Mesoporous Silica Particle as an RNA Adsorbent for Facile Purification of In Vitro-Transcribed RNA
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption of IVT RNA to Silica in the Presence of Spermidine
2.2. Characteristics of Polyamine for RNA Purification with Mesoporous Silica-Based Chromatography
2.3. Mesoporous Silica Rather than Spherical Silica with EDTA Elution as Facile Adsorption/Desorption of RNA
2.4. Removal of dsRNA from IVT RNA Using Mesoporous Silica-Based Chromatography
3. Materials and Methods
3.1. In Vitro Transcription of RNA
3.2. Calculation of the N/P Ratio
3.3. Purification of IVT RNA Using Mesoporous Silica-Based Chromatography
3.4. Spermidine-Conjugated Mesoporous Silica for Purification of IVT RNA
3.5. Cellulose-Based Purification of IVT RNA
3.6. RiboGreen Assay for RNA Quantification
3.7. Quantification of dsRNA by ELISA
3.8. Dot Blotting Analysis for dsRNA Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahin, U.; Kariko, K.; Tureci, O. mRNA-based therapeutics—Developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef] [PubMed]
- Whitley, J.; Zwolinski, C.; Denis, C.; Maughan, M.; Hayles, L.; Clarke, D.; Snare, M.; Liao, H.; Chiou, S.; Marmura, T.; et al. Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Transl. Res. 2022, 242, 38–55. [Google Scholar] [CrossRef]
- Luisetto, M. mRNA Purification: Technology Aspects and Impurities TFF, Chromatography, UF/DF (Resins, Magnetic Beads, Monoliths). Adv. Pharmacol. Clin. Trials 2022, 7, 1–17. [Google Scholar] [CrossRef]
- Rosa, S.S.; Prazeres, D.M.F.; Azevedo, A.M.; Marques, M.P.C. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine 2021, 39, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Arnaud-Barbe, N.; Cheynet-Sauvion, V.; Oriol, G.; Mandrand, B.; Mallet, F. Transcription of RNA templates by T7 RNA polymerase. Nucleic Acids Res 1998, 26, 3550–3554. [Google Scholar] [CrossRef] [PubMed]
- Biebricher, C.K.; Luce, R. Template-free generation of RNA species that replicate with bacteriophage T7 RNA polymerase. EMBO J. 1996, 15, 3458–3465. [Google Scholar] [CrossRef]
- Krupp, G. Unusual promoter-independent transcription reactions with bacteriophage RNA polymerases. Nucleic Acids Res. 1989, 17, 3023–3036. [Google Scholar] [CrossRef] [Green Version]
- Triana-Alonso, F.J.; Dabrowski, M.; Wadzack, J.; Nierhaus, K.H. Self-coded 3′-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J. Biol. Chem. 1995, 270, 6298–6307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, X.; Hur, S. Immunogenicity of In Vitro-Transcribed RNA. Acc. Chem. Res. 2021, 54, 4012–4023. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Greenwald, E.; Ahmad, S.; Hur, S. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Res. 2018, 46, 5239–5249. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.; Sorensen, E.W.; Mintri, S.; Rabideau, A.E.; Zheng, W.; Besin, G.; Khatwani, N.; Su, S.V.; Miracco, E.J.; Issa, W.J.; et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 2020, 6, eaaz6893. [Google Scholar] [CrossRef] [PubMed]
- Gholamalipour, Y.; Karunanayake Mudiyanselage, A.; Martin, C.T. 3′ end additions by T7 RNA polymerase are RNA self-templated, distributive and diverse in character-RNA-Seq analyses. Nucleic Acids Res. 2018, 46, 9253–9263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholamalipour, Y.; Johnson, W.C.; Martin, C.T. Efficient inhibition of RNA self-primed extension by addition of competing 3′-capture DNA-improved RNA synthesis by T7 RNA polymerase. Nucleic Acids Res. 2019, 47, e118. [Google Scholar] [CrossRef]
- Piao, X.; Yadav, V.; Wang, E.; Chang, W.; Tau, L.; Lindenmuth, B.E.; Wang, S.X. Double-stranded RNA reduction by chaotropic agents during in vitro transcription of messenger RNA. Mol. Ther. Nucleic Acids 2022, 29, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Z.; Asahara, H.; Tzertzinis, G.; Roy, B. Synthesis of low immunogenicity RNA with high-temperature in vitro transcription. RNA 2020, 26, 345–360. [Google Scholar]
- Wang, G.; Cheng, R.; Chen, Q.; Xu, Y.; Yu, B.; Zhu, B.; Yin, H.; Xia, H. mRNA produced by VSW-3 RNAP has high-level translation efficiency with low inflammatory stimulation. Cell Insight 2022, 1, 100056. [Google Scholar] [CrossRef]
- Dousis, A.; Ravichandran, K.; Hobert, E.M.; Moore, M.J.; Rabideau, A.E. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts. Nat. Biotechnol. 2023, 41, 560–568. [Google Scholar] [CrossRef]
- Miller, M.; Alvizo, O.; Chng, C.; Jenne, S.; Mayo, M.; Mukherjee, A.; Sundseth, S.; Chintala, A.; Penfield, J.; Riggins, J.; et al. An Engineered T7 RNA Polymerase for efficient co-transcriptional capping with reduced dsRNA byproducts in mRNA synthesis. bioRxiv 2022. [Google Scholar] [CrossRef]
- Kariko, K.; Muramatsu, H.; Ludwig, J.; Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011, 39, e142. [Google Scholar] [CrossRef] [Green Version]
- Baiersdorfer, M.; Boros, G.; Muramatsu, H.; Mahiny, A.; Vlatkovic, I.; Sahin, U.; Kariko, K. A Facile Method for the Removal of dsRNA Contaminant from In Vitro-Transcribed mRNA. Mol. Ther. Nucleic Acids 2019, 15, 26–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juneja, R.; Vadarevu, H.; Halman, J.; Tarannum, M.; Rackley, L.; Dobbs, J.; Marquez, J.; Chandler, M.; Afonin, K.; Vivero-Escoto, J.L. Combination of Nucleic Acid and Mesoporous Silica Nanoparticles: Optimization and Therapeutic Performance In Vitro. ACS Appl. Mate.r Interfaces 2020, 12, 38873–38886. [Google Scholar] [CrossRef]
- Castillo, R.R.; Lozano, D.; Vallet-Regi, M. Mesoporous Silica Nanoparticles as Carriers for Therapeutic Biomolecules. Pharmaceutics 2020, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Botella, P.; Corma, A.; Blesa, J.; Dong, L. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J. Phys. Chem. B 2009, 113, 1796–1804. [Google Scholar] [CrossRef]
- Della Rosa, G.; Di Corato, R.; Carpi, S.; Polini, B.; Taurino, A.; Tedeschi, L.; Nieri, P.; Rinaldi, R.; Aloisi, A. Tailoring of silica-based nanoporous pod by spermidine multi-activity. Sci. Rep. 2020, 10, 21142. [Google Scholar] [CrossRef]
- Robert, E.; Farrell, J. RNA Methodologies; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Huang, R.; Shen, Y.W.; Guan, Y.Y.; Jiang, Y.X.; Wu, Y.; Rahman, K.; Zhang, L.J.; Liu, H.J.; Luan, X. Mesoporous silica nanoparticles: Facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater. 2020, 116, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Franchi, M.; Ferris, J.P.; Gallori, E. Cations as Mediators of the Adsorption of Nucleic Acids on Clay Surfaces in Prebiotic Environments. Orig. Life Evol. Biosph. 2003, 33, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications. Nanoscale 2020, 12, 11333–11363. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, E.; Namgung, J.; Lee, J.S.; Jang, J.; Jun, B.-H.; Kim, D.-E. Mesoporous Silica Particle as an RNA Adsorbent for Facile Purification of In Vitro-Transcribed RNA. Int. J. Mol. Sci. 2023, 24, 12408. https://doi.org/10.3390/ijms241512408
Cho E, Namgung J, Lee JS, Jang J, Jun B-H, Kim D-E. Mesoporous Silica Particle as an RNA Adsorbent for Facile Purification of In Vitro-Transcribed RNA. International Journal of Molecular Sciences. 2023; 24(15):12408. https://doi.org/10.3390/ijms241512408
Chicago/Turabian StyleCho, Eunbin, Jayoung Namgung, Jong Sam Lee, Jinmin Jang, Bong-Hyun Jun, and Dong-Eun Kim. 2023. "Mesoporous Silica Particle as an RNA Adsorbent for Facile Purification of In Vitro-Transcribed RNA" International Journal of Molecular Sciences 24, no. 15: 12408. https://doi.org/10.3390/ijms241512408
APA StyleCho, E., Namgung, J., Lee, J. S., Jang, J., Jun, B. -H., & Kim, D. -E. (2023). Mesoporous Silica Particle as an RNA Adsorbent for Facile Purification of In Vitro-Transcribed RNA. International Journal of Molecular Sciences, 24(15), 12408. https://doi.org/10.3390/ijms241512408