Transglutaminase in Foods and Biotechnology
Abstract
:1. Introduction
2. Enzymatic Properties of TGMs
3. Origins of TGMs
4. Applications of TGM
4.1. TGM Immobilization
4.2. Food Related Industries
4.2.1. Dairy Industry
- -
- the addition of TGM to milk, followed by heating for pasteurization and deactivation of enzymes, concluded with the addition of rennet to the milk;
- -
- the addition of rennet to the milk, followed by the addition of TGM;
- -
- the addition of TGM and rennet at the same time.
4.2.2. Baking Industry
4.2.3. Meat Industry
4.3. Biotechnology and Cosmetics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kant Bhatia, S.; Vivek, N.; Kumar, V.; Chandel, N.; Thakur, M.; Kumar, D.; Yang, Y.-H.; Pugazendhi, A.; Kumar, G. Molecular Biology Interventions for Activity Improvement and Production of Industrial Enzymes. Bioresour. Technol. 2021, 324, 124596. [Google Scholar] [CrossRef]
- Kari, J.; Schaller, K.; Molina, G.A.; Borch, K.; Westh, P. The Sabatier Principle as a Tool for Discovery and Engineering of Industrial Enzymes. Curr. Opin. Biotechnol. 2022, 78, 102843. [Google Scholar] [CrossRef]
- Tarafdar, A.; Sirohi, R.; Gaur, V.K.; Kumar, S.; Sharma, P.; Varjani, S.; Pandey, H.O.; Sindhu, R.; Madhavan, A.; Rajasekharan, R.; et al. Engineering Interventions in Enzyme Production: Lab to Industrial Scale. Bioresour. Technol. 2021, 326, 124771. [Google Scholar] [CrossRef] [PubMed]
- Trevisol, T.C.; Henriques, R.O.; Souza, A.J.A.; Furigo, A. An Overview of the Use of Proteolytic Enzymes as Exfoliating Agents. J. Cosmet. Dermatol. 2022, 21, 3300–3307. [Google Scholar] [CrossRef] [PubMed]
- Basso, A.; Serban, S. Industrial Applications of Immobilized Enzymes—A Review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Zhang, K.; Qu, G.; Liu, W.; Sun, Z. Structure-function relationships of industrial enzymes. Sheng Wu Gong Cheng Xue Bao 2019, 35, 1806–1818. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Roy, I. Converting Enzymes into Tools of Industrial Importance. Recent Pat. Biotechnol. 2018, 12, 33–56. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, A.; Arun, K.B.; Binod, P.; Sirohi, R.; Tarafdar, A.; Reshmy, R.; Kumar Awasthi, M.; Sindhu, R. Design of Novel Enzyme Biocatalysts for Industrial Bioprocess: Harnessing the Power of Protein Engineering, High Throughput Screening and Synthetic Biology. Bioresour. Technol. 2021, 325, 124617. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Overview of Immobilized Enzymes’ Applications in Pharmaceutical, Chemical, and Food Industry. Methods Mol. Biol. 2020, 2100, 27–63. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, J.; Mehandia, S.; Singh, G.; Raina, A.; Arya, S.K. Catalase Enzyme: Application in Bioremediation and Food Industry. Biocatal. Agric. Biotechnol. 2018, 16, 192–199. [Google Scholar] [CrossRef]
- Macek, B.; Forchhammer, K.; Hardouin, J.; Weber-Ban, E.; Grangeasse, C.; Mijakovic, I. Protein Post-Translational Modifications in Bacteria. Nat. Rev. Microbiol. 2019, 17, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.H.; Yoo, H.M. Emerging Role of Protein Modification by UFM1 in Cancer. Biochem. Biophys. Res. Commun. 2022, 633, 61–63. [Google Scholar] [CrossRef]
- Keenan, E.K.; Zachman, D.K.; Hirschey, M.D. Discovering the Landscape of Protein Modifications. Mol. Cell 2021, 81, 1868–1878. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Chen, R. Pathological Implication of Protein Post-Translational Modifications in Cancer. Mol. Asp. Med. 2022, 86, 101097. [Google Scholar] [CrossRef] [PubMed]
- Miwa, N. Innovation in the Food Industry Using Microbial Transglutaminase: Keys to Success and Future Prospects. Anal. Biochem. 2020, 597, 113638. [Google Scholar] [CrossRef]
- Moulton, K.R.; Sadiki, A.; Koleva, B.N.; Ombelets, L.J.; Tran, T.H.; Liu, S.; Wang, B.; Chen, H.; Micheloni, E.; Beuning, P.J.; et al. Site-Specific Reversible Protein and Peptide Modification: Transglutaminase-Catalyzed Glutamine Conjugation and Bioorthogonal Light-Mediated Removal. Bioconjug. Chem. 2019, 30, 1617–1621. [Google Scholar] [CrossRef]
- Stender, E.G.P.; Koutina, G.; Almdal, K.; Hassenkam, T.; Mackie, A.; Ipsen, R.; Svensson, B. Isoenergic Modification of Whey Protein Structure by Denaturation and Crosslinking Using Transglutaminase. Food Funct. 2018, 9, 797–805. [Google Scholar] [CrossRef]
- Deweid, L.; Hadjabdelhafid-Parisien, A.; Lafontaine, K.; Rochet, L.N.C.; Kolmar, H.; Pelletier, J.N. Glutamine-Walking: Creating Reactive Substrates for Transglutaminase-Mediated Protein Labeling. Methods Enzymol. 2020, 644, 121–148. [Google Scholar] [CrossRef]
- Akbari, M.; Razavi, S.H.; Kieliszek, M. Recent Advances in Microbial Transglutaminase Biosynthesis and Its Application in the Food Industry. Trends Food Sci. Technol. 2021, 110, 458–469. [Google Scholar] [CrossRef]
- Giosafatto, C.V.L.; Al-Asmar, A.; Mariniello, L. Transglutaminase Protein Substrates of Food Interest. In Enzymes in Food Technology: Improvements and Innovations; Kuddus, M., Ed.; Springer: Singapore, 2018; pp. 293–317. ISBN 9789811319334. [Google Scholar]
- Fatima, S.W.; Khare, S.K. Current Insight and Futuristic Vistas of Microbial Transglutaminase in Nutraceutical Industry. Microbiol. Res. 2018, 215, 7–14. [Google Scholar] [CrossRef]
- Wilhelmus, M.M.M.; Jongenelen, C.A.; Bol, J.G.J.M.; Drukarch, B. Interaction between Tissue Transglutaminase and Amyloid-Beta: Protein-Protein Binding versus Enzymatic Crosslinking. Anal. Biochem. 2020, 592, 113578. [Google Scholar] [CrossRef]
- Alaneed, R.; Naumann, M.; Pietzsch, M.; Kressler, J. Microbial Transglutaminase-Mediated Formation of Erythropoietin-Polyester Conjugates. J. Biotechnol. 2022, 346, 1–10. [Google Scholar] [CrossRef]
- Wu, T.; Huang, H.; Sheng, Y.; Shi, H.; Min, Y.; Liu, Y. Transglutaminase Mediated PEGylation of Nanobodies for Targeted Nano-Drug Delivery. J. Mater. Chem. B 2018, 6, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Dell’Olmo, E.; Gaglione, R.; Arciello, A.; Piccoli, R.; Cafaro, V.; Di Maro, A.; Ragucci, S.; Porta, R.; Giosafatto, C.V.L. Transglutaminase-Mediated Crosslinking of a Host Defence Peptide Derived from Human Apolipoprotein B and Its Effect on the Peptide Antimicrobial Activity. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129803. [Google Scholar] [CrossRef] [PubMed]
- Romeih, E.; Walker, G. Recent Advances on Microbial Transglutaminase and Dairy Application. Trends Food Sci. Technol. 2017, 62, 133–140. [Google Scholar] [CrossRef]
- Zhang, J.; Li, T.; Chen, Q.; Liu, H.; Kaplan, D.L.; Wang, Q. Application of Transglutaminase Modifications for Improving Protein Fibrous Structures from Different Sources by High-Moisture Extruding. Food Res. Int. 2023, 166, 112623. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Lee, D.-S.; Mori, T. Molecular Weight Distributions of α-Lactalbumin Polymers Formed by Mammalian and Microbial Transglutaminases. Food Hydrocoll. 2000, 14, 49–59. [Google Scholar] [CrossRef]
- Jaros, D.; Partschefeld, C.; Henle, T.; Rohm, H. Transglutaminase in Dairy Products: Chemistry, Physics, Applications. J. Texture Stud. 2006, 37, 113–155. [Google Scholar] [CrossRef]
- Yokoyama, K.; Nio, N.; Kikuchi, Y. Properties and Applications of Microbial Transglutaminase. Appl. Microbiol. Biotechnol. 2004, 64, 447–454. [Google Scholar] [CrossRef]
- Raak, N.; Abbate, R.A.; Lederer, A.; Rohm, H.; Jaros, D. Size Separation Techniques for the Characterisation of Cross-Linked Casein: A Review of Methods and Their Applications. Separations 2018, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Guyot, C.; Kulozik, U. Effect of Transglutaminase-Treated Milk Powders on the Properties of Skim Milk Yoghurt. Int. Dairy J. 2011, 21, 628–635. [Google Scholar] [CrossRef]
- Velazquez-Dominguez, A.; Hiolle, M.; Abdallah, M.; Delaplace, G.; Peixoto, P.P.S. Transglutaminase Cross-Linking on Dairy Proteins: Functionalities, Patents, and Commercial Uses. Int. Dairy J. 2023, 143, 105688. [Google Scholar] [CrossRef]
- RCSB Protein Data Bank. RCSB PDB: Homepage. Available online: https://www.rcsb.org/ (accessed on 12 March 2023).
- Adrio, J.L.; Demain, A.L. Microbial Enzymes: Tools for Biotechnological Processes. Biomolecules 2014, 4, 117–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, C.G.; Plácido, D.; Lousa, D.; Brito, J.A.; Isidro, A.; Soares, C.M.; Pohl, J.; Carrondo, M.A.; Archer, M.; Henriques, A.O. Structural and Functional Characterization of an Ancient Bacterial Transglutaminase Sheds Light on the Minimal Requirements for Protein Cross-Linking. Biochemistry 2015, 54, 5723–5734. [Google Scholar] [CrossRef] [PubMed]
- Duarte, L.; Matte, C.R.; Bizarro, C.V.; Ayub, M.A.Z. Transglutaminases: Part I—Origins, Sources, and Biotechnological Characteristics. World J. Microbiol. Biotechnol. 2020, 36, 15. [Google Scholar] [CrossRef] [PubMed]
- Luciano, F.B.; Arntfield, S. Use of Transglutaminases in Foods and Potential Utilization of Plants as a Transglutaminase Source—Review. Biotemas 2012, 25, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, R.; Khosla, C. Substrates, Inhibitors, and Probes of Mammalian Transglutaminase 2. Anal. Biochem. 2020, 591, 113560. [Google Scholar] [CrossRef]
- Jeitner, T.M.; Kelly, J.M. Stabilization of Guinea Pig Transglutaminase 2 Solutions. Anal. Biochem. 2022, 657, 114885. [Google Scholar] [CrossRef]
- Kieliszek, M.; Misiewicz, A. Microbial Transglutaminase and Its Application in the Food Industry. A Review. Folia Microbiol. 2014, 59, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Taghi Gharibzahedi, S.M.; Koubaa, M.; Barba, F.J.; Greiner, R.; George, S.; Roohinejad, S. Recent Advances in the Application of Microbial Transglutaminase Crosslinking in Cheese and Ice Cream Products: A Review. Int. J. Biol. Macromol. 2018, 107, 2364–2374. [Google Scholar] [CrossRef]
- Sobieszczuk-Nowicka, E.; Krzesłowska, M.; Legocka, J. Transglutaminases and Their Substrates in Kinetin-Stimulated Etioplast-to-Chloroplast Transformation in Cucumber Cotyledons. Protoplasma 2008, 233, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.; Carvajal-Vallejos, P.K.; Villalobos, E.; Franco, C.F.; Almeida, A.M.; Coelho, A.V.; Torné, J.M.; Santos, M. Characterisation of Zea mays L. Plastidial Transglutaminase: Interactions with Thylakoid Membrane Proteins. Plant Biol. 2010, 12, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Duarte, L.S.; Matte, C.R.; Dall Cortivo, P.R.; Nunes, J.E.S.; Barsé, L.Q.; Bizarro, C.V.; Ayub, M.A.Z. Expression of Bacillus amyloliquefaciens Transglutaminase in Recombinant E. coli under the Control of a Bicistronic Plasmid System in DO-Stat Fed-Batch Bioreactor Cultivations. Braz. J. Microbiol. 2021, 52, 1225–1233. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, B.; Du, J.; Xu, Y.; Zhu, X.; Zhou, J.; Rao, S.; Du, G.; Chen, J.; Liu, S. Active Secretion of a Thermostable Transglutaminase Variant in Escherichia coli. Microb. Cell Fact. 2022, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Sato, R.; Minamihata, K.; Ariyoshi, R.; Taniguchi, H.; Kamiya, N. Recombinant Production of Active Microbial Transglutaminase in E. coli by Using Self-Cleavable Zymogen with Mutated Propeptide. Protein Expr. Purif. 2020, 176, 105730. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Date, M.; Yokoyama, K.; Umezawa, Y.; Matsui, H. Secretion of Active-Form Streptoverticillium mobaraense Transglutaminase by Corynebacterium glutamicum: Processing of the pro-Transglutaminase by a Cosecreted Subtilisin-like Protease from Streptomyces albogriseolus. Appl. Environ. Microbiol. 2003, 69, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Kashiwagi, T.; Yokoyama, K.-I.; Ishikawa, K.; Ono, K.; Ejima, D.; Matsui, H.; Suzuki, E. Crystal Structure of Microbial Transglutaminase from Streptoverticillium mobaraense. J. Biol. Chem. 2002, 277, 44252–44260. [Google Scholar] [CrossRef] [Green Version]
- Date, M.; Yokoyama, K.; Umezawa, Y.; Matsui, H.; Kikuchi, Y. Production of Native-Type Streptoverticillium mobaraense Transglutaminase in Corynebacterium glutamicum. Appl. Environ. Microbiol. 2003, 69, 3011–3014. [Google Scholar] [CrossRef] [Green Version]
- Pasternack, R.; Dorsch, S.; Otterbach, J.T.; Robenek, I.R.; Wolf, S.; Fuchsbauer, H.L. Bacterial Pro-Transglutaminase from Streptoverticillium mobaraense—Purification, Characterisation and Sequence of the Zymogen. Eur. J. Biochem. 1998, 257, 570–576. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Rodríguez, E.; Vázquez, M. Evaluation of a Novel Low-Cost Culture Medium Containing Exclusively Milk, Potato and Glycerol for Microbial Transglutaminase Production by Streptomyces mobaraensis. Chem. Eng. Res. Des. 2014, 92, 784–791. [Google Scholar] [CrossRef]
- Hirono-Hara, Y.; Yui, M.; Hara, K.Y. Production of Transglutaminase in Glutathione-Producing Recombinant Saccharomyces Cerevisiae. AMB Express 2021, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Y.; Yuan, Z.; Zou, X.; Ji, Y.; Hou, J.; Zhang, J.; Lu, F.; Liu, Y. Crosslinking Mechanism on a Novel Bacillus Cereus Transglutaminase-Mediated Conjugation of Food Proteins. Foods 2022, 11, 3722. [Google Scholar] [CrossRef]
- Santhi, D.; Kalaikannan, A.; Malairaj, P.; Arun Prabhu, S. Application of Microbial Transglutaminase in Meat Foods: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2071–2076. [Google Scholar] [CrossRef]
- Ohtake, K.; Mukai, T.; Iraha, F.; Takahashi, M.; Haruna, K.-I.; Date, M.; Yokoyama, K.; Sakamoto, K. Engineering an Automaturing Transglutaminase with Enhanced Thermostability by Genetic Code Expansion with Two Codon Reassignments. ACS Synth. Biol. 2018, 7, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, L.; Zheng, D.; Fu, Y.; Shan, M.; Li, Y.; Xu, Z.; Jia, L.; Wang, W.; Lu, F. Characterization of Transglutaminase from Bacillus subtilis and Its Cross-Linking Function with a Bovine Serum Albumin Model. Food Funct. 2018, 9, 5560–5568. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wang, Y.; Ju, J.; Cheng, L.; Xu, Y.; Yu, B.; Wang, L. Extracellular Production of Active-Form Streptomyces mobaraensis Transglutaminase in Bacillus subtilis. Appl. Microbiol. Biotechnol. 2020, 104, 623–631. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Z.; Li, Z.; Tian, Y. Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties. J. Microbiol. Biotechnol. 2020, 30, 1082–1091. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Guo, Z.; Wang, C.; Kang, H.; Li, J.; Wang, W.; Li, Y.; Lu, F.; Liu, Y. Enhancing the Functional Characteristics of Soy Protein Isolate via Cross-Linking Catalyzed by Bacillus subtilis Transglutaminase. J. Sci. Food Agric. 2021, 101, 4154–4160. [Google Scholar] [CrossRef]
- Salis, B.; Spinetti, G.; Scaramuzza, S.; Bossi, M.; Saccani Jotti, G.; Tonon, G.; Crobu, D.; Schrepfer, R. High-Level Expression of a Recombinant Active Microbial Transglutaminase in Escherichia coli. BMC Biotechnol. 2015, 15, 84. [Google Scholar] [CrossRef] [Green Version]
- Steffen, W.; Ko, F.C.; Patel, J.; Lyamichev, V.; Albert, T.J.; Benz, J.; Rudolph, M.G.; Bergmann, F.; Streidl, T.; Kratzsch, P.; et al. Discovery of a Microbial Transglutaminase Enabling Highly Site-Specific Labeling of Proteins. J. Biol. Chem. 2017, 292, 15622–15635. [Google Scholar] [CrossRef] [Green Version]
- Giordano, D.; Langini, C.; Caflisch, A.; Marabotti, A.; Facchiano, A. Molecular Dynamics Analysis of the Structural Properties of the Transglutaminases of Kutzneria albida and Streptomyces mobaraensis. Comput. Struct. Biotechnol. J. 2022, 20, 3924–3934. [Google Scholar] [CrossRef]
- Mottahedeh, J.; Marsh, R. Characterization of 101-KDa Transglutaminase from Physarum polycephalum and Identification of LAV1-2 as Substrate. J. Biol. Chem. 1998, 273, 29888–29895. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.D.; Guzman, E.; Kuehn, G.D. Purification and Partial Characterization of Transglutaminase from Physarum polycephalum. J. Bacteriol. 1992, 174, 2599–2605. [Google Scholar] [CrossRef] [Green Version]
- Wada, F.; Nakamura, A.; Masutani, T.; Ikura, K.; Maki, M.; Hitomi, K. Identification of Mammalian-Type Transglutaminase in Physarum polycephalum. Evidence from the CDNA Sequence and Involvement of GTP in the Regulation of Transamidating Activity. Eur. J. Biochem. 2002, 269, 3451–3460. [Google Scholar] [CrossRef] [PubMed]
- Wada, F.; Hasegawa, H.; Nakamura, A.; Sugimura, Y.; Kawai, Y.; Sasaki, N.; Shibata, H.; Maki, M.; Hitomi, K. Identification of Substrates for Transglutaminase in Physarum polycephalum, an Acellular Slime Mold, upon Cellular Mechanical Damage. FEBS J. 2007, 274, 2766–2777. [Google Scholar] [CrossRef]
- Milani, A.; Vecchietti, D.; Rusmini, R.; Bertoni, G. TgpA, a Protein with a Eukaryotic-like Transglutaminase Domain, Plays a Critical Role in the Viability of Pseudomonas aeruginosa. PLoS ONE 2012, 7, e50323. [Google Scholar] [CrossRef] [Green Version]
- Ando, H.; Adachi, M.; Umeda, K.; Matsuura, A.; Nonaka, M.; Uchio, R.; Tanaka, H.; Motoki, M. Purification and Characteristics of a Novel Transglutaminase Derived from Microorganisms. Agric. Biol. Chem. 1989, 53, 2613–2617. [Google Scholar] [CrossRef] [Green Version]
- Fatima, S.W.; Khare, S.K. Effect of Key Regulators in Augmenting Transcriptional Expression of Transglutaminase in Streptomyces mobaraensis. Bioresour. Technol. 2021, 340, 125627. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jin, M.; Yan, W.; Wu, Q.; Niu, Y.; Zou, C.; Jia, C.; Chang, Z.; Huang, J.; Jiang, D.; et al. A Point Mutant in the Promoter of Transglutaminase Gene Dramatically Increased Yield of Microbial Transglutaminase from Streptomyces mobaraensis TX1. Process Biochem. 2022, 112, 92–97. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H.; Li, Q.; Yu, F.; Yan, Y.; Liu, S.; Tian, J.; Tan, J. Enhancing the Thermostability of Transglutaminase from Streptomyces mobaraensis Based on the Rational Design of a Disulfide Bond. Protein Expr. Purif. 2022, 195–196, 106079. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Du, G.; Zhang, D.; Chen, J. Thermal Stability and Conformational Changes of Transglutaminase from a Newly Isolated Streptomyces hygroscopicus. Bioresour. Technol. 2008, 99, 3794–3800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, M.; Wu, J.; Cui, L.; Du, G.; Chen, J. Two Different Proteases from Streptomyces hygroscopicus Are Involved in Transglutaminase Activation. J. Agric. Food Chem. 2008, 56, 10261–10264. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Liu, Z.; Cui, W.; Zhou, L.; Liu, Y.; Du, G.; Chen, J.; Zhou, Z. PH-Dependent Activation of Streptomyces hygroscopicus Transglutaminase Mediated by Intein. Appl. Environ. Microbiol. 2014, 80, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wan, D.; Wang, M.; Madzak, C.; Du, G.; Chen, J. Overproduction of Pro-Transglutaminase from Streptomyces hygroscopicus in Yarrowia lipolytica and Its Biochemical Characterization. BMC Biotechnol. 2015, 15, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, W.; He, D.; Xue, Z.; Zhang, Z. Specific Mutation of Transglutaminase Gene from Streptomyces hygroscopicus H197 and Characterization of Microbial Transglutaminase. J. Biosci. 2017, 42, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhang, D.; Liu, S.; Wang, N.S.; Wang, M.; Du, G.; Chen, J. Improvement of Transglutaminase Production by Extending Differentiation Phase of Streptomyces hygroscopicus: Mechanism and Application. Appl. Microbiol. Biotechnol. 2013, 97, 7711–7719. [Google Scholar] [CrossRef]
- Ho, M.-L.; Leu, S.-Z.; Hsieh, J.-F.; Jiang, S.-T. Technical Approach to Simplify the Purification Method and Characterization of Microbial Transglutaminase Produced from Streptoverticillium ladakanum. J. Food Sci. 2000, 65, 76–80. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Chao, M.-L.; Liu, C.-H.; Chu, W.-S. Cloning and Expression of the Transglutaminase Gene from Streptoverticillium ladakanum in Streptomyces lividans. Process Biochem. 2004, 39, 591–598. [Google Scholar] [CrossRef]
- Umezawa, Y.; Ohtsuka, T.; Yokoyama, K.; Nio, N. Comparison of Enzymatic Properties of Microbial Transglutaminase from Streptomyces sp. Food Sci. Technol. Res. 2002, 8, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Langston, J.; Blinkovsky, A.; Byun, T.; Terribilini, M.; Ransbarger, D.; Xu, F. Substrate Specificity of Streptomyces Transglutaminases. Appl. Biochem. Biotechnol. 2007, 136, 291–308. [Google Scholar] [CrossRef]
- Sannasimuthu, A.; Ramani, M.; Paray, B.A.; Pasupuleti, M.; Al-Sadoon, M.K.; Alagumuthu, T.S.; Al-Mfarij, A.R.; Arshad, A.; Mala, K.; Arockiaraj, J. Arthrospira platensis Transglutaminase Derived Antioxidant Peptide-Packed Electrospun Chitosan/Poly (Vinyl Alcohol) Nanofibrous Mat Accelerates Wound Healing, in Vitro, via Inducing Mouse Embryonic Fibroblast Proliferation. Colloids Surf. B Biointerfaces 2020, 193, 111124. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-J.; Hsieh, Y.-F.; Lai, L.-A.; Chao, M.-L.; Chu, W.-S. Characterization and Large-Scale Production of Recombinant Streptoverticillium platensis Transglutaminase. J. Ind. Microbiol. Biotechnol. 2008, 35, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.; Aminov, R.; Matthias, T. Transglutaminases in Dysbiosis as Potential Environmental Drivers of Autoimmunity. Front. Microbiol. 2017, 8, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, S.; Miyazaki, T.; Tanaka, T.; Ogino, C.; Kondo, A. Production of Streptoverticillium cinnamoneum Transglutaminase and Cinnamic Acid by Recombinant Streptomyces lividans Cultured on Biomass-Derived Carbon Sources. Bioresour. Technol. 2012, 104, 648–651. [Google Scholar] [CrossRef]
- Duran, R.; Junqua, M.; Schmitter, J.M.; Gancet, C.; Goulas, P. Purification, Characterisation, and Gene Cloning of Transglutaminase from Streptoverticillium cinnamoneum CBS 683.68. Biochimie 1998, 80, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Date, M.; Yokoyama, K.-I.; Umezawa, Y.; Matsui, H.; Kikuchi, Y. High Level Expression of Streptomyces mobaraensis Transglutaminase in Corynebacterium glutamicum Using a Chimeric Pro-Region from Streptomyces cinnamoneus Transglutaminase. J. Biotechnol. 2004, 110, 219–226. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Altintas, Z. Transglutaminase-Induced Free-Fat Yogurt Gels Supplemented with Tarragon Essential Oil-Loaded Nanoemulsions: Development, Optimization, Characterization, Bioactivity, and Storability. Gels 2022, 8, 551. [Google Scholar] [CrossRef]
- Akal, C.; Koçak, C.; Kanca, N.; Özer, B. Utilization of Reconstituted Whey Powder and Microbial Transglutaminase in Ayran (Drinking Yogurt) Production. Food Technol. Biotechnol. 2022, 60, 253–265. [Google Scholar] [CrossRef]
- Abou-Soliman, N.H.I.; Sakr, S.S.; Awad, S. Physico-Chemical, Microstructural and Rheological Properties of Camel-Milk Yogurt as Enhanced by Microbial Transglutaminase. J. Food Sci. Technol. 2017, 54, 1616–1627. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Cui, Y.; Zhang, L.; Zhang, L.; Liu, H.; Yu, J. Optimization of Recombinant Zea mays Transglutaminase Production and Its Influence on the Functional Properties of Yogurt. Food Sci. Biotechnol. 2017, 26, 723–730. [Google Scholar] [CrossRef]
- D’Alessandro, A.G.; Martemucci, G.; Faccia, M. Effects of Microbial Transglutaminase Levels on Donkey Cheese Production. J. Dairy Res. 2021, 88, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Darnay, L.; Miklós, G.; Lőrincz, A.; Szakmár, K.; Pásztor-Huszár, K.; Laczay, P. Possible Inhibitory Effect of Microbial Transglutaminase on the Formation of Biogenic Amines during Trappist Cheese Ripening. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2022, 39, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Salunke, P.; Marella, C.; Amamcharla, J.K.; Muthukumarappan, K.; Metzger, L.E. Use of Micellar Casein Concentrate and Milk Protein Concentrate Treated with Transglutaminase in Imitation Cheese Products-Melt and Stretch Properties. J. Dairy Sci. 2022, 105, 7904–7916. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.G.; Martemucci, G.; Loizzo, P.; Faccia, M. Production of Cheese from Donkey Milk as Influenced by Addition of Transglutaminase. J. Dairy Sci. 2019, 102, 10867–10876. [Google Scholar] [CrossRef] [PubMed]
- Duarte, L.; Matte, C.R.; Bizarro, C.V.; Ayub, M.A.Z. Review Transglutaminases: Part II—Industrial Applications in Food, Biotechnology, Textiles and Leather Products. World J. Microbiol. Biotechnol. 2019, 36, 11. [Google Scholar] [CrossRef]
- Tesfaw, A.; Assefa, F. Applications of Transglutaminase in Textile, Wool, and Leather Processing. Int. J. Text. Sci. 2014, 3, 64–69. [Google Scholar]
- Arana-Peña, S.; Carballares, D.; Morellon-Sterlling, R.; Berenguer-Murcia, Á.; Alcántara, A.R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Enzyme Co-Immobilization: Always the Biocatalyst Designers’ Choice…or Not? Biotechnol. Adv. 2021, 51, 107584. [Google Scholar] [CrossRef]
- Caparco, A.A.; Dautel, D.R.; Champion, J.A. Protein Mediated Enzyme Immobilization. Small 2022, 18, e2106425. [Google Scholar] [CrossRef]
- Federsel, H.-J.; Moody, T.S.; Taylor, S.J.C. Recent Trends in Enzyme Immobilization—Concepts for Expanding the Biocatalysis Toolbox. Molecules 2021, 26, 2822. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Berenguer-Murcia, Á.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of Enzymes via Immobilization: Multipoint Covalent Attachment and Other Stabilization Strategies. Biotechnol. Adv. 2021, 52, 107821. [Google Scholar] [CrossRef]
- Liu, Q.; Xun, G.; Feng, Y. The State-of-the-Art Strategies of Protein Engineering for Enzyme Stabilization. Biotechnol. Adv. 2019, 37, 530–537. [Google Scholar] [CrossRef]
- Chapman, R.; Stenzel, M.H. All Wrapped up: Stabilization of Enzymes within Single Enzyme Nanoparticles. J. Am. Chem. Soc. 2019, 141, 2754–2769. [Google Scholar] [CrossRef] [PubMed]
- Reyes-De-Corcuera, J.I.; Olstad, H.E.; García-Torres, R. Stability and Stabilization of Enzyme Biosensors: The Key to Successful Application and Commercialization. Annu. Rev. Food Sci. Technol. 2018, 9, 293–322. [Google Scholar] [CrossRef]
- Silva, C.; Martins, M.; Jing, S.; Fu, J.; Cavaco-Paulo, A. Practical Insights on Enzyme Stabilization. Crit. Rev. Biotechnol. 2018, 38, 335–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatima, S.W.; Barua, S.; Sardar, M.; Khare, S.K. Immobilization of Transglutaminase on Multi-Walled Carbon Nanotubes and Its Application as Bioinspired Hydrogel Scaffolds. Int. J. Biol. Macromol. 2020, 163, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Giannetto, M.; Mattarozzi, M.; Umiltà, E.; Manfredi, A.; Quaglia, S.; Careri, M. An Amperometric Immunosensor for Diagnosis of Celiac Disease Based on Covalent Immobilization of Open Conformation Tissue Transglutaminase for Determination of Anti-TTG Antibodies in Human Serum. Biosens. Bioelectron. 2014, 62, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, A.; Mattarozzi, M.; Giannetto, M.; Careri, M. Piezoelectric Immunosensor Based on Antibody Recognition of Immobilized Open-Tissue Transglutaminase: An Innovative Perspective on Diagnostic Devices for Celiac Disease. Sens. Actuators B Chem. 2014, 201, 300–307. [Google Scholar] [CrossRef]
- Gajšek, M.; Jančič, U.; Vasić, K.; Knez, Ž.; Leitgeb, M. Enhanced Activity of Immobilized Transglutaminase for Cleaner Production Technologies. J. Clean. Prod. 2019, 240, 118218. [Google Scholar] [CrossRef]
- Hojnik Podrepšek, G.; Knez, Ž.; Leitgeb, M. The Synthesis of (Magnetic) Crosslinked Enzyme Aggregates with Laccase, Cellulase, β-Galactosidase and Transglutaminase. Front. Bioeng. Biotechnol. 2022, 10, 813919. [Google Scholar] [CrossRef]
- Zhou, J.Q.; He, T.; Wang, J.W. The Microbial Transglutaminase Immobilization on Carboxylated Poly(N-Isopropylacrylamide) for Thermo-Responsivity. Enzym. Microb. Technol. 2016, 87–88, 44–51. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X. Optimization of Transglutaminase (TG) Immobilization on the Surface of Polyethersulfone Ultrafiltration Membrane and Its Characteristics in a Membrane Reactor. J. Biotechnol. 2018, 287, 41–51. [Google Scholar] [CrossRef]
- Ikura, K.; Kometani, T.; Yoshikawa, M.; Sasaki, R.; Chiba, H. Crosslinking of Casein Components by Transglutaminase. Agric. Biol. Chem. 1980, 44, 1567–1573. [Google Scholar] [CrossRef] [Green Version]
- Ikura, K.; Yoshikawa, M.; Sasaki, R.; Chiba, H. Incorporation of Amino Acids into Food Proteins by Transglutaminase. Agric. Biol. Chem. 1981, 45, 2587–2592. [Google Scholar] [CrossRef] [Green Version]
- Ikura, K.; Kometani, T.; Sasaki, R.; Chiba, H. Crosslinking of Soybean 7S and 11S Proteins by Transglutaminase. Agric. Biol. Chem. 1980, 44, 2979–2984. [Google Scholar] [CrossRef]
- Zhang, Y.; Simpson, B.K. Food-Related Transglutaminase Obtained from Fish/Shellfish. Crit. Rev. Food Sci. Nutr. 2020, 60, 3214–3232. [Google Scholar] [CrossRef]
- Matthias, T.; Jeremias, P.; Neidhöfer, S.; Lerner, A. The Industrial Food Additive, Microbial Transglutaminase, Mimics Tissue Transglutaminase and Is Immunogenic in Celiac Disease Patients. Autoimmun. Rev. 2016, 15, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.; Matthias, T. Possible Association between Celiac Disease and Bacterial Transglutaminase in Food Processing: A Hypothesis. Nutr. Rev. 2015, 73, 544–552. [Google Scholar] [CrossRef]
- Aaron, L.; Torsten, M. Microbial Transglutaminase: A New Potential Player in Celiac Disease. Clin. Immunol. 2019, 199, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Gauche, C.; Barreto, P.L.M.; Bordignon-Luiz, M.T. Effect of Thermal Treatment on Whey Protein Polymerization by Transglutaminase: Implications for Functionality in Processed Dairy Foods. LWT—Food Sci. Technol. 2010, 43, 214–219. [Google Scholar] [CrossRef]
- Jaros, D.; Schwarzenbolz, U.; Raak, N.; Löbner, J.; Henle, T.; Rohm, H. Corrigendum to “Cross-Linking with Microbial Transglutaminase: Relationship between Polymerisation Degree and Stiffness of Acid Casein Gels” [Int Dairy J 38 (2014) 174–178]. Int. Dairy J. 2014, 39, 345–347. [Google Scholar] [CrossRef]
- Mahmood, W.A. Effect of Microbial Transglutaminase Treatment on Soft Cheese Properties. Mesop. J. Agric. 2009, 37, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Aaltonen, T.; Huumonen, I.; Myllärinen, P. Controlled Transglutaminase Treatment in Edam Cheese-Making. Int. Dairy J. 2014, 38, 179–182. [Google Scholar] [CrossRef]
- Özer, B.; Hayaloglu, A.A.; Yaman, H.; Gürsoy, A.; Şener, L. Simultaneous Use of Transglutaminase and Rennet in White-Brined Cheese Production. Int. Dairy J. 2013, 33, 129–134. [Google Scholar] [CrossRef]
- Fotschki, J.; Wróblewska, B.; Fotschki, B.; Kalicki, B.; Rigby, N.; Mackie, A. Microbial Transglutaminase Alters the Immunogenic Potential and Cross-Reactivity of Horse and Cow Milk Proteins. J. Dairy Sci. 2020, 103, 2153–2166. [Google Scholar] [CrossRef]
- Hovjecki, M.; Miloradovic, Z.; Mirkovic, N.; Radulovic, A.; Pudja, P.; Miocinovic, J. Rheological and Textural Properties of Goat’s Milk Set-Type Yoghurt as Affected by Heat Treatment, Transglutaminase Addition and Storage. J. Sci. Food Agric. 2021, 101, 5898–5906. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Mei, Y.; Li, K.; Xu, Y.; Wang, F. Effect of Transglutaminase on Rennet-Induced Gelation of Skim Milk and Soymilk Mixtures. J. Sci. Food Agric. 2019, 99, 1820–1827. [Google Scholar] [CrossRef]
- Marhons, Š.; Hyršlová, I.; Stetsenko, V.; Jablonská, E.; Veselý, M.; Míchová, H.; Čurda, L.; Štĕtina, J. Properties of Yoghurt Treated with Microbial Transglutaminase and Exopolysaccharides. Int. Dairy J. 2023, 144, 105701. [Google Scholar] [CrossRef]
- Salunke, P.; Marella, C.; Amamcharla, J.K.; Muthukumarappan, K.; Metzger, L.E. Use of Micellar Casein Concentrate and Milk Protein Concentrate Treated with Transglutaminase in Imitation Cheese Products—Unmelted Texture. J. Dairy Sci. 2022, 105, 7891–7903. [Google Scholar] [CrossRef]
- Monsalve-Atencio, R.; Sanchez-Soto, K.; Chica, J.; Camaño Echavarría, J.A.; Vega-Castro, O. Interaction between Phospholipase and Transglutaminase in the Production of Semi-Soft Fresh Cheese and Its Effect on the Yield, Composition, Microstructure and Textural Properties. LWT 2022, 154, 112722. [Google Scholar] [CrossRef]
- Seyed-Moslemi, S.A.; Hesari, J.; Peighambardoust, S.H.; Peighambardoust, S.J. Effect of Microbial Lipase and Transglutaminase on the Textural, Physicochemical, and Microbial Parameters of Fresh Quark Cheese. J. Dairy Sci. 2021, 104, 7489–7499. [Google Scholar] [CrossRef]
- Grossmann, I.; Döring, C.; Jekle, M.; Becker, T.; Koehler, P. Compositional Changes and Baking Performance of Rye Dough As Affected by Microbial Transglutaminase and Xylanase. J. Agric. Food Chem. 2016, 64, 5751–5758. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, M.F.; Bonavita, R.; Maurano, F.; Bergamo, P.; Siciliano, R.A.; Rossi, M. Biochemical Modifications of Gliadins Induced by Microbial Transglutaminase on Wheat Flour. Biochim. Biophys. Acta 2013, 1830, 5166–5174. [Google Scholar] [CrossRef] [PubMed]
- Lang, G.H.; Kringel, D.H.; Acunha, T.D.S.; Ferreira, C.D.; Dias, Á.R.G.; Zavareze, E.D.R.; de Oliveira, M. Cake of Brown, Black and Red Rice: Influence of Transglutaminase on Technological Properties, in Vitro Starch Digestibility and Phenolic Compounds. Food Chem. 2020, 318, 126480. [Google Scholar] [CrossRef]
- Altındağ, G.; Certel, M.; Erem, F.; İlknur Konak, Ü. Quality Characteristics of Gluten-Free Cookies Made of Buckwheat, Corn, and Rice Flour with/without Transglutaminase. Food Sci. Technol. Int. 2015, 21, 213–220. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Yousefi, S.; Chronakis, I.S. Microbial Transglutaminase in Noodle and Pasta Processing. Crit. Rev. Food Sci. Nutr. 2019, 59, 313–327. [Google Scholar] [CrossRef]
- Kiyat, W.E.; Christopher, A.; Rianti, A.; Pari, R.F. Application of Transglutaminase in Developing Cassava-Based Wet Noodle for Quality and Shelf Life Improvement: A Review. Recent Pat. Food Nutr. Agric. 2020, 11, 229–234. [Google Scholar] [CrossRef]
- Beck, M.; Jekle, M.; Selmair, P.L.; Koehler, P.; Becker, T. Rheological Properties and Baking Performance of Rye Dough as Affected by Transglutaminase. J. Cereal Sci. 2011, 54, 29–36. [Google Scholar] [CrossRef]
- Onyango, C.; Mutungi, C.; Unbehend, G.; Lindhauer, M.G. Rheological and Baking Characteristics of Batter and Bread Prepared from Pregelatinised Cassava Starch and Sorghum and Modified Using Microbial Transglutaminase. J. Food Eng. 2010, 97, 465–470. [Google Scholar] [CrossRef]
- Dizlek, H.; Özer, M.S. Improvement Bread Characteristics of High Level Sunn Pest (Eurygaster integriceps) Damaged Wheat by Using Transglutaminase and Some Additives. J. Cereal Sci. 2017, 77, 90–96. [Google Scholar] [CrossRef]
- Kim, H.; Lee, M.-Y.; Lee, J.; Jo, Y.-J.; Choi, M.-J. Effects of Glucono-δ-Lactone and Transglutaminase on the Physicochemical and Textural Properties of Plant-Based Meat Patty. Foods 2022, 11, 3337. [Google Scholar] [CrossRef] [PubMed]
- Kaić, A.; Janječić, Z.; Žgur, S.; Šikić, M.; Potočnik, K. Physicochemical and Sensory Attributes of Intact and Restructured Chicken Breast Meat Supplemented with Transglutaminase. Animals 2021, 11, 2641. [Google Scholar] [CrossRef]
- Kaufmann, A.; Köppel, R.; Widmer, M. Determination of Microbial Transglutaminase in Meat and Meat Products. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Zinina, O.; Merenkova, S.; Galimov, D.; Okuskhanova, E.; Rebezov, M.; Khayrullin, M.; Anichkina, O. Effects of Microbial Transglutaminase on Technological, Rheological, and Microstructural Indicators of Minced Meat with the Addition of Plant Raw Materials. Int. J. Food Sci. 2020, 2020, 8869401. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, Y. Expression of Recombinant Transglutaminase Gene in Pichia Pastoris and Its Uses in Restructured Meat Products. Food Chem. 2019, 291, 245–252. [Google Scholar] [CrossRef]
- Ribeiro, W.O.; Ozaki, M.M.; dos Santos, M.; de Castro, R.J.S.; Sato, H.H.; Câmara, A.K.F.I.; Rodríguez, A.P.; Campagnol, P.C.B.; Pollonio, M.A.R. Evaluating Different Levels of Papain as Texture Modifying Agent in Bovine Meat Loaf Containing Transglutaminase. Meat Sci. 2023, 198, 109112. [Google Scholar] [CrossRef] [PubMed]
- Tokay, F.G.; Alp, A.C.; Yerlikaya, P. Production and Shelf Life of Restructured Fish Meat Binded by Microbial Transglutaminase. LWT 2021, 152, 112369. [Google Scholar] [CrossRef]
- Xu, J.; Yang, L.; Nie, Y.; Yang, M.; Wu, W.; Wang, Z.; Wang, X.; Zhong, J. Effect of Transglutaminase Crosslinking on the Structural, Physicochemical, Functional, and Emulsion Stabilization Properties of Three Types of Gelatins. LWT 2022, 163, 113543. [Google Scholar] [CrossRef]
- Baugreet, S.; Kerry, J.P.; Brodkorb, A.; Gomez, C.; Auty, M.; Allen, P.; Hamill, R.M. Optimisation of Plant Protein and Transglutaminase Content in Novel Beef Restructured Steaks for Older Adults by Central Composite Design. Meat Sci. 2018, 142, 65–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Kim, H.W.; Park, H.J. Effects of Transglutaminase and Cooking Method on the Physicochemical Characteristics of 3D-Printable Meat Analogs. Innov. Food Sci. Emerg. Technol. 2022, 81, 103114. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, X.; Xiang, X.; McClements, D.J. Modification of Textural Attributes of Potato Protein Gels Using Salts, Polysaccharides, and Transglutaminase: Development of Plant-Based Foods. Food Hydrocoll. 2023, 144, 108909. [Google Scholar] [CrossRef]
- Herz, E.; Kinne, T.; Terjung, N.; Gibis, M.; Weiss, J. Influence of Extrudate to SPI-Gel-Binder Ratios and Transglutaminase Crosslinking on Texture of a Plant-Based Salami Analogue. Future Foods 2023, 7, 100235. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Giosafatto, C.V.L.; Di Girolamo, R.; Famiglietti, M.; Porta, R. Hemp (Cannabis sativa) Seed Oilcake as a Promising by-Product for Developing Protein-Based Films: Effect of Transglutaminase-Induced Crosslinking. Food Packag. Shelf Life 2022, 31, 100779. [Google Scholar] [CrossRef]
- Sabaghi, M.; Joly, C.; Adt, I.; Ozturk, K.; Cottaz, A.; Degraeve, P. Effect of Crosslinking by Microbial Transglutaminase of Gelatin Films on Lysozyme Kinetics of Release in Food Simulants. Food Biosci. 2022, 48, 101816. [Google Scholar] [CrossRef]
- Fan, L.; Wu, H.; Zhou, X.; Peng, M.; Tong, J.; Xie, W.; Liu, S. Transglutaminase-Catalyzed Grafting Collagen on Chitosan and Its Characterization. Carbohydr. Polym. 2014, 105, 253–259. [Google Scholar] [CrossRef]
- Bilawal, A.; Gantumur, M.-A.; Huang, Y.; Qayum, A.; Ishfaq, M.; Jiang, Z. Effect of Transglutaminase Cross-Linking and Emulsification on the Stability and Digestion of Limonene Emulsions. Process Biochem. 2023, 131, 210–216. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, S.J. Application of Transglutaminase for Hair Revitalization. J. Soc. Cosmet. Sci. Korea 2013, 39, 25–30. [Google Scholar] [CrossRef]
- Wakabayashi, R.; Yahiro, K.; Hayashi, K.; Goto, M.; Kamiya, N. Protein-Grafted Polymers Prepared Through a Site-Specific Conjugation by Microbial Transglutaminase for an Immunosorbent Assay. Biomacromolecules 2017, 18, 422–430. [Google Scholar] [CrossRef]
- Collighan, R.J.; Griffin, M. Transglutaminase 2 Cross-Linking of Matrix Proteins: Biological Significance and Medical Applications. Amino Acids 2009, 36, 659–670. [Google Scholar] [CrossRef]
- Wen, H.; Hu, J.; Ge, H.; Zou, S.; Xiao, Y.; Li, Y.; Feng, H.; Fan, L. Preparation and Characterization of Aminoethyl Hydroxypropyl Starch Modified with Collagen Peptide. Int. J. Biol. Macromol. 2017, 101, 996–1003. [Google Scholar] [CrossRef]
- Moore Rosset, E.; Trombetta-eSilva, J.; Hepfer, G.; Chen, P.; Yao, H.; Bradshaw, A.D. Inhibition of Transglutaminase Activity in Periodontitis Rescues Periodontal Ligament Collagen Content and Architecture. J. Periodontal. Res. 2020, 55, 107–115. [Google Scholar] [CrossRef]
- Bechtold, U.; Otterbach, J.T.; Pasternack, R.; Fuchsbauer, H.L. Enzymic Preparation of Protein G-Peroxidase Conjugates Catalysed by Transglutaminase. J. Biochem. 2000, 127, 239–245. [Google Scholar] [CrossRef]
- Spolaore, B.; Damiano, N.; Raboni, S.; Fontana, A. Site-Specific Derivatization of Avidin Using Microbial Transglutaminase. Bioconjug. Chem. 2014, 25, 470–480. [Google Scholar] [CrossRef]
- Deweid, L.; Avrutina, O.; Kolmar, H. Microbial Transglutaminase for Biotechnological and Biomedical Engineering. Biol. Chem. 2019, 400, 257–274. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.A.; Bohn, J.J.; Ledesma, F.; Sorkin, M.R.; Kabaria, S.R.; Thornlow, D.N.; Alabi, C.A. Substrate Design Enables Heterobifunctional, Dual “Click” Antibody Modification via Microbial Transglutaminase. Bioconjug. Chem. 2019, 30, 2452–2457. [Google Scholar] [CrossRef] [PubMed]
- Huggins, I.J.; Medina, C.A.; Springer, A.D.; van den Berg, A.; Jadhav, S.; Cui, X.; Dowdy, S.F. Site Selective Antibody-Oligonucleotide Conjugation via Microbial Transglutaminase. Molecules 2019, 24, 3287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickgiesser, S.; Deweid, L.; Kellner, R.; Kolmar, H.; Rasche, N. Site-Specific Antibody-Drug Conjugation Using Microbial Transglutaminase. Methods Mol. Biol. 2019, 2012, 135–149. [Google Scholar] [CrossRef]
- Ebenig, A.; Juettner, N.E.; Deweid, L.; Avrutina, O.; Fuchsbauer, H.-L.; Kolmar, H. Efficient Site-Specific Antibody-Drug Conjugation by Engineering a Nature-Derived Recognition Tag for Microbial Transglutaminase. Chembiochem 2019, 20, 2411–2419. [Google Scholar] [CrossRef]
- Schneider, H.; Deweid, L.; Avrutina, O.; Kolmar, H. Recent Progress in Transglutaminase-Mediated Assembly of Antibody-Drug Conjugates. Anal. Biochem. 2020, 595, 113615. [Google Scholar] [CrossRef]
- Grigoletto, A.; Mero, A.; Yoshioka, H.; Schiavon, O.; Pasut, G. Covalent Immobilisation of Transglutaminase: Stability and Applications in Protein PEGylation. J. Drug Target. 2017, 25, 856–864. [Google Scholar] [CrossRef]
- Zhou, J.Q.; He, T.; Wang, J.W. PEGylation of Cytochrome c at the Level of Lysine Residues Mediated by a Microbial Transglutaminase. Biotechnol. Lett. 2016, 38, 1121–1129. [Google Scholar] [CrossRef]
- Grigoletto, A.; Mero, A.; Maso, K.; Pasut, G. Transgultaminase-Mediated Nanoarmoring of Enzymes by PEGylation. Methods Enzymol. 2017, 590, 317–346. [Google Scholar] [CrossRef]
- Mero, A.; Spolaore, B.; Veronese, F.M.; Fontana, A. Transglutaminase-Mediated PEGylation of Proteins: Direct Identification of the Sites of Protein Modification by Mass Spectrometry Using a Novel Monodisperse PEG. Bioconjug. Chem. 2009, 20, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Kaunisto, H.; Salmi, T.; Lindfors, K.; Kemppainen, E. Antibody Responses to Transglutaminase 3 in Dermatitis Herpetiformis: Lessons from Celiac Disease. Int. J. Mol. Sci. 2022, 23, 2910. [Google Scholar] [CrossRef] [PubMed]
- Anami, Y.; Tsuchikama, K. Transglutaminase-Mediated Conjugations. Methods Mol. Biol. 2020, 2078, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Nanri, K. Gluten Ataxia: Anti-Transglutaminase-6 Antibody as a New Biomarker. Brain Nerve 2017, 69, 933–940. [Google Scholar] [CrossRef]
- Ghosh, K.; Ghosh, K.; Agarwal, R.; Shah, K.; Mishra, K. Anti Tissue Transglutaminase Antibody in Idiopathic Autoimmune Haemolytic Anemia. Transfus. Apher. Sci. 2019, 58, 693–696. [Google Scholar] [CrossRef]
- Bhokisham, N.; Pakhchanian, H.; Quan, D.; Tschirhart, T.; Tsao, C.-Y.; Payne, G.F.; Bentley, W.E. Modular Construction of Multi-Subunit Protein Complexes Using Engineered Tags and Microbial Transglutaminase. Metab. Eng. 2016, 38, 1–9. [Google Scholar] [CrossRef]
- Takahara, M.; Wakabayashi, R.; Minamihata, K.; Goto, M.; Kamiya, N. Primary Amine-Clustered DNA Aptamer for DNA-Protein Conjugation Catalyzed by Microbial Transglutaminase. Bioconjug. Chem. 2017, 28, 2954–2961. [Google Scholar] [CrossRef]
- Kitaoka, M.; Tsuruda, Y.; Tanaka, Y.; Goto, M.; Mitsumori, M.; Hayashi, K.; Hiraishi, Y.; Miyawaki, K.; Noji, S.; Kamiya, N. Transglutaminase-Mediated Synthesis of a DNA-(Enzyme)n Probe for Highly Sensitive DNA Detection. Chemistry 2011, 17, 5387–5392. [Google Scholar] [CrossRef]
- Maki, K.; Shibata, T.; Kawabata, S.-I. Transglutaminase-Catalyzed Incorporation of Polyamines Masks the DNA-Binding Region of the Transcription Factor Relish. J. Biol. Chem. 2017, 292, 6369–6380. [Google Scholar] [CrossRef] [Green Version]
- Mascini, M.; Palchetti, I.; Tombelli, S. Nucleic Acid and Peptide Aptamers: Fundamentals and Bioanalytical Aspects. Angew. Chem. Int. Ed. Engl. 2012, 51, 1316–1332. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Kong, Y.; Zhao, S.; Xing, H. Engineering Functional DNA-Protein Conjugates for Biosensing, Biomedical, and Nanoassembly Applications. Top. Curr. Chem. 2020, 378, 41. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, J.; Kemori, Y.; Tanaka, Y.; Maruyama, T.; Kamiya, N.; Goto, M. An Enzymatic Method for Site-Specific Labeling of Recombinant Proteins with Oligonucleotides. Chem. Commun. 2007, 4, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Dozier, J.K.; Distefano, M.D. Site-Specific PEGylation of Therapeutic Proteins. Int. J. Mol. Sci. 2015, 16, 25831–25864. [Google Scholar] [CrossRef] [Green Version]
- Fontana, A.; Spolaore, B.; Mero, A.; Veronese, F.M. Site-Specific Modification and PEGylation of Pharmaceutical Proteins Mediated by Transglutaminase. Adv. Drug Deliv. Rev. 2008, 60, 13–28. [Google Scholar] [CrossRef]
- Besheer, A.; Hertel, T.C.; Kressler, J.; Mäder, K.; Pietzsch, M. Enzymatically Catalyzed HES Conjugation Using Microbial Transglutaminase: Proof of Feasibility. J. Pharm. Sci. 2009, 98, 4420–4428. [Google Scholar] [CrossRef]
- Villalonga, M.L.; Villalonga, R.; Mariniello, L.; Gómez, L.; Pierro, P.D.; Porta, R. Transglutaminase-Catalysed Glycosidation of Trypsin with Aminated Polysaccharides. World J. Microbiol. Biotechnol. 2006, 22, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Bryant, P.; Pabst, M.; Badescu, G.; Bird, M.; McDowell, W.; Jamieson, E.; Swierkosz, J.; Jurlewicz, K.; Tommasi, R.; Henseleit, K.; et al. In Vitro and In Vivo Evaluation of Cysteine Rebridged Trastuzumab–MMAE Antibody Drug Conjugates with Defined Drug-to-Antibody Ratios. Mol. Pharm. 2015, 12, 1872–1879. [Google Scholar] [CrossRef]
- Walsh, S.J.; Bargh, J.D.; Dannheim, F.M.; Hanby, A.R.; Seki, H.; Counsell, A.J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; et al. Site-Selective Modification Strategies in Antibody-Drug Conjugates. Chem. Soc. Rev. 2021, 50, 1305–1353. [Google Scholar] [CrossRef]
- Li, C.; Chong, G.; Zong, G.; Knorr, D.A.; Bournazos, S.; Aytenfisu, A.H.; Henry, G.K.; Ravetch, J.V.; MacKerell, A.D.; Wang, L.-X. Site-Selective Chemoenzymatic Modification on the Core Fucose of an Antibody Enhances Its Fcγ Receptor Affinity and ADCC Activity. J. Am. Chem. Soc. 2021, 143, 7828–7838. [Google Scholar] [CrossRef]
- Zhang, C.; Dai, P.; Vinogradov, A.A.; Gates, Z.P.; Pentelute, B.L. Site-Selective Cysteine-Cyclooctyne Conjugation. Angew. Chem. Int. Ed. Engl. 2018, 57, 6459–6463. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.; Forte, N.; Baker, J.R. Site-Selective Lysine Conjugation Methods and Applications towards Antibody-Drug Conjugates. Chem. Commun. 2021, 57, 10689–10702. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Chatterjee, S.; Pongen, A.; Sarania, D.; Tripathi, N.M.; Bandyopadhyay, A. Site-Selective, Chemical Modification of Protein at Aromatic Side Chain and Their Emergent Applications. Protein Pept. Lett. 2021, 28, 788–808. [Google Scholar] [CrossRef] [PubMed]
- Marculescu, C.; Lakshminarayanan, A.; Gault, J.; Knight, J.C.; Folkes, L.K.; Spink, T.; Robinson, C.V.; Vallis, K.; Davis, B.G.; Cornelissen, B. Probing the Limits of Q-Tag Bioconjugation of Antibodies. Chem. Commun. 2019, 55, 11342–11345. [Google Scholar] [CrossRef] [Green Version]
- Drake, P.M.; Rabuka, D. Recent Developments in ADC Technology: Preclinical Studies Signal Future Clinical Trends. BioDrugs 2017, 31, 521–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Nelson, C.G.; Nair, R.R.; Hazlehurst, L.; Moroni, T.; Martinez-Acedo, P.; Nanna, A.R.; Hymel, D.; Burke, T.R.; Rader, C. Stable and Potent Selenomab-Drug Conjugates. Cell Chem. Biol. 2017, 24, 433–442.e6. [Google Scholar] [CrossRef] [Green Version]
- Mindt, T.L.; Jungi, V.; Wyss, S.; Friedli, A.; Pla, G.; Novak-Hofer, I.; Grünberg, J.; Schibli, R. Modification of Different IgG1 Antibodies via Glutamine and Lysine Using Bacterial and Human Tissue Transglutaminase. Bioconjug. Chem. 2008, 19, 271–278. [Google Scholar] [CrossRef]
Enzyme | Substrate | Industrial Application |
---|---|---|
Amylase | Carbohydrate | Detergents, Paper and pulp, Textile, Baking, Starch, Fuel |
Laccase | Benzenediol | Textiles, Paper and pulp, Food |
Lipase | Fat, oil | Detergents, Oil and fat, Food and baking, Paper and pulp, Fine chemicals |
Pectinase | Pectin | Food, Beverages, Textiles |
Protease | Protein, polypeptide | Detergents, Food and Leather processing, Water treatment, Animal feeds |
Pullulanase | Polysaccharide | Food, Starch |
TGM | Protein, amine | Cosmetics, Textiles, Food |
Xylase | Xylan | Animal feeds, Baking and food, Paper and pulp |
Condition | TGM from Microbial Sources | TGM from Animal Sources |
---|---|---|
Temperature (°C) | 45–55 | 50–55 |
pH | 5–8 | 6 |
Isoelectric point | 9 | 4.5 |
MW (kDa) | 37,800 | 76,600 |
Microorganism | Reference |
---|---|
Bacillus subtilis | [57,58,59,60] |
Escherichia coli | [46,47,61] |
Kutzneria albida | [62,63] |
Physarum polycephalum | [64,65,66,67] |
Pseudomonas aeruginosa | [68] |
Sterptoverticilliu mobaraensis | [69,70,71,72] |
Streptomyces hygroscopicus | [73,74,75,76,77,78] |
Streptomyces ladakanum | [79,80] |
Streptomyces libani | [81] |
Streptomyces nigrescens | [82] |
Streptomyces platensis | [80,83,84] |
Streptomyces sioyaensis | [85] |
Streptoverticillium cinnamoneum | [86,87,88] |
Food Protein | Improved Functional Properties | Reactivity |
---|---|---|
Egg | Ovalbumin (egg white) | Depending on condition |
Egg yolk protein | Well | |
Meat | Myoglobin | Depending on condition |
Gelatin | Very well | |
Collagen | Well | |
Myosin | Very well | |
Actin | Does not react | |
Milk | Casein | Very well |
α-lactalbumin | Depending on condition | |
β-lactoglobulin | Depending on condition | |
Sodium caseinate | Very well | |
Soybean | 11S Globulin | Very well |
7S globulin | Very well | |
Wheat | Gliadin | Well |
Glutenin | Well |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasić, K.; Knez, Ž.; Leitgeb, M. Transglutaminase in Foods and Biotechnology. Int. J. Mol. Sci. 2023, 24, 12402. https://doi.org/10.3390/ijms241512402
Vasić K, Knez Ž, Leitgeb M. Transglutaminase in Foods and Biotechnology. International Journal of Molecular Sciences. 2023; 24(15):12402. https://doi.org/10.3390/ijms241512402
Chicago/Turabian StyleVasić, Katja, Željko Knez, and Maja Leitgeb. 2023. "Transglutaminase in Foods and Biotechnology" International Journal of Molecular Sciences 24, no. 15: 12402. https://doi.org/10.3390/ijms241512402
APA StyleVasić, K., Knez, Ž., & Leitgeb, M. (2023). Transglutaminase in Foods and Biotechnology. International Journal of Molecular Sciences, 24(15), 12402. https://doi.org/10.3390/ijms241512402