Exploring the Role of Hsp60 in Alzheimer’s Disease and Type 2 Diabetes: Suggestion for Common Drug Targeting
Abstract
:1. Introduction
2. Physiopathological Roles of HSP60 in Peripheral and Neuronal Cells
3. Hsp60 Involvement in Alzheimer’s Disease
4. Hsp60 Implications in Type 2 Diabetes Mellitus
5. Insulin/IGF Axis and Hsp60: A Common Target for Diabetes and Alzheimer’s Disease
- Protective activity against oAβs toxicity by direct interaction
- Involvement in Aβ trafficking from mitochondrial to the cytosol
- Role as UPR marker in the maintenance of mitochondrial proteostasis
- iv.
- Responsiveness to increasing concentrations of glucose (mislocalization, extracellular presence in exosome or biological fluids)
- v.
- Modulation of IGF-IR expression in diabetic myocardium
6. Hsp60-Based Therapy and Potential Implication in Alzheimer’s Disease and Diabetes 2 Diabetes Mellitus
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
T2DM | Type II Diabetes Mellitus |
HSPs | Heat shock proteins |
Hsp60 | Heat shock protein 60 |
MIS | Mitochondrial import signal |
ER | Endoplasmic reticulum |
IAP | Inhibitor of apoptosis protein family |
HUVECs | Human umbilical vein endothelial cells |
TREM-2 | Receptor expressed in myeloid cells 2 |
FDA | Food and Drug Administration |
Aβ1–42 | Amyloid β1–42 |
oAβs | Oligomeric species of Aβ1–42 |
SH-SY5Y | Neuroblastoma cells |
LTP | Long term potentiation |
TOM | Traslocase of the outer membrane |
APP | Amyloid-β precursor protein |
UPR | Unfolded protein response |
ROS | Reactive oxygen species |
TLRs | Toll-like receptors |
IGF-IR | Insulin-like growth factor I receptor |
STZ | Streptozotocin |
DS | Down Syndrome |
IR | Insulin receptor |
miRNAs | MicroRNAs |
IRS-1 | Insulin receptor substrate 1 |
References
- Hill, J.E.; Hemmingsen, S.M. Arabidopsis Thaliana Type I and II Chaperonins. Cell Stress Chaperones 2001, 6, 190–200. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, C. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis. Front. Mol. Biosci. 2017, 4, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esser, C.; Alberti, S.; Höhfeld, J. Cooperation of Molecular Chaperones with the Ubiquitin/Proteasome System. Biochim. Biophys. Acta 2004, 1695, 171–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, D.J.; Surin, B.P.; Dixon, N.E.; Hoogenraad, N.J.; Høj, P.B. Substoichiometric Amounts of the Molecular Chaperones GroEL and GroES Prevent Thermal Denaturation and Aggregation of Mammalian Mitochondrial Malate Dehydrogenase in Vitro. Proc. Natl. Acad. Sci. USA 1993, 90, 2276–2280. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Hartl, F.U.; Horwich, A.L. The Mitochondrial Chaperonin Hsp60 Is Required for Its Own Assembly. Nature 1990, 348, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Keerthiga, R.; Pei, D.-S.; Fu, A. Mitochondrial Dysfunction, UPRmt Signaling, and Targeted Therapy in Metastasis Tumor. Cell Biosci. 2021, 11, 186. [Google Scholar] [CrossRef] [PubMed]
- Cappello, F.; Conway de Macario, E.; Marasà, L.; Zummo, G.; Macario, A.J.L. Hsp60 Expression, New Locations, Functions and Perspectives for Cancer Diagnosis and Therapy. Cancer Biol. Ther. 2008, 7, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Komatsuda, A.; Ohtani, H.; Wakui, H.; Imai, H.; Sawada, K.-I.; Otaka, M.; Ogura, M.; Suzuki, A.; Hamada, F. Mammalian HSP60 Is Quickly Sorted into the Mitochondria under Conditions of Dehydration. Eur. J. Biochem. 2002, 269, 5931–5938. [Google Scholar] [CrossRef]
- Soltys, B.J.; Gupta, R.S. Immunoelectron Microscopic Localization of the 60-KDa Heat Shock Chaperonin Protein (Hsp60) in Mammalian Cells. Exp. Cell Res. 1996, 222, 16–27. [Google Scholar] [CrossRef]
- Kirchhoff, S.R.; Gupta, S.; Knowlton, A.A. Cytosolic Heat Shock Protein 60, Apoptosis, and Myocardial Injury. Circulation 2002, 105, 2899–2904. [Google Scholar] [CrossRef] [Green Version]
- Chun, J.N.; Choi, B.; Lee, K.W.; Lee, D.J.; Kang, D.H.; Lee, J.Y.; Song, I.S.; Kim, H.I.; Lee, S.-H.; Kim, H.S.; et al. Cytosolic Hsp60 Is Involved in the NF-KappaB-Dependent Survival of Cancer Cells via IKK Regulation. PLoS ONE 2010, 5, e9422. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Yeh, C.-T. Functional Compartmentalization of HSP60-Survivin Interaction between Mitochondria and Cytosol in Cancer Cells. Cells 2019, 9, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, J.C.; Dohi, T.; Kang, B.H.; Altieri, D.C. Hsp60 Regulation of Tumor Cell Apoptosis. J. Biol. Chem. 2008, 283, 5188–5194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.; Ryu, J.; Kim, J.-E. CCAR2/DBC1 and Hsp60 Positively Regulate Expression of Survivin in Neuroblastoma Cells. Int. J. Mol. Sci. 2019, 20, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Duan, N.; Zhang, C.; Zhang, W. Survivin and Tumorigenesis: Molecular Mechanisms and Therapeutic Strategies. J. Cancer 2016, 7, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Hu, C.; Li, H. Survivin as a Novel Target Protein for Reducing the Proliferation of Cancer Cells. Biomed. Rep. 2018, 8, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Xanthoudakis, S.; Roy, S.; Rasper, D.; Hennessey, T.; Aubin, Y.; Cassady, R.; Tawa, P.; Ruel, R.; Rosen, A.; Nicholson, D.W. Hsp60 Accelerates the Maturation of Pro-Caspase-3 by Upstream Activator Proteases during Apoptosis. EMBO J. 1999, 18, 2049–2056. [Google Scholar] [CrossRef] [Green Version]
- Chandra, D.; Choy, G.; Tang, D.G. Cytosolic Accumulation of HSP60 during Apoptosis with or without Apparent Mitochondrial Release: Evidence That Its pro-Apoptotic or pro-Survival Functions Involve Differential Interactions with Caspase-3. J. Biol. Chem. 2007, 282, 31289–31301. [Google Scholar] [CrossRef] [Green Version]
- Caruso Bavisotto, C.; Alberti, G.; Vitale, A.M.; Paladino, L.; Campanella, C.; Rappa, F.; Gorska, M.; Conway de Macario, E.; Cappello, F.; Macario, A.J.L.; et al. Hsp60 Post-Translational Modifications: Functional and Pathological Consequences. Front. Mol. Biosci. 2020, 7, 95. [Google Scholar] [CrossRef]
- Soltys, B.J.; Gupta, R.S. Cell Surface Localization of the 60 KDa Heat Shock Chaperonin Protein (Hsp60) in Mammalian Cells. Cell Biol. Int. 1997, 21, 315–320. [Google Scholar] [CrossRef]
- Segal, B.H.; Wang, X.-Y.; Dennis, C.G.; Youn, R.; Repasky, E.A.; Manjili, M.H.; Subjeck, J.R. Heat Shock Proteins as Vaccine Adjuvants in Infections and Cancer. Drug Discov. Today 2006, 11, 534–540. [Google Scholar] [CrossRef]
- Stefano, L.; Racchetti, G.; Bianco, F.; Passini, N.; Gupta, R.S.; Panina Bordignon, P.; Meldolesi, J. The Surface-Exposed Chaperone, Hsp60, Is an Agonist of the Microglial TREM2 Receptor. J. Neurochem. 2009, 110, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Fais, S.; Logozzi, M.; Alberti, G.; Campanella, C. Exosomal Hsp60: A Tumor Biomarker? In Heat Shock Protein 60 in Human Diseases and Disorders; Heat Shock Proteins; Asea, A.A.A., Kaur, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 107–116. ISBN 978-3-030-23154-5. [Google Scholar]
- Hayoun, D.; Kapp, T.; Edri-Brami, M.; Ventura, T.; Cohen, M.; Avidan, A.; Lichtenstein, R.G. HSP60 Is Transported through the Secretory Pathway of 3-MCA-Induced Fibrosarcoma Tumour Cells and Undergoes N-Glycosylation. FEBS J. 2012, 279, 2083–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, L.-H.; Wan, Y.-L.; Lin, Y.; Zhang, W.; Yang, M.; Li, G.-L.; Lin, H.-M.; Shang, C.-Z.; Chen, Y.-J.; Min, J. Anticancer Drugs Cause Release of Exosomes with Heat Shock Proteins from Human Hepatocellular Carcinoma Cells That Elicit Effective Natural Killer Cell Antitumor Responses in Vitro. J. Biol. Chem. 2012, 287, 15874–15885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merendino, A.M.; Bucchieri, F.; Campanella, C.; Marcianò, V.; Ribbene, A.; David, S.; Zummo, G.; Burgio, G.; Corona, D.F.V.; Conway de Macario, E.; et al. Hsp60 Is Actively Secreted by Human Tumor Cells. PLoS ONE 2010, 5, e9247. [Google Scholar] [CrossRef] [Green Version]
- Campanella, C.; Bucchieri, F.; Merendino, A.M.; Fucarino, A.; Burgio, G.; Corona, D.F.V.; Barbieri, G.; David, S.; Farina, F.; Zummo, G.; et al. The Odyssey of Hsp60 from Tumor Cells to Other Destinations Includes Plasma Membrane-Associated Stages and Golgi and Exosomal Protein-Trafficking Modalities. PLoS ONE 2012, 7, e42008. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Dunn, P.; Martinus, R.D. Detection of Hsp60 in Saliva and Serum from Type 2 Diabetic and Non-Diabetic Control Subjects. Cell Stress Chaperones 2011, 16, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Conti Filho, C.E.; Loss, L.B.; Marcolongo-Pereira, C.; Rossoni Junior, J.V.; Barcelos, R.M.; Chiarelli-Neto, O.; da Silva, B.S.; Passamani Ambrosio, R.; de Castro, F.C.A.Q.; Teixeira, S.F.; et al. Advances in Alzheimer’s Disease’s Pharmacological Treatment. Front. Pharmacol. 2023, 14, 1101452. [Google Scholar] [CrossRef]
- Golde, T.E.; Miller, V.M. Proteinopathy-Induced Neuronal Senescence: A Hypothesis for Brain Failure in Alzheimer’s and Other Neurodegenerative Diseases. Alzheimers Res. Ther. 2009, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Bae, E.-J.; Lee, H.-J.; Rockenstein, E.; Ho, D.-H.; Park, E.-B.; Yang, N.-Y.; Desplats, P.; Masliah, E.; Lee, S.-J. Antibody-Aided Clearance of Extracellular α-Synuclein Prevents Cell-to-Cell Aggregate Transmission. J. Neurosci. 2012, 32, 13454–13469. [Google Scholar] [CrossRef] [Green Version]
- Deleidi, M.; Maetzler, W. Protein Clearance Mechanisms of Alpha-Synuclein and Amyloid-Beta in Lewy Body Disorders. Int. J. Alzheimers Dis. 2012, 2012, 391438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanella, C.; Pace, A.; Caruso Bavisotto, C.; Marzullo, P.; Marino Gammazza, A.; Buscemi, S.; Palumbo Piccionello, A. Heat Shock Proteins in Alzheimer’s Disease: Role and Targeting. Int. J. Mol. Sci. 2018, 19, 2603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangione, M.R.; Vilasi, S.; Marino, C.; Librizzi, F.; Canale, C.; Spigolon, D.; Bucchieri, F.; Fucarino, A.; Passantino, R.; Cappello, F.; et al. Hsp60, Amateur Chaperone in Amyloid-Beta Fibrillogenesis. Biochim. Biophys. Acta 2016, 1860, 2474–2483. [Google Scholar] [CrossRef] [PubMed]
- Vilasi, S.; Carrotta, R.; Ricci, C.; Rappa, G.C.; Librizzi, F.; Martorana, V.; Ortore, M.G.; Mangione, M.R. Inhibition of Aβ1-42 Fibrillation by Chaperonins: Human Hsp60 Is a Stronger Inhibitor than Its Bacterial Homologue GroEL. ACS Chem. Neurosci. 2019, 10, 3565–3574. [Google Scholar] [CrossRef]
- Wälti, M.A.; Steiner, J.; Meng, F.; Chung, H.S.; Louis, J.M.; Ghirlando, R.; Tugarinov, V.; Nath, A.; Clore, G.M. Probing the Mechanism of Inhibition of Amyloid-β(1-42)-Induced Neurotoxicity by the Chaperonin GroEL. Proc. Natl. Acad. Sci. USA 2018, 115, E11924–E11932. [Google Scholar] [CrossRef] [Green Version]
- Marino, C.; Krishnan, B.; Cappello, F.; Taglialatela, G. Hsp60 Protects against Amyloid β Oligomer Synaptic Toxicity via Modification of Toxic Oligomer Conformation. ACS Chem. Neurosci. 2019, 10, 2858–2867. [Google Scholar] [CrossRef]
- Pavlov, P.F.; Hansson Petersen, C.; Glaser, E.; Ankarcrona, M. Mitochondrial Accumulation of APP and Abeta: Significance for Alzheimer Disease Pathogenesis. J. Cell. Mol. Med. 2009, 13, 4137–4145. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Irwin, R.W.; Zhao, L.; Nilsen, J.; Hamilton, R.T.; Brinton, R.D. Mitochondrial Bioenergetic Deficit Precedes Alzheimer’s Pathology in Female Mouse Model of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2009, 106, 14670–14675. [Google Scholar] [CrossRef]
- Manczak, M.; Anekonda, T.S.; Henson, E.; Park, B.S.; Quinn, J.; Reddy, P.H. Mitochondria Are a Direct Site of A Beta Accumulation in Alzheimer’s Disease Neurons: Implications for Free Radical Generation and Oxidative Damage in Disease Progression. Hum. Mol. Genet. 2006, 15, 1437–1449. [Google Scholar] [CrossRef]
- Lustbader, J.W.; Cirilli, M.; Lin, C.; Xu, H.W.; Takuma, K.; Wang, N.; Caspersen, C.; Chen, X.; Pollak, S.; Chaney, M.; et al. ABAD Directly Links Abeta to Mitochondrial Toxicity in Alzheimer’s Disease. Science 2004, 304, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Hauptmann, S.; Scherping, I.; Dröse, S.; Brandt, U.; Schulz, K.L.; Jendrach, M.; Leuner, K.; Eckert, A.; Müller, W.E. Mitochondrial Dysfunction: An Early Event in Alzheimer Pathology Accumulates with Age in AD Transgenic Mice. Neurobiol. Aging 2009, 30, 1574–1586. [Google Scholar] [CrossRef]
- Krako, N.; Magnifico, M.C.; Arese, M.; Meli, G.; Forte, E.; Lecci, A.; Manca, A.; Giuffrè, A.; Mastronicola, D.; Sarti, P.; et al. Characterization of Mitochondrial Dysfunction in the 7PA2 Cell Model of Alzheimer’s Disease. J. Alzheimers Dis. 2013, 37, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.; Wang, N.; Yao, J.; Sosunov, A.; Chen, X.; Lustbader, J.W.; Xu, H.W.; Stern, D.; McKhann, G.; Yan, S.D. Mitochondrial Abeta: A Potential Focal Point for Neuronal Metabolic Dysfunction in Alzheimer’s Disease. FASEB J. 2005, 19, 2040–2041. [Google Scholar] [CrossRef] [PubMed]
- Pagani, L.; Eckert, A. Amyloid-Beta Interaction with Mitochondria. Int. J. Alzheimers Dis. 2011, 2011, 925050. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, S.M.; Santana, I.; Swerdlow, R.H.; Oliveira, C.R. Mitochondria Dysfunction of Alzheimer’s Disease Cybrids Enhances Abeta Toxicity. J. Neurochem. 2004, 89, 1417–1426. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Su, B.; Siedlak, S.L.; Moreira, P.I.; Fujioka, H.; Wang, Y.; Casadesus, G.; Zhu, X. Amyloid-Beta Overproduction Causes Abnormal Mitochondrial Dynamics via Differential Modulation of Mitochondrial Fission/Fusion Proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 19318–19323. [Google Scholar] [CrossRef] [PubMed]
- Walls, K.C.; Coskun, P.; Gallegos-Perez, J.L.; Zadourian, N.; Freude, K.; Rasool, S.; Blurton-Jones, M.; Green, K.N.; LaFerla, F.M. Swedish Alzheimer Mutation Induces Mitochondrial Dysfunction Mediated by HSP60 Mislocalization of Amyloid Precursor Protein (APP) and Beta-Amyloid. J. Biol. Chem. 2012, 287, 30317–30327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, J.S.; Mufson, E.J.; Counts, S.E. Evidence for Mitochondrial UPR Gene Activation in Familial and Sporadic Alzheimer’s Disease. Curr. Alzheimer Res. 2016, 13, 610–614. [Google Scholar] [CrossRef]
- Veereshwarayya, V.; Kumar, P.; Rosen, K.M.; Mestril, R.; Querfurth, H.W. Differential Effects of Mitochondrial Heat Shock Protein 60 and Related Molecular Chaperones to Prevent Intracellular Beta-Amyloid-Induced Inhibition of Complex IV and Limit Apoptosis. J. Biol. Chem. 2006, 281, 29468–29478. [Google Scholar] [CrossRef] [Green Version]
- Ortega, L.; Calvillo, M.; Luna, F.; Pérez-Severiano, F.; Rubio-Osornio, M.; Guevara, J.; Limón, I.D. 17-AAG Improves Cognitive Process and Increases Heat Shock Protein Response in a Model Lesion with Aβ25-35. Neuropeptides 2014, 48, 221–232. [Google Scholar] [CrossRef]
- Diaz, A.; Treviño, S.; Pulido-Fernandez, G.; Martínez-Muñoz, E.; Cervantes, N.; Espinosa, B.; Rojas, K.; Pérez-Severiano, F.; Montes, S.; Rubio-Osornio, M.; et al. Epicatechin Reduces Spatial Memory Deficit Caused by Amyloid-Β25−35 Toxicity Modifying the Heat Shock Proteins in the CA1 Region in the Hippocampus of Rats. Antioxidants 2019, 8, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, L.; Martinus, R.D. Hyperglycaemia and Oxidative Stress Upregulate HSP60 & HSP70 Expression in HeLa Cells. Springerplus 2013, 2, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liyanagamage, D.S.N.K.; Martinus, R.D. Role of Mitochondrial Stress Protein HSP60 in Diabetes-Induced Neuroinflammation. Mediators Inflamm. 2020, 2020, 8073516. [Google Scholar] [CrossRef]
- Halcox, J.P.J.; Deanfield, J.; Shamaei-Tousi, A.; Henderson, B.; Steptoe, A.; Coates, A.R.M.; Singhal, A.; Lucas, A. Circulating Human Heat Shock Protein 60 in the Blood of Healthy Teenagers: A Novel Determinant of Endothelial Dysfunction and Early Vascular Injury? Arterioscler. Thromb. Vasc. Biol. 2005, 25, e141–e142. [Google Scholar] [CrossRef] [Green Version]
- Ellins, E.; Shamaei-Tousi, A.; Steptoe, A.; Donald, A.; O’Meagher, S.; Halcox, J.; Henderson, B. The Relationship between Carotid Stiffness and Circulating Levels of Heat Shock Protein 60 in Middle-Aged Men and Women. J. Hypertens. 2008, 26, 2389–2392. [Google Scholar] [CrossRef]
- Xu, Q.; Schett, G.; Seitz, C.S.; Hu, Y.; Gupta, R.S.; Wick, G. Surface Staining and Cytotoxic Activity of Heat-Shock Protein 60 Antibody in Stressed Aortic Endothelial Cells. Circ. Res. 1994, 75, 1078–1085. [Google Scholar] [CrossRef]
- Pfister, G.; Stroh, C.M.; Perschinka, H.; Kind, M.; Knoflach, M.; Hinterdorfer, P.; Wick, G. Detection of HSP60 on the Membrane Surface of Stressed Human Endothelial Cells by Atomic Force and Confocal Microscopy. J. Cell Sci. 2005, 118, 1587–1594. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Knowlton, A.A. HSP60 Trafficking in Adult Cardiac Myocytes: Role of the Exosomal Pathway. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H3052–H3056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Sfady, M.; Nussbaum, G.; Pevsner-Fischer, M.; Mor, F.; Carmi, P.; Zanin-Zhorov, A.; Lider, O.; Cohen, I.R. Heat Shock Protein 60 Activates B Cells via the TLR4-MyD88 Pathway. J. Immunol. 2005, 175, 3594–3602. [Google Scholar] [CrossRef] [Green Version]
- Juwono, J.; Martinus, R.D. Does Hsp60 Provide a Link between Mitochondrial Stress and Inflammation in Diabetes Mellitus? J. Diabetes Res. 2016, 2016, 8017571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinridders, A.; Lauritzen, H.P.M.M.; Ussar, S.; Christensen, J.H.; Mori, M.A.; Bross, P.; Kahn, C.R. Leptin Regulation of Hsp60 Impacts Hypothalamic Insulin Signaling. J. Clin. Investig. 2013, 123, 4667–4680. [Google Scholar] [CrossRef] [Green Version]
- Bugger, H.; Abel, E.D. Molecular Mechanisms of Diabetic Cardiomyopathy. Diabetologia 2014, 57, 660–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiordaliso, F.; Leri, A.; Cesselli, D.; Limana, F.; Safai, B.; Nadal-Ginard, B.; Anversa, P.; Kajstura, J. Hyperglycemia Activates P53 and P53-Regulated Genes Leading to Myocyte Cell Death. Diabetes 2001, 50, 2363–2375. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.H.; Almahfouz, A.; Giorgino, F.; McCowen, K.C.; Smith, R.J. In Vivo Insulin Signaling in the Myocardium of Streptozotocin-Diabetic Rats: Opposite Effects of Diabetes on Insulin Stimulation of Glycogen Synthase and c-Fos. Endocrinology 1999, 140, 1141–1150. [Google Scholar] [CrossRef]
- Chen, H.-S.; Shan, Y.-X.; Yang, T.-L.; Lin, H.-D.; Chen, J.-W.; Lin, S.-J.; Wang, P.H. Insulin Deficiency Downregulated Heat Shock Protein 60 and IGF-1 Receptor Signaling in Diabetic Myocardium. Diabetes 2005, 54, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, H.-C.; Liu, T.-J.; Ting, C.-T.; Yang, J.-Y.; Huang, L.; Wallace, D.; Kaiser, P.; Wang, P.H. Regulation of IGF-I Receptor Signaling in Diabetic Cardiac Muscle: Dysregulation of Cytosolic and Mitochondria HSP60. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E292–E297. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.-X.; Yang, T.-L.; Mestril, R.; Wang, P.H. Hsp10 and Hsp60 Suppress Ubiquitination of Insulin-like Growth Factor-1 Receptor and Augment Insulin-like Growth Factor-1 Receptor Signaling in Cardiac Muscle: Implications on Decreased Myocardial Protection in Diabetic Cardiomyopathy. J. Biol. Chem. 2003, 278, 45492–45498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Docrat, T.F.; Nagiah, S.; Naicker, N.; Baijnath, S.; Singh, S.; Chuturgoon, A.A. The Protective Effect of Metformin on Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Diabetic Mice Brain. Eur. J. Pharmacol. 2020, 875, 173059. [Google Scholar] [CrossRef]
- de la Monte, S.M. Type 3 Diabetes Is Sporadic Alzheimer’s Disease: Mini-Review. Eur. Neuropsychopharmacol. 2014, 24, 1954–1960. [Google Scholar] [CrossRef] [Green Version]
- de la Monte, S.M. Insulin Resistance and Alzheimer’s Disease. BMB Rep. 2009, 42, 475–481. [Google Scholar] [CrossRef]
- Zhao, W.-Q.; De Felice, F.G.; Fernandez, S.; Chen, H.; Lambert, M.P.; Quon, M.J.; Krafft, G.A.; Klein, W.L. Amyloid Beta Oligomers Induce Impairment of Neuronal Insulin Receptors. FASEB J. 2008, 22, 246–260. [Google Scholar] [CrossRef] [Green Version]
- Tramutola, A.; Lanzillotta, C.; Di Domenico, F.; Head, E.; Butterfield, D.A.; Perluigi, M.; Barone, E. Brain Insulin Resistance Triggers Early Onset Alzheimer Disease in Down Syndrome. Neurobiol. Dis. 2020, 137, 104772. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, M.L.; Caraci, F.; Pignataro, B.; Cataldo, S.; De Bona, P.; Bruno, V.; Molinaro, G.; Pappalardo, G.; Messina, A.; Palmigiano, A.; et al. Beta-Amyloid Monomers Are Neuroprotective. J. Neurosci. 2009, 29, 10582–10587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuffrida, M.L.; Tomasello, M.F.; Pandini, G.; Caraci, F.; Battaglia, G.; Busceti, C.; Di Pietro, P.; Pappalardo, G.; Attanasio, F.; Chiechio, S.; et al. Monomeric SS-Amyloid Interacts with Type-1 Insulin-like Growth Factor Receptors to Provide Energy Supply to Neurons. Front. Cell. Neurosci. 2015, 9, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimbone, S.; Monaco, I.; Gianì, F.; Pandini, G.; Copani, A.G.; Giuffrida, M.L.; Rizzarelli, E. Amyloid Beta Monomers Regulate Cyclic Adenosine Monophosphate Response Element Binding Protein Functions by Activating Type-1 Insulin-like Growth Factor Receptors in Neuronal Cells. Aging Cell 2018, 17, e12684. [Google Scholar] [CrossRef]
- Talbot, K.; Wang, H.-Y.; Kazi, H.; Han, L.-Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; et al. Demonstrated Brain Insulin Resistance in Alzheimer’s Disease Patients Is Associated with IGF-1 Resistance, IRS-1 Dysregulation, and Cognitive Decline. J. Clin. Investig. 2012, 122, 1316–1338. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Li, B.X.; Xiao, X. Toward Developing Chemical Modulators of Hsp60 as Potential Therapeutics. Front. Mol. Biosci. 2018, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liang, H.; Zhang, J.; Zen, K.; Zhang, C.-Y. Secreted MicroRNAs: A New Form of Intercellular Communication. Trends Cell Biol. 2012, 22, 125–132. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, X.; Li, X.; Li, Z.; Diao, H.; Liu, L.; Zhang, J.; Ju, J.; Wen, L.; Liu, X.; et al. MicroRNA-1 Downregulation Induced by Carvedilol Protects Cardiomyocytes against Apoptosis by Targeting Heat Shock Protein 60. Mol. Med. Rep. 2019, 19, 3527–3536. [Google Scholar] [CrossRef] [Green Version]
- Shan, Z.-X.; Lin, Q.-X.; Deng, C.-Y.; Zhu, J.-N.; Mai, L.-P.; Liu, J.-L.; Fu, Y.-H.; Liu, X.-Y.; Li, Y.-X.; Zhang, Y.-Y.; et al. MiR-1/MiR-206 Regulate Hsp60 Expression Contributing to Glucose-Mediated Apoptosis in Cardiomyocytes. FEBS Lett. 2010, 584, 3592–3600. [Google Scholar] [CrossRef] [Green Version]
- Vila-Casahonda, R.G.; Lozano-Aponte, J.; Guerrero-Beltrán, C.E. HSP60-Derived Peptide as an LPS/TLR4 Modulator: An in Silico Approach. Front. Cardiovasc. Med. 2022, 9, 731376. [Google Scholar] [CrossRef]
- Elias, D.; Cohen, I.R. The Hsp60 Peptide P277 Arrests the Autoimmune Diabetes Induced by the Toxin Streptozotocin. Diabetes 1996, 45, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, V.; Sinclair, A.J.; Hill-Briggs, F.; Moran, C.; Biessels, G.J. Type 2 Diabetes and Cognitive Dysfunction-towards Effective Management of Both Comorbidities. Lancet Diabetes Endocrinol. 2020, 8, 535–545. [Google Scholar] [CrossRef]
- Habich, C.; Burkart, V. Heat Shock Protein 60: Regulatory Role on Innate Immune Cells. Cell. Mol. Life Sci. 2007, 64, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Rashed, M.H.; Bayraktar, E.; Helal, G.K.; Abd-Ellah, M.F.; Amero, P.; Chavez-Reyes, A.; Rodriguez-Aguayo, C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int. J. Mol. Sci. 2017, 18, 538. [Google Scholar] [CrossRef] [Green Version]
- Sõti, C.; Nagy, E.; Giricz, Z.; Vígh, L.; Csermely, P.; Ferdinandy, P. Heat Shock Proteins as Emerging Therapeutic Targets. Br. J. Pharmacol. 2005, 146, 769–780. [Google Scholar] [CrossRef] [Green Version]
- Rowles, J.E.; Keane, K.N.; Gomes Heck, T.; Cruzat, V.; Verdile, G.; Newsholme, P. Are Heat Shock Proteins an Important Link between Type 2 Diabetes and Alzheimer Disease? Int. J. Mol. Sci. 2020, 21, 8204. [Google Scholar] [CrossRef] [PubMed]
- Huberts, D.H.E.W.; van der Klei, I.J. Moonlighting Proteins: An Intriguing Mode of Multitasking. Biochim. Biophys. Acta 2010, 1803, 520–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pathology | Functions | References |
---|---|---|
Alzheimer’s Disease | Inhibition of Aβ aggregation | Mangione et al., 2016 [34] Vilasi et al., 2019 [35] Wälti et al., 2018 [36] Marino et al., 2019 [37] |
Mitochondrial proteostasis | Walls et al., 2012 [48] Becks et al., 2016 [49] Veereshwarayya et al., 2006 [50] Ortega et al., 2014 [51] Diaz et al., 2019 [52] | |
Alzheimer’s Disease/Diabetes | Modulation of Insulin/IGF axis | Chen et al., 2005 [66] Lai et al., 2007 [67] Shan et al., 2003 [68] Docrat et al., 2020 [69] |
Diabetes | Cell-to-cell communication | Hall L 2013 [53] Liyanagamage et al., 2020 [54] Yuan et al., 2011 [28] Halcox et al., 2005 [55] Ellins et al., 2008 [56] Cohen-Sfady et al., 2005 [60] Juwono, J et al., 2016 [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimbone, S.; Di Rosa, M.C.; Chiechio, S.; Giuffrida, M.L. Exploring the Role of Hsp60 in Alzheimer’s Disease and Type 2 Diabetes: Suggestion for Common Drug Targeting. Int. J. Mol. Sci. 2023, 24, 12456. https://doi.org/10.3390/ijms241512456
Zimbone S, Di Rosa MC, Chiechio S, Giuffrida ML. Exploring the Role of Hsp60 in Alzheimer’s Disease and Type 2 Diabetes: Suggestion for Common Drug Targeting. International Journal of Molecular Sciences. 2023; 24(15):12456. https://doi.org/10.3390/ijms241512456
Chicago/Turabian StyleZimbone, Stefania, Maria Carmela Di Rosa, Santina Chiechio, and Maria Laura Giuffrida. 2023. "Exploring the Role of Hsp60 in Alzheimer’s Disease and Type 2 Diabetes: Suggestion for Common Drug Targeting" International Journal of Molecular Sciences 24, no. 15: 12456. https://doi.org/10.3390/ijms241512456
APA StyleZimbone, S., Di Rosa, M. C., Chiechio, S., & Giuffrida, M. L. (2023). Exploring the Role of Hsp60 in Alzheimer’s Disease and Type 2 Diabetes: Suggestion for Common Drug Targeting. International Journal of Molecular Sciences, 24(15), 12456. https://doi.org/10.3390/ijms241512456