Synthesis and Evaluation of 177Lu-DOTA-PD-L1-i and 225Ac-HEHA-PD-L1-i as Potential Radiopharmaceuticals for Tumor Microenvironment-Targeted Radiotherapy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Chemical Characterization of DOTA-PD-L1-i and HEHA-PD-L1-i
2.2. Radiolabeling of PD-L1-i Ligands with 177Lu and 225Ac
2.3. In Vitro Evaluation
2.3.1. Stability
2.3.2. Cellular Uptake Assay
2.3.3. Cell Viability Assays
2.4. In Vivo Evaluation
2.4.1. Biodistribution and Biokinetic Models
2.4.2. Radioisotopic Imaging
3. Materials and Methods
3.1. Synthesis and Chemical Characterization of DOTA-PD-L1-i and HEHA-PD-L1-i
3.2. Radiolabeling with 177Lu and 225Ac
3.3. Serum Stability
3.4. Cellular Uptake
3.5. Immunofluorescence
3.6. Cell Viability Assay
3.7. Biodistribution and Studies
3.8. Absorbed Radiation Dose Assessment
3.9. Histopathological Assessment
3.10. Evaluation of Creatinine and Liver Enzyme Levels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Mice Group | Alanine Aminotransferase (ALT) (IU/L) | Creatinine (mg/dL) | Aspartate Aminotransferase (AST) (IU/L) |
---|---|---|---|
177Lu DOTA-PD-L1-i | 68 ± 4 | 0.199 ± 0.062 | 143 ± 14 |
225Ac-HEHA-PD-L1-i | 72 ± 5 | 0.202 ± 0.053 | 147 ± 18 |
Control | 71 ± 7 | 0.198 ± 0.057 | 150 ± 13 |
References
- Arneth, B. Tumor microenvironment. Medicina 2019, 56, 15. [Google Scholar] [CrossRef] [Green Version]
- Charpentier, M.; Spada, S.; Van Nest, S.J.; Demaria, S. Radiation therapy-induced remodeling of the tumor immune microenvironment. Semin. Cancer Biol. 2022, 86, 737–747. [Google Scholar] [CrossRef]
- Musetti, S.; Huang, L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano 2018, 12, 11740–11755. [Google Scholar] [CrossRef] [PubMed]
- Jailkhani, N.; Ingram, J.R.; Rashidian, M.; Rickelt, S.; Tian, C.; Mak, H.; Jiang, Z.; Ploegh, H.L.; Hynes, R.O. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc. Natl. Acad. Sci. USA 2019, 116, 14181–14190. [Google Scholar] [CrossRef] [Green Version]
- Demmer, O.; Gourni, E.; Schumacher, U.; Kessler, H.; Wester, H.J. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem 2011, 6, 1789–1791. [Google Scholar] [CrossRef] [Green Version]
- Ávila-Sánchez, M.; Ferro-Flores, G.; Jiménez-Mancilla, N.; Ocampo-García, B.; Bravo-Villegas, G.; Luna-Gutiérrez, M.; Santos-Cuevas, C.; Azorín-Vega, E.; Aranda-Lara, L.; Isaac-Olivé, K. Synthesis and preclinical evaluation of the 99m Tc-/177 Lu-CXCR4-L theranostic pair for in vivo chemokine-4 receptor-specific targeting. J. Radioanal. Nucl. Chem. 2020, 324, 21–32. [Google Scholar] [CrossRef]
- Mikaeili, A.; Erfani, M.; Shafiei, M.; Kobarfard, F.; Abdi, K.; Sabzevari, O. Development of a 99mTc-labeled CXCR4 antagonist derivative as a new tumor radiotracer. Cancer Biother. Radiopharm. 2018, 33, 17–24. [Google Scholar] [PubMed]
- Lindner, T.; Loktev, A.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Jäger, D.; Mier, W.; Haberkorn, U. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J. Nucl. Med. 2018, 59, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Trujillo-Benítez, D.; Luna-Gutiérrez, M.; Ferro-Flores, G.; Ocampo-García, B.; Santos-Cuevas, C.; Bravo-Villegas, G.; Morales-Ávila, E.; Cruz-Nova, P.; Díaz-Nieto, L.; García-Quiroz, J. Design, Synthesis and Preclinical Assessment of 99mTc-iFAP for In Vivo Fibroblast Activation Protein (FAP) Imaging. Molecules 2022, 27, 264. [Google Scholar] [CrossRef]
- Loktev, A.; Lindner, T.; Burger, E.-M.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Marmé, F.; Jäger, D.; Mier, W. Development of fibroblast activation protein–targeted radiotracers with improved tumor retention. J. Nucl. Med. 2019, 60, 1421–1429. [Google Scholar] [CrossRef]
- Vallejo-Armenta, P.; Ferro-Flores, G.; Santos-Cuevas, C.; García-Pérez, F.O.; Casanova-Triviño, P.; Sandoval-Bonilla, B.; Ocampo-García, B.; Azorín-Vega, E.; Luna-Gutiérrez, M. [99mTc] Tc-iFAP/SPECT Tumor Stroma Imaging: Acquisition and Analysis of Clinical Images in Six Different Cancer Entities. Pharmaceuticals 2022, 15, 729. [Google Scholar] [CrossRef] [PubMed]
- Dabir, M.; Novruzov, E.; Mattes-György, K.; Beu, M.; Dendl, K.; Antke, C.; Koerber, S.; Röhrich, M.; Kratochwil, C.; Debus, J. Distinguishing benign and malignant findings on [68 ga]-FAPI PET/CT based on quantitative SUV measurements. Mol. Imaging Biol. 2023, 25, 324–333. [Google Scholar] [CrossRef]
- Ludwig, B.S.; Kessler, H.; Kossatz, S.; Reuning, U. RGD-binding integrins revisited: How recently discovered functions and novel synthetic ligands (re-) shape an ever-evolving field. Cancers 2021, 13, 1711. [Google Scholar] [CrossRef] [PubMed]
- Van de Wiele, C.; Sathekge, M.; De Spiegeleer, B.; De Jonghe, P.J.; Debruyne, P.R.; Borms, M.; Beels, L.; Maes, A. PSMA expression on neovasculature of solid tumors. Histol. Histopathol. 2020, 35, 919–927. [Google Scholar] [PubMed]
- An, S.; Huang, G.; Liu, J.; Wei, W. PSMA-targeted theranostics of solid tumors: Applications beyond prostate cancers. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3973–3976. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, G.; Grech, C.; Pils, D.; Pammer, J.; Neudert, B.; Pötsch, N.; Baltzer, P.; Traub-Weidinger, T.; Seebacher, V.; Aust, S. Prostate-Specific Membrane Antigen (PSMA) Expression in Tumor-Associated Neovasculature Is an Independent Prognostic Marker in Patients with Ovarian Cancer. J. Pers. Med. 2022, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Armenta, P.; Soto-Andonaegui, J.; Villanueva-Pérez, R.M.; González-Díaz, J.I.; Contreras-Contreras, K.; Bautista-Wong, C.G.; Sandoval-Bonilla, B.; Nettel-Rueda, B.; Santos-Cuevas, C.; Ferro-Flores, G. [99mTc] Tc-iPSMA SPECT brain imaging as a potential specific diagnosis of metastatic brain tumors and high-grade gliomas. Nucl. Med. Biol. 2021, 96, 1–8. [Google Scholar] [CrossRef]
- Hernández-Jiménez, T.; Cruz-Nova, P.; Ancira-Cortez, A.; Gibbens-Bandala, B.; Lara-Almazán, N.; Ocampo-García, B.; Santos-Cuevas, C.; Morales-Avila, E.; Ferro-Flores, G. Toxicity Assessment of [177Lu]Lu−iFAP/iPSMA Nanoparticles Prepared under GMP-Compliant Radiopharmaceutical Processes. Nanomaterials 2022, 12, 4181. [Google Scholar] [CrossRef]
- Luna-Gutiérrez, M.; Ocampo-García, B.; Jiménez-Mancilla, N.; Ancira-Cortez, A.; Trujillo-Benítez, D.; Hernández-Jiménez, T.; Ramírez-Nava, G.; Hernández-Ramírez, R.; Santos-Cuevas, C.; Ferro-Flores, G. Targeted Endoradiotherapy with Lu2O3-iPSMA/-iFAP Nanoparticles Activated by Neutron Irradiation: Preclinical Evaluation and First Patient Image. Pharmaceutics 2022, 14, 720. [Google Scholar] [CrossRef]
- Ocampo-García, B.; Lara, L.A.; Ferro-Flores, G.; Morales-Avila, E.; Isaac-Olivé, K. Role of Nanotechnology in Biological Therapies. Nanomater. Nanotechnol. Med. 2022, 115–151. [Google Scholar] [CrossRef]
- Melendez-Alafort, L.; Ferro-Flores, G.; De Nardo, L.; Ocampo-García, B.; Bolzati, C. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coord. Chem. Rev. 2023, 479, 215005. [Google Scholar] [CrossRef]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.-J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.W.; Weber, J.S. Safety and tumor responses with lambrolizumab (anti–PD-1) in melanoma. N. Engl. J. Med. 2013, 369, 134–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garassino, M.C.; Gadgeel, S.; Speranza, G.; Felip, E.; Esteban, E.; Dómine, M.; Hochmair, M.J.; Powell, S.F.; Bischoff, H.G.; Peled, N. Pembrolizumab plus pemetrexed and platinum in nonsquamous non–small-cell lung cancer: 5-year outcomes from the phase 3 KEYNOTE-189 study. J. Clin. Oncol. 2023, 41, 1992. [Google Scholar] [CrossRef]
- Chatterjee, S.; Lesniak, W.G.; Miller, M.S.; Lisok, A.; Sikorska, E.; Wharram, B.; Kumar, D.; Gabrielson, M.; Pomper, M.G.; Gabelli, S.B. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem. Biophys. Res. Commun. 2017, 483, 258–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Silva, R.A.; Kumar, D.; Lisok, A.; Chatterjee, S.; Wharram, B.; Venkateswara Rao, K.; Mease, R.; Dannals, R.F.; Pomper, M.G.; Nimmagadda, S. Peptide-based 68Ga-PET radiotracer for imaging PD-L1 expression in cancer. Mol. Pharm. 2018, 15, 3946–3952. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Jiang, J.; Yang, X.; Liu, T.; Ding, J.; Nimmagadda, S.; Pomper, M.G.; Zhu, H.; Zhao, J.; Yang, Z. First-in-humans evaluation of a PD-L1–binding peptide PET radiotracer in non–small cell lung cancer patients. J. Nucl. Med. 2022, 63, 536–542. [Google Scholar] [CrossRef]
- Krutzek, F.; Kopka, K.; Stadlbauer, S. Development of Radiotracers for Imaging of the PD-1/PD-L1 Axis. Pharmaceuticals 2022, 15, 747. [Google Scholar] [CrossRef]
- Miller, M.M.; Mapelli, C.; Allen, M.P.; Bowsher, M.S.; Boy, K.M.; Gillis, E.P.; Langley, D.R.; Mull, E.; Poirier, M.A.; Sanghvi, N. Macrocyclic Inhibitors of the pd-1/pd-l1 and cd80 (b7-1)/pd-l1 Protein/Protein Interactions. Bristol Myers Squibb Co. U. S. A. 20161093pp. WO2016039749A1, 17 March 2016. [Google Scholar]
- Ferro-Flores, G.; Arteaga de Murphy, C.; Melendez-Alafort, L. Third generation radiopharmaceuticals for imaging and targeted therapy. Curr. Pharm. Anal. 2006, 2, 339–352. [Google Scholar] [CrossRef]
- Lacoeuille, F.; Arlicot, N.; Faivre-Chauvet, A. Targeted alpha and beta radiotherapy: An overview of radiopharmaceutical and clinical aspects. Médecine Nucléaire 2018, 42, 32–44. [Google Scholar] [CrossRef]
- Deal, K.A.; Davis, I.A.; Mirzadeh, S.; Kennel, S.J.; Brechbiel, M.W. Improved in vivo stability of actinium-225 macrocyclic complexes. J. Med. Chem. 1999, 42, 2988–2992. [Google Scholar] [CrossRef]
- Thiele, N.A.; Wilson, J.J. Actinium-225 for Targeted a Therapy: Coordination Chemistry and Current Chelation Approaches. Cancer Biother. Radiopharm. 2018, 33, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Jiménez, T.; Ferro-Flores, G.; Morales-Ávila, E.; Isaac-Olivé, K.; Ocampo-García, B.; Aranda-Lara, L.; Santos-Cuevas, C.; Luna-Gutiérrez, M.; De Nardo, L.; Rosato, A. 225Ac-rHDL Nanoparticles: A Potential Agent for Targeted Alpha-Particle Therapy of Tumors Overexpressing SR-BI Proteins. Molecules 2022, 27, 2156. [Google Scholar] [CrossRef] [PubMed]
- Bannik, K.; Madas, B.; Jarzombek, M.; Sutter, A.; Siemeister, G.; Mumberg, D.; Zitzmann-Kolbe, S. Radiobiological effects of the alpha emitter Ra-223 on tumor cells. Sci. Rep. 2019, 9, 18489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manohar, S.; Kompotiatis, P.; Halfdanarson, T.R.; Hobday, T.J.; Thorpe, M.; Johnson, G.B.; Kendi, A.T.; Leung, N. 177Lu-dotatate use in chronic kidney disease patients: A single center experience. J. Onco-Nephrol. 2021, 5, 162–171. [Google Scholar] [CrossRef]
- Li, H.; Luo, Q.; Zhang, H.; Ma, X.; Gu, Z.; Gong, Q.; Luo, K. Nanomedicine embraces cancer radio-immunotherapy: Mechanism, design, recent advances, and clinical translation. Chem. Soc. Rev. 2023, 52, 47–96. [Google Scholar] [CrossRef]
- Abuodeh, Y.; Venkat, P.; Kim, S. Systematic review of case reports on the abscopal effect. Curr. Probl. Cancer 2016, 40, 25–37. [Google Scholar] [CrossRef]
- Bellavia, M.C.; Patel, R.B.; Anderson, C.J. Combined Targeted Radiopharmaceutical Therapy and Immune Checkpoint Blockade: From Preclinical Advances to the Clinic. J. Nucl. Med. 2022, 63, 1636–1641. [Google Scholar] [CrossRef]
Organ | 177Lu-DOTA-PD-L1-i | 225Ac-HEHA-PD-L1-i | ||
---|---|---|---|---|
Radiation Absorbed Dose |
Radiation Absorbed Dose | |||
Lung (HCC827 cancer cells) | 59.3 | 43.0 | 18.9 | 5.15 |
Kidney | 10.9 | 4.20 | 11.1 | 4.83 |
Liver | 9.67 | 0.85 | 11.5 | 1.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna-Gutiérrez, M.; Cruz-Nova, P.; Jiménez-Mancilla, N.; Oros-Pantoja, R.; Lara-Almazán, N.; Santos-Cuevas, C.; Azorín-Vega, E.; Ocampo-García, B.; Ferro-Flores, G. Synthesis and Evaluation of 177Lu-DOTA-PD-L1-i and 225Ac-HEHA-PD-L1-i as Potential Radiopharmaceuticals for Tumor Microenvironment-Targeted Radiotherapy. Int. J. Mol. Sci. 2023, 24, 12382. https://doi.org/10.3390/ijms241512382
Luna-Gutiérrez M, Cruz-Nova P, Jiménez-Mancilla N, Oros-Pantoja R, Lara-Almazán N, Santos-Cuevas C, Azorín-Vega E, Ocampo-García B, Ferro-Flores G. Synthesis and Evaluation of 177Lu-DOTA-PD-L1-i and 225Ac-HEHA-PD-L1-i as Potential Radiopharmaceuticals for Tumor Microenvironment-Targeted Radiotherapy. International Journal of Molecular Sciences. 2023; 24(15):12382. https://doi.org/10.3390/ijms241512382
Chicago/Turabian StyleLuna-Gutiérrez, Myrna, Pedro Cruz-Nova, Nallely Jiménez-Mancilla, Rigoberto Oros-Pantoja, Nancy Lara-Almazán, Clara Santos-Cuevas, Erika Azorín-Vega, Blanca Ocampo-García, and Guillermina Ferro-Flores. 2023. "Synthesis and Evaluation of 177Lu-DOTA-PD-L1-i and 225Ac-HEHA-PD-L1-i as Potential Radiopharmaceuticals for Tumor Microenvironment-Targeted Radiotherapy" International Journal of Molecular Sciences 24, no. 15: 12382. https://doi.org/10.3390/ijms241512382
APA StyleLuna-Gutiérrez, M., Cruz-Nova, P., Jiménez-Mancilla, N., Oros-Pantoja, R., Lara-Almazán, N., Santos-Cuevas, C., Azorín-Vega, E., Ocampo-García, B., & Ferro-Flores, G. (2023). Synthesis and Evaluation of 177Lu-DOTA-PD-L1-i and 225Ac-HEHA-PD-L1-i as Potential Radiopharmaceuticals for Tumor Microenvironment-Targeted Radiotherapy. International Journal of Molecular Sciences, 24(15), 12382. https://doi.org/10.3390/ijms241512382