Febrile Seizures Cause a Rapid Depletion of Calcium-Permeable AMPA Receptors at the Synapses of Principal Neurons in the Entorhinal Cortex and Hippocampus of the Rat
Abstract
:1. Introduction
2. Results
2.1. The Efficacy of Synaptic Neurotransmission at CA3–CA1 Is Immediately Reduced after FSs
2.2. FSs Cause a Rapid Decrease in the Proportion of CP-AMPA Receptors in the Principal Neurons of the Entorhinal Cortex and Hippocampus
2.3. Kainate-Induced Co2+ Uptake in Hippocampal CA1 and CA3 Areas and in the Entorhinal Cortex Is Reduced Immediately after FSs
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. FS Model
4.3. Brain Slice Preparation
4.4. Field Potential Recordings
4.5. Whole-Cell Patch-Clamp Recordings from Entorhinal Cortex Slices
4.6. Patch-Clamp Recordings of Membrane Currents from Isolated CA1 Pyramidal Neurons
4.7. The Kainate-Induced Cobalt Uptake Method
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silverstein, F.S.; Jensen, F.E. Neonatal Seizures. Ann. Neurol. 2007, 62, 112–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mewasingh, L.D.; Chin, R.F.M.; Scott, R.C. Current Understanding of Febrile Seizures and Their Long-Term Outcomes. Dev. Med. Child. Neurol. 2020, 62, 1245–1249. [Google Scholar] [CrossRef]
- Feng, B.; Chen, Z. Generation of Febrile Seizures and Subsequent Epileptogenesis. Neurosci. Bull. 2016, 32, 481–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waruiru, C.; Appleton, R. Febrile Seizures: An Update. Arch. Dis. Child. 2004, 89, 751–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cendes, F. Febrile Seizures and Mesial Temporal Sclerosis. Curr. Opin. Neurol. 2004, 17, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.V.; Shinnar, S.; Hesdorffer, D.C.; Bagiella, E.; Bello, J.A.; Chan, S.; Xu, Y.; MacFall, J.; Gomes, W.A.; Moshé, S.L.; et al. Hippocampal Sclerosis after Febrile Status Epilepticus: The FEBSTAT Study. Ann. Neurol. 2014, 75, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Brewster, A.; Bender, R.A.; Chen, Y.; Dube, C.; Eghbal-Ahmadi, M.; Baram, T.Z. Developmental Febrile Seizures Modulate Hippocampal Gene Expression of Hyperpolarization-Activated Channels in an Isoform- and Cell-Specific Manner. J. Neurosci. 2002, 22, 4591–4599. [Google Scholar] [CrossRef]
- Dubé, C.M.; Ravizza, T.; Hamamura, M.; Zha, Q.; Keebaugh, A.; Fok, K.; Andres, A.L.; Nalcioglu, O.; Obenaus, A.; Vezzani, A.; et al. Epileptogenesis Provoked by Prolonged Experimental Febrile Seizures: Mechanisms and Biomarkers. J. Neurosci. 2010, 30, 7484–7494. [Google Scholar] [CrossRef] [Green Version]
- Rakhade, S.N.; Zhou, C.; Aujla, P.K.; Fishman, R.; Sucher, N.J.; Jensen, F.E. Early Alterations of AMPA Receptors Mediate Synaptic Potentiation Induced by Neonatal Seizures. J. Neurosci. 2008, 28, 7979–7990. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Baram, T.Z.; Soltesz, I. Febrile Seizures in the Developing Brain Result in Persistent Modification of Neuronal Excitability in Limbic Circuits. Nat. Med. 1999, 5, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Cornejo, B.J.; Mesches, M.H.; Benke, T.A. A Single Early-Life Seizure Impairs Short-Term Memory but Does Not Alter Spatial Learning, Recognition Memory, or Anxiety. Epilepsy Behav. 2008, 13, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornejo, B.J.; Mesches, M.H.; Coultrap, S.; Browning, M.D.; Benke, T.A. A Single Episode of Neonatal Seizures Permanently Alters Glutamatergic Synapses. Ann. Neurol. 2007, 61, 411–426. [Google Scholar] [CrossRef]
- Egbenya, D.L.; Hussain, S.; Lai, Y.-C.; Xia, J.; Anderson, A.E.; Davanger, S. Changes in Synaptic AMPA Receptor Concentration and Composition in Chronic Temporal Lobe Epilepsy. Mol. Cell Neurosci. 2018, 92, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Ekonomou, A.; Smith, A.L.; Angelatou, F. Changes in AMPA Receptor Binding and Subunit Messenger RNA Expression in Hippocampus and Cortex in the Pentylenetetrazole-Induced ‘Kindling’ Model of Epilepsy. Mol. Brain Res. 2001, 95, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Cruz Del Angel, Y.; Orfila, J.E.; Herson, P.S.; Brooks-Kayal, A.; González, M.I. Down-Regulation of AMPA Receptors and Long-Term Potentiation during Early Epileptogenesis. Epilepsy Behav. 2021, 124, 108320. [Google Scholar] [CrossRef]
- Mathern, G.W.; Pretorius, J.K.; Kornblum, H.I.; Mendoza, D.; Lozada, A.; Leite, J.P.; Chimelli, L.M.C.; Fried, I.; Sakamoto, A.C.; Assirati, J.A.; et al. Human Hippocampal AMPA and NMDA MRNA Levels in Temporal Lobe Epilepsy Patients. Brain 1997, 120, 1937–1959. [Google Scholar] [CrossRef] [Green Version]
- Lippman-Bell, J.J.; Zhou, C.; Sun, H.; Feske, J.S.; Jensen, F.E. Early-Life Seizures Alter Synaptic Calcium-Permeable AMPA Receptor Function and Plasticity. Mol. Cell. Neurosci. 2016, 76, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Shi, Y.; Jackson, A.C.; Bjorgan, K.; During, M.J.; Sprengel, R.; Seeburg, P.H.; Nicoll, R.A. Subunit Composition of Synaptic AMPA Receptors Revealed by a Single-Cell Genetic Approach. Neuron 2009, 62, 254–268. [Google Scholar] [CrossRef] [Green Version]
- Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The Glutamate Receptor Ion Channels. Pharmacol. Rev. 1999, 51, 7–61. [Google Scholar] [PubMed]
- Henley, J.M.; Wilkinson, K.A. Synaptic AMPA Receptor Composition in Development, Plasticity and Disease. Nat. Rev. Neurosci. 2016, 17, 337–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaac, J.T.R.; Ashby, M.C.; McBain, C.J. The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity. Neuron 2007, 54, 859–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, L.K. Selective Reduction of GluR2 Protein in Adult Hippocampal CA3 Neurons Following Status Epilepticus but Prior to Cell Loss. Hippocampus 1998, 8, 511–525. [Google Scholar] [CrossRef]
- Grooms, S.Y. Status Epilepticus Decreases Glutamate Receptor 2 MRNA and Protein Expression in Hippocampal Pyramidal Cells before Neuronal Death. Proc. Natl. Acad. Sci. USA 2000, 97, 3631–3636. [Google Scholar] [CrossRef]
- Malkin, S.L.; Amakhin, D.V.; Veniaminova, E.A.; Kim, K.K.; Zubareva, O.E.; Magazanik, L.G.; Zaitsev, A. V Changes of AMPA Receptor Properties in the Neocortex and Hippocampus Following Pilocarpine-Induced Status Epilepticus in Rats. Neuroscience 2016, 327, 146–155. [Google Scholar] [CrossRef]
- Sanchez, R.M.; Koh, S.; Rio, C.; Wang, C.; Lamperti, E.D.; Sharma, D.; Corfas, G.; Jensen, F.E. Decreased Glutamate Receptor 2 Expression and Enhanced Epileptogenesis in Immature Rat Hippocampus after Perinatal Hypoxia-Induced Seizures. J. Neurosci. 2001, 21, 8154–8163. [Google Scholar] [CrossRef]
- Sommer, C.; Roth, S.U.; Kiessling, M. Kainate-Induced Epilepsy Alters Protein Expression of AMPA Receptor Subunits GluR1, GluR2 and AMPA Receptor Binding Protein in the Rat Hippocampus. Acta Neuropathol. 2001, 101, 460–468. [Google Scholar] [CrossRef]
- Amakhin, D.V.; Soboleva, E.B.; Ergina, J.L.; Malkin, S.L.; Chizhov, A.V.; Zaitsev, A.V. Seizure-Induced Potentiation of AMPA Receptor-Mediated Synaptic Transmission in the Entorhinal Cortex. Front. Cell Neurosci. 2018, 12, 486. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini-Giampietro, D.E.; Gorter, J.A.; Bennett, M.V.; Zukin, R.S. The GluR2 (GluR-B) Hypothesis: Ca2+-Permeable AMPA Receptors in Neurological Disorders. Trends Neurosci. 1997, 20, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Sogawa, Y.; Monokoshi, M.; Silveira, D.C.; Ho Cha, B.; Roberta Cilio, M.; McCabe, B.K.; Liu, X.; Hu, Y.; Holmes, G.L. Timing of Cognitive Deficits Following Neonatal Seizures: Relationship to Histological Changes in the Hippocampus. Dev. Brain Res. 2001, 131, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jiang, L.; Chen, H.; Zhang, X.P. Expression of AMPA Receptor Subunits in Hippocampus after Status Convulsion. Child’s Nerv. Syst. 2012, 28, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Russo, I.; Bonini, D.; La Via, L.; Barlati, S.; Barbon, A. AMPA Receptor Properties Are Modulated in the Early Stages Following Pilocarpine-Induced Status Epilepticus. Neuromol. Med. 2013, 15, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.P.; Rai, R.; Gaur, P.; Prasad, S. Development- and Age-Related Alterations in the Expression of AMPA Receptor Subunit GluR2 and Its Trafficking Proteins in the Hippocampus of Male Mouse Brain. Biogerontology 2015, 16, 317–328. [Google Scholar] [CrossRef]
- Kumar, S.S.; Bacci, A.; Kharazia, V.; Huguenard, J.R. A Developmental Switch of AMPA Receptor Subunits in Neocortical Pyramidal Neurons. J. Neurosci. 2002, 22, 3005–3015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, Z.; Yan, X.-X.X.; Haftoglou, S.; Ribak, C.E.; Baram, T.Z. Seizure-Induced Neuronal Injury: Vulnerability to Febrile Seizures in an Immature Rat Model. J. Neurosci. 1998, 18, 4285–4294. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, T.; Hara, K.; Shimakawa, S.; Fukui, M.; Tamai, H. Hippocampal Damage after Prolonged Febrile Seizure: One Case in a Consecutive Prospective Series. Epilepsia 2011, 52, 837–840. [Google Scholar] [CrossRef]
- Postnikova, T.Y.; Griflyuk, A.V.; Amakhin, D.V.; Kovalenko, A.A.; Soboleva, E.B.; Zubareva, O.E.; Zaitsev, A.V. Early Life Febrile Seizures Impair Hippocampal Synaptic Plasticity in Young Rats. Int. J. Mol. Sci. 2021, 22, 8218. [Google Scholar] [CrossRef] [PubMed]
- Spencer, S.S.; Spencer, D.D. Entorhinal-Hippocampal Interactions in Medial Temporal Lobe Epilepsy. Epilepsia 1994, 35, 721–727. [Google Scholar] [CrossRef]
- Avoli, M.; D’Antuono, M.; Louvel, J.; Köhling, R.; Biagini, G.; Pumain, R.; D’Arcangelo, G.; Tancredi, V. Network and Pharmacological Mechanisms Leading to Epileptiform Synchronization in the Limbic System in Vitro. Prog. Neurobiol. 2002, 68, 167–201. [Google Scholar] [CrossRef] [PubMed]
- Zubareva, O.E.; Kovalenko, A.A.A.; Kalemenev, S.V.; Schwarz, A.P.; Karyakin, V.B.; Zaitsev, A.V. Alterations in MRNA Expression of Glutamate Receptor Subunits and Excitatory Amino Acid Transporters Following Pilocarpine-Induced Seizures in Rats. Neurosci. Lett. 2018, 686, 94–100. [Google Scholar] [CrossRef]
- Rajasekaran, K.; Todorovic, M.; Kapur, J. Calcium-Permeable AMPA Receptors Are Expressed in a Rodent Model of Status Epilepticus. Ann. Neurol. 2012, 72, 91–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, S.; Rajasekaran, K.; Sun, H.; Williamson, J.; Kapur, J. Enhanced AMPA Receptor-Mediated Neurotransmission on CA1 Pyramidal Neurons during Status Epilepticus. Neurobiol. Dis. 2017, 103, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Bellone, C. Glutamatergic Receptors at Developing Synapses: The Role of GluN3A-Containing NMDA Receptors and GluA2-Lacking AMPA Receptors. Eur. J. Pharmacol. 2013, 719, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Eybalin, M.; Caicedo, A.; Renard, N.; Ruel, J.; Puel, J.-L. Transient Ca2+-Permeable AMPA Receptors in Postnatal Rat Primary Auditory Neurons. Eur. J. Neurosci. 2004, 20, 2981–2989. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.T.-W.; Pelkey, K.A.; Topolnik, L.; Petralia, R.S.; Takamiya, K.; Xia, J.; Huganir, R.L.; Lacaille, J.-C.; McBain, C.J. Developmental Expression of Ca2+-Permeable AMPA Receptors Underlies Depolarization-Induced Long-Term Depression at Mossy Fiber-CA3 Pyramid Synapses. J. Neurosci. 2007, 27, 11651–11662. [Google Scholar] [CrossRef] [Green Version]
- Lippman-Bell, J.J.; Rakhade, S.N.; Klein, P.M.; Obeid, M.; Jackson, M.C.; Joseph, A.; Jensen, F.E. AMPA Receptor Antagonist NBQX Attenuates Later-Life Epileptic Seizures and Autistic-like Social Deficits Following Neonatal Seizures. Epilepsia 2013, 54, 1922–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talos, D.M.; Sun, H.; Zhou, X.; Fitzgerald, E.C.; Jackson, M.C.; Klein, P.M.; Lan, V.J.; Joseph, A.; Jensen, F.E. The Interaction between Early Life Epilepsy and Autistic-Like Behavioral Consequences: A Role for the Mammalian Target of Rapamycin (MTOR) Pathway. PLoS ONE 2012, 7, e35885. [Google Scholar] [CrossRef] [Green Version]
- Zaitsev, A.V.; Amakhin, D.V.; Dyomina, A.V.; Zakharova, M.V.; Ergina, J.L.; Postnikova, T.Y.; Diespirov, G.P.; Magazanik, L.G. Synaptic Dysfunction in Epilepsy. J. Evol. Biochem. Physiol. 2021, 57, 542–563. [Google Scholar] [CrossRef]
- Roberts, N.S.; Handy, M.J.; Ito, Y.; Hashimoto, K.; Jensen, F.E.; Talos, D.M. Anti-Seizure Efficacy of Perampanel in Two Established Rodent Models of Early-Life Epilepsy. Epilepsy Behav. 2023, 143, 109194. [Google Scholar] [CrossRef] [PubMed]
- Amakhin, D.V.; Soboleva, E.B.; Chizhov, A.V.; Zaitsev, A.V. Insertion of Calcium-Permeable AMPA Receptors during Epileptiform Activity In Vitro Modulates Excitability of Principal Neurons in the Rat Entorhinal Cortex. Int. J. Mol. Sci. 2021, 22, 12174. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Kapur, J. Mechanisms of Status Epilepticus: α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Hypothesis. Epilepsia 2018, 59, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Adotevi, N.; Lewczuk, E.; Sun, H.; Joshi, S.; Dabrowska, N.; Shan, S.; Williamson, J.; Kapur, J. α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Plasticity Sustains Severe, Fatal Status Epilepticus. Ann. Neurol. 2020, 87, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ari, Y. Epilepsies and Neuronal Plasticity: For Better or for Worse? Dialogues Clin. Neurosci. 2008, 10, 17–27. [Google Scholar] [CrossRef]
- Abegg, M.H.; Savic, N.; Ehrengruber, M.U.; McKinney, R.A.; Gähwiler, B.H. Epileptiform Activity in Rat Hippocampus Strengthens Excitatory Synapses. J. Physiol. 2004, 554, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Debanne, D.; Thompson, S.M.; Gähwiler, B.H. A Brief Period of Epileptiform Activity Strengthens Excitatory Synapses in the Rat Hippocampus in Vitro. Epilepsia 2006, 47, 247–256. [Google Scholar] [CrossRef]
- Postnikova, T.Y.; Amakhin, D.V.; Trofimova, A.M.; Zaitsev, A.V. Calcium-Permeable AMPA Receptors Are Essential to the Synaptic Plasticity Induced by Epileptiform Activity in Rat Hippocampal Slices. Biochem. Biophys. Res. Commun. 2020, 529, 1145–1150. [Google Scholar] [CrossRef] [PubMed]
- Plant, K.; Pelkey, K.A.; Bortolotto, Z.A.; Morita, D.; Terashima, A.; McBain, C.J.; Collingridge, G.L.; Isaac, J.T.R. Transient Incorporation of Native GluR2-Lacking AMPA Receptors during Hippocampal Long-Term Potentiation. Nat. Neurosci. 2006, 9, 602–604. [Google Scholar] [CrossRef] [PubMed]
- Park, M. AMPA Receptor Trafficking for Postsynaptic Potentiation. Front. Cell Neurosci. 2018, 12, 361. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Bell, J.J.L.; Sun, H.; Jensen, F.E. Hypoxia-Induced Neonatal Seizures Diminish Silent Synapses and Long-Term Potentiation in Hippocampal CA1 Neurons. J. Neurosci. 2011, 31, 18211–18222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippman-Bell, J.J.; Handy, M.; Nieder, C.G.; Getzfread, M.; Jensen, F.E. Altered Hippocampal Dendritic Spine Maturation after Hypoxia-Induced Seizures in Neonatal Rats. Mol. Cell. Neurosci. 2021, 113, 103629. [Google Scholar] [CrossRef]
- Asrar, S.; Zhou, Z.; Ren, W.; Jia, Z. Ca2+ Permeable AMPA Receptor Induced Long-Term Potentiation Requires PI3/MAP Kinases but Not Ca/CaMDependent Kinase II. PLoS ONE 2009, 4, e4339. [Google Scholar] [CrossRef]
- Kullmann, D.M.; Lamsa, K.P. Long-Term Synaptic Plasticity in Hippocampal Interneurons. Nat. Rev. Neurosci. 2007, 8, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Cull-Candy, S.G. Activity-Dependent Change in AMPA Receptor Properties in Cerebellar Stellate Cells. J. Neurosci. 2002, 22, 3881–3889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.J.; Cull-Candy, S.G. Subunit Interaction with PICK and GRIP Controls Ca2+ Permeability of AMPARs at Cerebellar Synapses. Nat. Neurosci. 2005, 8, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-Q.J.; Cull-Candy, S.G. Synaptic Activity at Calcium-Permeable AMPA Receptors Induces a Switch in Receptor Subtype. Nature 2000, 405, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, G.; Jo, J.; Hogg, E.L.; Piers, T.; Kim, D.H.; Seaton, G.; Seok, H.; Bru-Mercier, G.; Son, G.H.; Regan, P.; et al. Acute Stress Causes Rapid Synaptic Insertion of Ca2+-Permeable AMPA Receptors to Facilitate Long-Term Potentiation in the Hippocampus. Brain 2013, 136, 3753–3765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griflyuk, A.V.; Postnikova, T.Y.; Zaitsev, A.V. Prolonged Febrile Seizures Impair Synaptic Plasticity and Alter Developmental Pattern of Glial Fibrillary Acidic Protein (GFAP)-Immunoreactive Astrocytes in the Hippocampus of Young Rats. Int. J. Mol. Sci. 2022, 23, 12224. [Google Scholar] [CrossRef]
- Notenboom, R.G.E.; Ramakers, G.M.J.J.; Kamal, A.; Spruijt, B.M.; De Graan, P.N.E. Long-Lasting Modulation of Synaptic Plasticity in Rat Hippocampus after Early-Life Complex Febrile Seizures. Eur. J. Neurosci. 2010, 32, 749–758. [Google Scholar] [CrossRef]
- Postnikova, T.Y.; Amakhin, D.V.; Trofimova, A.M.; Smolensky, I.V.; Zaitsev, A.V. Changes in Functional Properties of Rat Hippocampal Neurons Following Pentylenetetrazole-Induced Status Epilepticus. Neuroscience 2019, 399, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Zhuravin, I.A.; Dubrovskaya, N.M.; Vasilev, D.S.; Postnikova, T.Y.; Zaitsev, A.V. Prenatal Hypoxia Produces Memory Deficits Associated with Impairment of Long-Term Synaptic Plasticity in Young Rats. Neurobiol. Learn. Mem. 2019, 164, 107066. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postnikova, T.Y.; Griflyuk, A.V.; Zhigulin, A.S.; Soboleva, E.B.; Barygin, O.I.; Amakhin, D.V.; Zaitsev, A.V. Febrile Seizures Cause a Rapid Depletion of Calcium-Permeable AMPA Receptors at the Synapses of Principal Neurons in the Entorhinal Cortex and Hippocampus of the Rat. Int. J. Mol. Sci. 2023, 24, 12621. https://doi.org/10.3390/ijms241612621
Postnikova TY, Griflyuk AV, Zhigulin AS, Soboleva EB, Barygin OI, Amakhin DV, Zaitsev AV. Febrile Seizures Cause a Rapid Depletion of Calcium-Permeable AMPA Receptors at the Synapses of Principal Neurons in the Entorhinal Cortex and Hippocampus of the Rat. International Journal of Molecular Sciences. 2023; 24(16):12621. https://doi.org/10.3390/ijms241612621
Chicago/Turabian StylePostnikova, Tatyana Y., Alexandra V. Griflyuk, Arseniy S. Zhigulin, Elena B. Soboleva, Oleg I. Barygin, Dmitry V. Amakhin, and Aleksey V. Zaitsev. 2023. "Febrile Seizures Cause a Rapid Depletion of Calcium-Permeable AMPA Receptors at the Synapses of Principal Neurons in the Entorhinal Cortex and Hippocampus of the Rat" International Journal of Molecular Sciences 24, no. 16: 12621. https://doi.org/10.3390/ijms241612621
APA StylePostnikova, T. Y., Griflyuk, A. V., Zhigulin, A. S., Soboleva, E. B., Barygin, O. I., Amakhin, D. V., & Zaitsev, A. V. (2023). Febrile Seizures Cause a Rapid Depletion of Calcium-Permeable AMPA Receptors at the Synapses of Principal Neurons in the Entorhinal Cortex and Hippocampus of the Rat. International Journal of Molecular Sciences, 24(16), 12621. https://doi.org/10.3390/ijms241612621