Miwa, M. A novel preparation of keggin-type dodecatungstocobaltate (II) using [Co(ox)3]3− and hydrogen peroxide as starting materials. Polyhedron 1987, 6, 1513–1515. [Google Scholar] [CrossRef]
- Porte, A.L.; Gutowsky, H.S.; Harris, G.M. Proton Magnetic Resonance Study of Crystalline Potassium Trisoxalatorhodium (III) Hydrate. J. Chem. Phys. 1961, 34, 66–71. [Google Scholar] [CrossRef]
- Powder Diffraction File, PDF-2; International Centre for Diffraction Data: Newtown Square, PA, USA, 2014.
- Kraus, W.; Nolze, G. POWDERCELL 2.4, Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns; Federal Institute for Materials Research and Testing: Berlin, Germany, 2000. [Google Scholar]
- Krumm, S. An interactive Windows program for profile fitting and size/strain analysis. Mater. Sci. Forum 1996, 183, 228. [Google Scholar] [CrossRef]
- Koester, W.; Horn, E.Z. Zustandsbild und Gitterkonstanten der Legierungen des Kobalts mit Rhenium, Ruthenium, Osmium, Rhodium und Iridium. Int. J. Mater. Res. 1952, 43, 444–449. [Google Scholar] [CrossRef]
- Swanson, H.E. Standard X-ray Diffraction Powder Patterns; Circular 539 III; National Bureau of Standards: Gaithersburg, MD, USA, 1953.
- Monograph 25 4 10; The National Bureau of Standards: USA, 1966.
- Owen, E.A.; Jones, D.M. Effect of grain size on the crystal structure of cobalt. Proc. Phys. Society. Sect. B 1954, 67, 456. [Google Scholar] [CrossRef]
- Bruker AXS Inc. APEX2 (Version 2012.2-0), SAINT (Version 8.18c), and SADABS (Version 2008/1); Bruker Advanced X-ray Solutions: Madison, WI, USA, 2000–2012. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3. [Google Scholar]
- NETZSCH Proteus Thermal Analysis v.6.1.0—NETZSCH; Gerдtebau GmbH: Selb, Germany; Bayern, Germany, 2013.
[Rh(NH3)6][Rh(C2O4)3] 3H2O | [Rh(NH3)6][Co(C2O4)3] 3H2O | [Co(NH3)6][Rh(C2O4)3] 3H2O | |
---|---|---|---|
M1-N, Å | 2.0631(17)–2.0809(16) | 2.061(3)–2.076(2) | 1.955(4)–1.972(5) |
Average, Å | 2.0731(12) | 2.0705(10) | 1.9636(10) |
N-M1-N, ° | 87.44(7)–91.50(7) | 88.13(13)–91.37(13) | 86.80(18)–92.47(19) |
M2–O, Å | 2.0037(14)–2.0191(14) | 1.884(2)–1.910(2) | 1.9981(12)–2.0131(13) |
Average, Å | 2.0113(13) | 1.896(3) | 2.0072(11) |
O-M2-O, ° | 82.85(6)–83.39(6) | 85.57(10)–86.26(11) | 83.10(6)–86.24(5) |
CCDC Number | 2277193 | 2277194 | 2277195 | 2277196 | 2277197 |
---|---|---|---|---|---|
Empirical formula | [Rh(NH3)6] [Rh(C2O4)3]·3H2O | [Rh(NH3)6] [Co(C2O4)3]·3H2O | [Co(NH3)6] [Rh(C2O4)3]·3H2O | [Rh(NH3)6] [Co(C2O4)3] | K3[Rh(NH3)6] [Rh(C2O4)3]2·6H2O |
Formula weight | 626.13 | 582.15 | 582.15 | 528.10 | 1164.45 |
Temperature | 150(2) K | 293(2) K | 150(2) K | 293(2) K | 150(2) K |
Crystal system | trigonal | trigonal | trigonal | monoclinic | trigonal |
Space group | P-3 | P-3 | P-3 | P-1 | R-3 |
Unit cell dimensions | a = 12.5067(3) Å c = 21.2408(6) Å | a = 12.3686(3) Å c = 21.3200(5) Å | a = 12.4765(4) Å c = 31.1699(17) Å | a = 7.5278(2) Å b = 9.6146(2) Å c = 11.7285(3) Å α = 84.827(1)°. β = 87.866(1)°. γ = 71.567(1)°. | a = 10.1393(2) Å c = 29.2294(9) Å |
Volume | 2877.31(16) Å3 | 2824.61(15) Å3 | 4202.0(4) Å3 | 802.00(3) Å3 | 2602.35(13) Å3 |
Z | 6 | 6 | 9 | 2 | 3 |
F(000) | 1872 | 1764 | 2646 | 528 | 1728 |
Crystal size | 0.15 × 0.05 × 0.04 mm3 | 0.14 × 0.12 × 0.12 mm3 | 0.1 × 0.1 × 0.01 mm3 | 0.14 × 0.12 × 0.12 mm3 | 0.15 × 0.10 × 0.03 mm3 |
Index ranges | −18 ≤ h ≤ 18, −15 ≤ k ≤ 17, −31 ≤ l ≤ 31 | −15 ≤ h ≤ 14, −9 ≤ k ≤ 15, −27 ≤ l ≤ 27 | −15 ≤ h ≤ 15, −16 ≤ k ≤ 14, −39 ≤ l ≤ 40 | −8 ≤ h ≤ 9, −11 ≤ k ≤ 12, −15 ≤ l ≤ 15 | −12 ≤ h ≤ 14, −14 ≤ k ≤ 14, −41 ≤ l ≤ 41 |
Reflections collected | 35409 | 21106 | 65819 | 6831 | 9607 |
Independent reflections | 6208 [R(int) = 0.0356] | 4162 [R(int) = 0.0420] | 6219 [R(int) = 0.0796] | 3649 [R(int) = 0.0271] | 1774 [R(int) = 0.0290] |
Completeness to θ = 25.250° | 99.2% | 99.7% | 99.7% | 98.7% | 99.2% |
Data/restraints/parameters | 6208/0/269 | 4162/5/286 | 6219/0/324 | 3649/0/241 | 1774/0/95 |
Goodness-of-fit on F2 | 1.071 | 1.043 | 1.101 | 1.030 | 1.092 |
Final R indices [I > 2sigma(I)] | R1 = 0.0295, wR2 = 0.0769 | R1 = 0.0304, wR2 = 0.0701 | R1 = 0.0630, wR2 = 0.1213 | R1 = 0.0276, wR2 = 0.0682 | R1 = 0.0356, wR2 = 0.0996 |
R indices (all data) | R1 = 0.0354, wR2 = 0.0817 | R1 = 0.0381, wR2 = 0.0733 | R1 = 0.0852, wR2 = 0.1276 | R1 = 0.0314, wR2 = 0.0698 | R1 = 0.0396, wR2 = 0.1024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnov, P.; Filatov, E.; Kuratieva, N.; Plyusnin, P.; Korenev, S. Crystal Structure and Thermal Properties of Double-Complex Salts [M1(NH3)6][M2(C2O4)3] (M1, M2 = Co, Rh) and K3[Rh(NH3)6][Rh(C2O4)3]2∙6H2O. Int. J. Mol. Sci. 2023, 24, 12279. https://doi.org/10.3390/ijms241512279
Smirnov P, Filatov E, Kuratieva N, Plyusnin P, Korenev S. Crystal Structure and Thermal Properties of Double-Complex Salts [M1(NH3)6][M2(C2O4)3] (M1, M2 = Co, Rh) and K3[Rh(NH3)6][Rh(C2O4)3]2∙6H2O. International Journal of Molecular Sciences. 2023; 24(15):12279. https://doi.org/10.3390/ijms241512279
Chicago/Turabian StyleSmirnov, Pavel, Evgeny Filatov, Natalia Kuratieva, Pavel Plyusnin, and Sergey Korenev. 2023. "Crystal Structure and Thermal Properties of Double-Complex Salts [M1(NH3)6][M2(C2O4)3] (M1, M2 = Co, Rh) and K3[Rh(NH3)6][Rh(C2O4)3]2∙6H2O" International Journal of Molecular Sciences 24, no. 15: 12279. https://doi.org/10.3390/ijms241512279
APA StyleSmirnov, P., Filatov, E., Kuratieva, N., Plyusnin, P., & Korenev, S. (2023). Crystal Structure and Thermal Properties of Double-Complex Salts [M1(NH3)6][M2(C2O4)3] (M1, M2 = Co, Rh) and K3[Rh(NH3)6][Rh(C2O4)3]2∙6H2O. International Journal of Molecular Sciences, 24(15), 12279. https://doi.org/10.3390/ijms241512279