Mast Cells and Basophils in IgE-Independent Anaphylaxis
Abstract
:1. Introduction
2. Triggers of Anaphylaxis
3. Co-Factors and Risk Factors of Anaphylaxis
4. Mechanisms of Anaphylaxis
5. IgE-Independent Anaphylaxis
IgE-Dependent Anaphylaxis | IgE-Independent Anaphylaxis |
---|---|
Degranulation and release anaphylactic factors from mast cells and basophils by high affinity receptors FcεRI | Degranulation and release of anaphylactic factors from mast cells and basophils by:
|
Triggers: allergens (food, venoms, drugs) | Triggers: nonsteroidal anti-inflammatory drugs, opiates, contrast media, antibiotics, anesthetics. |
The risk (1% to 20%) of biphasic reactions, | Unknown |
Require a period of sensitization. | May occur on first exposure to an agent (allergen). |
Idiopathic anaphylaxis |
6. Anaphylatoxins
7. IgG-Mediated Anaphylaxis
8. Idiopathic Anaphylaxis
9. Histamine
10. Platelet Activating Factor
11. Leukotrienes
12. Mast Cell Proteases
13. Tryptase
14. Chymase
15. Treatment Aspects of IgE-Independent Anaphylaxis
16. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simons, F.E.; Ardusso, L.R.; Bilò, M.B.; Cardona, V.; Ebisawa, M.; El-Gamal, Y.M.; Lieberman, P.; Lockey, R.F.; Muraro, A.; Roberts, G.; et al. International consensus on (ICON) anaphylaxis. World Allergy Organ. J. 2014, 7, 9. [Google Scholar] [CrossRef]
- Muraro, A.; Worm, M.; Alviani, C.; Cardona, V.; DunnGalvin, A.; Garvey, L.H.; Riggioni, C.; de Silva, D.; Angier, E.; Arasi, S.; et al. European Academy of Allergy and Clinical Immunology, Food Allergy, Anaphylaxis Guidelines Group. EAACI guidelines: Anaphylaxis (2021 update). Allergy 2022, 77, 357–377. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.E.; Lin, R.Y. The Epidemiology of Anaphylaxis. Clin. Rev. Allergy Immunol. 2018, 54, 366–374. [Google Scholar] [CrossRef]
- Regateiro, F.S.; Marques, M.L.; Gomes, E.R. Drug-Induced Anaphylaxis: An Update on Epidemiology and Risk Factors. Int. Arch. Allergy Immunol. 2020, 181, 481–487. [Google Scholar] [CrossRef]
- Panesar, S.S.; Javad, S.; de Silva, D.; Nwaru, B.I.; Hickstein, L.; Muraro, A.; Roberts, G.; Worm, M.; Bilò, M.B.; Cardona, V. The epidemiology of anaphylaxis in Europe: A systematic review. Allergy 2013, 68, 1353–1361. [Google Scholar] [CrossRef]
- Bagos-Estevez, A.G.; Ledford, D.K. Anaphylaxis: Definition, Epidemiology, Diagnostic Challenges, Grading System. Immunol. Allergy Clin. N. Am. 2022, 42, 1–11. [Google Scholar] [CrossRef]
- Neugut, A.I.; Ghatak, A.T.; Miller, R.L. Anaphylaxis in the United States: An investigation into its epidemiology. Arch. Intern. Med. 2001, 161, 15–21. [Google Scholar] [CrossRef]
- Watts, M.M.; Marie Ditto, A. Anaphylaxis. Allergy Asthma Proc. 2019, 40, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Motosue, M.S.; Li, J.T.; Campbell, R.L. Anaphylaxis: Epidemiology and Differential Diagnosis. Immunol. Allergy Clin. N. Am. 2022, 42, 13–25. [Google Scholar] [CrossRef]
- Mirijello, A.; De Cosmo, S. Adult anaphylaxis: To the heart of the matter. Eur. J. Intern. Med. 2022, 101, 114. [Google Scholar] [CrossRef]
- Poowuttikul, P.; Seth, D. Anaphylaxis in Children and Adolescents. Pediatr Clin. N. Am. 2019, 66, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Castells, M. Diagnosis and management of anaphylaxis in precision medicine. J. Allergy Clin. Immunol. 2017, b140, 321–333. [Google Scholar] [CrossRef]
- Kivistö, J.E.; Dunder, T.; Protudjer, J.L.; Karjalainen, J.; Huhtala, H.; Mäkelä, M.J. Adult but no pediatric anaphylaxis-related deaths in the Finnish population from 1996 to 2013. J. Allergy Clin. Immunol. 2016, 138, 630–632. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.P.; Bansil, S.; Uygungil, B. Signs and Symptoms of Food Allergy and Food-Induced Anaphylaxis. Pediatr. Clin. N. Am. 2015, 62, 1377–1392. [Google Scholar] [CrossRef] [PubMed]
- Bock, S.A.; Muñoz-Furlong, A.; Sampson, H.A. Further fatalities caused by anaphylactic reactions to food, 2001–2006. J. Allergy Clin. Immunol. 2007, 119, 1016–1018. [Google Scholar] [CrossRef]
- Pouessel, G.; Turner, P.J.; Worm, M.; Cardona, V.; Deschildre, A.; Beaudouin, E.; Renaudin, J.M.; Demoly, P.; Tanno, L.K. Food-induced fatal anaphylaxis: From epidemiological data to general prevention strategies. Clin. Exp. Allergy 2018, 48, 1584–1593. [Google Scholar] [CrossRef]
- Sahiner, U.M.; Durham, S.R. Hymenoptera Venom Allergy: How Does Venom Immunotherapy Prevent Anaphylaxis from Bee and Wasp Stings? Front. Immunol. 2019, 10, 1959. [Google Scholar] [CrossRef]
- Demain, J.G. Hymenoptera allergy and anaphylaxis: Are warmer temperatures changing the impact? Curr. Opin. Allergy Clin. Immunol. 2020, 20, 438–444. [Google Scholar] [CrossRef]
- Bilò, M.B.; Martini, M.; Tontini, C.; Corsi, A.; Antonicelli, L. Anaphylaxis. Eur. Ann. Allergy Clin. Immunol. 2021, 53, 4–17. [Google Scholar] [CrossRef]
- Pichler, W.J. Anaphylaxis to drugs: Overcoming mast cell unresponsiveness by fake antigens. Allergy 2021, 76, 1340–1349. [Google Scholar] [CrossRef]
- Kim, M.H.; Lee, S.Y.; Lee, S.E.; Yang, M.S.; Jung, J.W.; Park, C.M.; Lee, W.; Cho, S.H.; Kang, H.R. Anaphylaxis to iodinated contrast media: Clinical characteristics related with development of anaphylactic shock. PLoS ONE 2014, 9, e10015. [Google Scholar] [CrossRef]
- Sánchez-Borges, M.; Aberer, W.; Brockow, K.; Celik, G.E.; Cernadas, J.; Greenberger, P.A.; Masse, M.S.; Schrijvers, R.; Trautmann, A. Controversies in Drug Allergy: Radiographic Contrast Media. J. Allergy Clin. Immunol. Pract. 2019, 7, 61–65. [Google Scholar] [CrossRef]
- Xu, Y.S.; Kastner, M.; Harada, L.; Xu, A.; Salter, J.; Waserman, S. Anaphylaxis-related deaths in Ontario: A retrospective review of cases from 1986 to 2011. Allergy Asthma Clin. Immunol. 2014, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Jerschow, E.; Lin, R.Y.; Scaperotti, M.M.; McGinn, A.P. Fatal anaphylaxis in the United States, 1999- 2010: Temporal patterns and demographic associations. J. Allergy Clin. Immunol. 2014, 134, 1318–1328. [Google Scholar] [CrossRef]
- Mullins, R.J.; Wainstein, B.K.; Barnes, E.H.; Liew, W.K.; Campbell, D.E. Increases in anaphylaxis fatalities in Australia from 1997 to 2013. Clin. Exp. Allergy 2016, 46, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Liew, W.K.; Williamson, E.; Tang, M.L. Anaphylaxis fatalities and admissions in Australia. J. Allergy Clin. Immunol. 2009, 123, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Sampson, H.A.; Mendelson, L.; Rosen, J.P. Fatal and near-fatal anaphylactic reactions to food in children and adolescents. N. Engl. J. Med. 1992, 327, 380–384. [Google Scholar] [CrossRef]
- Cardona, V.; Luengo, O.; Garriga, T.; Labrador-Horrillo, M.; Sala-Cunill, A.; Izquierdo, A.; Soto, L.; Guilarte, M. Co-factor-enhanced food allergy. Allergy 2012, 67, 1316–1318. [Google Scholar] [CrossRef]
- Turner, P.J.; Arasi, S.; Ballmer-Weber, B.; Baseggio Conrado, A.; Deschildre, A.; Gerdts, J.; Halken, S.; Muraro, A.; Patel, N.; Van Ree, R.; et al. Global Allergy, Asthma European Network (GA2LEN) Food Allergy Guideline Group. Risk factors for severe reactions in food allergy: Rapid evidence review with meta-analysis. Allergy 2022, 77, 2634–2652. [Google Scholar] [CrossRef]
- Lyons, S.A.; Datema, M.R.; Le, T.M.; Asero, R.; Barreales, L.; Belohlavkova, S.; de Blay, F.; Clausen, M.; Dubakiene, R.; Fernández-Perez, C.; et al. Walnut Allergy Across Europe: Distribution of Allergen Sensitization Patterns and Prediction of Severity. J. Allergy Clin. Immunol. Pract. 2021, 9, 225–235.e10. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Leung, N.; Wang, L.X.; Lisann, L.; Sicherer, S.H.; Scurlock, A.M.; Pesek, R.; Perry, T.T.; Jones, S.M.; et al. Correlations between basophil activation, allergen-specific IgE with outcome and severity of oral food challenges. Ann. Allergy Asthma Immunol. 2015, 114, 319–326. [Google Scholar] [CrossRef]
- Worm, M.; Francuzik, W.; Renaudin, J.M.; Bilo, M.B.; Cardona, V.; Scherer Hofmeier, K.; Köhli, A.; Bauer, A.; Christoff, G.; Cichocka-Jarosz, E.; et al. Factors increasing the risk for a severe reaction in anaphylaxis: An analysis of data from The European Anaphylaxis Registry. Allergy 2018, 73, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Versluis, A.; van Os-Medendorp, H.; Blom, W.M.; Michelsen-Huisman, A.D.; Castenmiller, J.J.M.; Noteborn, H.P.J.M.; Houben, G.F.; Knulst, A.C. Potential cofactors in accidental food allergic reactions are frequently present but may not influence severity and occurrence. Clin. Exp. Allergy 2019, 49, 207–215. [Google Scholar] [CrossRef]
- Li, X.; Ma, Q.; Yin, J.; Zheng, Y.; Chen, R.; Chen, Y.; Li, T.; Wang, Y.; Yang, K.; Zhang, H.; et al. Clinical Practice Guideline for the Emergency Management of Anaphylaxis (2020). Front. Pharmacol. 2022, 1, 845689. [Google Scholar] [CrossRef]
- Reber, L.L.; Hernandez, J.D.; Galli, S.J. The pathophysiology of anaphylaxis. J. Allergy Clin. Immunol. 2017, 140, 335–348. [Google Scholar] [CrossRef]
- LoVerde, D.; Iweala, O.I.; Eginli, A.; Krishnaswamy, G. Anaphylaxis. Chest 2018, 153, 528–543. [Google Scholar] [CrossRef]
- Pardanani, A. Systemic mastocytosis in adults: 2021 Update on diagnosis, risk stratification and management. Am. J. Hematol. 2021, 96, 508–525. [Google Scholar] [CrossRef]
- Saito, H.; Ishizaka, T.; Ishizaka, K. Mast cells and IgE: From history to today. Allergol. Int. 2013, 62, 3–12. [Google Scholar] [CrossRef]
- Krčmová, I.; Novosad, J. Anaphylactic symptoms and anaphylactic shock. Vnitr. Lek. 2019, 65, 149–156. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Tsilioni, I.; Ren, H. Recent advances in our understanding of mast cell activation—Or should it be mast cell mediator disorders? Expert. Rev. Clin. Immunol. 2019, n15, 639–656. [Google Scholar] [CrossRef]
- Sahid, M.N.A.; Kiyoi, T. Mast cell activation markers for in vitro study. J. Immunoass. Immunochem. 2020, 41, 778–816. [Google Scholar] [CrossRef]
- Columbo, M.; Horowitz, E.M.; Botana, L.M.; MacGlashan, D.W., Jr.; Bochner, B.S.; Gillis, S.; Zsebo, K.M.; Galli, S.J.; Lichtenstein, L.M. The human recombinant c-kit receptor ligand, rhSCF, induces mediator release from human cutaneous mast cells and enhances IgE-dependent mediator release from both skin mast cells and peripheral blood basophils. J. Immunol. 1992, 149, 599–608. [Google Scholar] [CrossRef]
- Kanagaratham, C.; El Ansari, Y.S.; Lewis, O.L.; Oettgen, H.C. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front. Immunol. 2020, 11, 603050. [Google Scholar] [CrossRef]
- Kitamura, Y.; Shimada, M.; Hatanaka, K.; Miyano, Y. Development of mast cells from grafted bone marrow cells in irradiated mice. Nature 1977, 268, 442–443. [Google Scholar] [CrossRef]
- Steiner, M.; Huber, S.; Harrer, A.; Himly, M. The Evolution of Human Basophil Biology from Neglect towards Understanding of Their Immune Functions. Biomed. Res. Int. 2016, 2016, 8232830. [Google Scholar] [CrossRef]
- Schroeder, J.T. Basophils: Emerging roles in the pathogenesis of allergic disease. Immunol. Rev. 2011, 242, 144–160. [Google Scholar] [CrossRef]
- da Silva, E.Z.; Jamur, M.C.; Oliver, C. Mast cell function: A new vision of an old cell. J. Histochem. Cytochem. 2014, 62, 698–738. [Google Scholar] [CrossRef]
- Plotkin, J.D.; Elias, M.G.; Fereydouni, M.; Daniels-Wells, T.R.; Dellinger, A.L.; Penichet, M.L.; Kepley, C.L. Human Mast Cells From Adipose Tissue Target and Induce Apoptosis of Breast Cancer Cells. Front. Immunol. 2019, 10, 138. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Alysandratos, K.D.; Angelidou, A.; Delivanis, D.A.; Sismanopoulos, N.; Zhang, B.; Asadi, S.; Vasiadi, M.; Weng, Z.; Miniati, A.; et al. Mast cells and inflammation. Biochim. Biophys. Acta. 2012, 1822, 21–33. [Google Scholar] [CrossRef]
- Varricchi, G.; de Paulis, A.; Marone, G.; Galli, S.J. Future Needs in Mast Cell Biology. Int. J. Mol. Sci. 2019, 20, 4397. [Google Scholar] [CrossRef]
- Marshall, J.S. Mast-cell responses to pathogens. Nat. Rev. Immunol. 2004, 4, 787–799. [Google Scholar] [CrossRef]
- Beck, S.C.; Wilding, T.; Buka, R.J.; Baretto, R.L.; Huissoon, A.P.; Krishna, M.T. Biomarkers in Human Anaphylaxis: A Critical Appraisal of Current Evidence and Perspectives. Front. Immunol. 2019, 10, 494. [Google Scholar] [CrossRef]
- Platzgummer, S.; Bizzaro, N.; Bilò, M.B.; Pravettoni, V.; Cecchi, L.; Sargentini, V.; Caponi, L.; Visentini, D.; Brusca, I.; Pesce, G.; et al. Recommendations for the Use of Tryptase in the Diagnosis of Anaphylaxis and Clonal Mast cell Disorders. Eur. Ann. Allergy Clin. Immunol. 2020, 52, 51–61. [Google Scholar] [CrossRef]
- Ding, Y.; Che, D.; Li, C.; Cao, J.; Wang, J.; Ma, P.; Zhao, T.; An, H.; Zhang, T. Quercetin inhibits Mrgprx2-induced pseudo-allergic reaction via PLCgamma-IP3R related Ca2+ fluctuations. Int. Immunopharmacol. 2019, 66, 185–197. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, K.; Duraisamy, K.; Allam, A.A.; Ajarem, J.; Kwok Chong Chow, B. Protective Effect of Genistein against Compound 48/80 Induced Anaphylactoid Shock via Inhibiting MAS Related G Protein-Coupled Receptor X2 (MRGPRX2). Molecules 2020, 25, 1028. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, C.; Zhang, Q.; Bao, J.; Fan, Q.; Li, R.; Ishfaq, M.; Li, J. Arachidonic acid metabolism is elevated in Mycoplasma gallisepticum and Escherichia coli co-infection and induces LTC4 in serum as the biomarker for detecting poultry respiratory disease. Virulence 2020, 11, 730–738. [Google Scholar] [CrossRef]
- Jogie-Brahim, S.; Min, H.K.; Fukuoka, Y.; Xia, H.Z.; Schwartz, L.B. Expression of alpha-tryptase and beta-tryptase by human basophils. J. Allergy Clin. Immunol. 2004, 113, 1086–1092. [Google Scholar] [CrossRef]
- Nguyen, S.M.T.; Rupprecht, C.P.; Haque, A.; Pattanaik, D.; Yusin, J.; Krishnaswamy, G. Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators, Endothelial Gap Junctions and Beyond. Int. J. Mol. Sci. 2021, 22, 7785. [Google Scholar] [CrossRef]
- Mendoza, R.P.; Anderson, C.C.; Fudge, D.H.; Roede, J.R.; Brown, J.M. Metabolic Consequences of IgE- and Non-IgE-Mediated Mast Cell Degranulation. J. Immunol. 2021, 207, 2637–2648. [Google Scholar] [CrossRef]
- Tatemoto, K.; Nozaki, Y.; Tsuda, R.; Konno, S.; Tomura, K.; Furuno, M.; Ogasawara, H.; Edamura, K.; Takagi, H.; Iwamura, H.; et al. Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem. Biophys. Res. Commun. 2006, 349, 1322–1328. [Google Scholar] [CrossRef]
- Wedi, B.; Gehring, M.; Kapp, A. The pseudoallergen receptor MRGPRX2 on peripheral blood basophils and eosinophils: Expression and function. Allergy 2020, 75, 2229–2242. [Google Scholar] [CrossRef]
- Liu, R.; Hu, S.; Zhang, Y.; Che, D.; Cao, J.; Wang, J.; Zhao, T.; Jia, Q.; Wang, N.; Zhang, T. Mast cell-mediated hypersensitivity to fluoroquinolone is MRGPRX2 dependent. Int. Immunopharmacol. 2019, 70, 417–427. [Google Scholar] [CrossRef]
- Suzuki, Y.; Liu, S.; Kadoya, F.; Takasaki, Y.; Yorozuya, T.; Mogi, M. Association between mutated Mas-related G protein-coupled receptor-X2 and rocuronium-induced intraoperative anaphylaxis. Br. J. Anaesth. 2020, 125, e446–e448. [Google Scholar] [CrossRef]
- McNeil, B.D. MRGPRX2 and Adverse Drug Reactions. Front. Immunol. 2021, 12, 676354. [Google Scholar] [CrossRef]
- McCullough, R.L.; McMullen, M.R.; Poulsen, K.L.; Kim, A.; Medof, M.E.; Nagy, L.E. Anaphylatoxin Receptors C3aR and C5aR1 Are Important Factors That Influence the Impact of Ethanol on the Adipose Secretome. Front. Immunol. 2018, 9, 2133. [Google Scholar] [CrossRef]
- Laumonnier, Y.; Wiese, A.V.; Figge, J.; Karsten, C. Regulation and function of anaphylatoxins and their receptors in allergic asthma. Mol. Immunol. 2017, 84, 51–56. [Google Scholar] [CrossRef]
- Laumonnier, Y.; Karsten, C.M.; Köhl, J. Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol. Immunol. 2017, 89, 44–58. [Google Scholar] [CrossRef]
- Brown, S.G.; Stone, S.F.; Fatovich, D.M.; Burrows, S.A.; Holdgate, A.; Celenza, A.; Coulson, A.; Hartnett, L.; Nagree, Y.; Cotterell, C.; et al. Anaphylaxis: Clinical patterns, mediator release, and severity. J. Allergy Clin. Immunol. 2013, 132, 1141–1149.e5. [Google Scholar] [CrossRef]
- Kodama, T.; Sekine, H.; Takahashi, M.; Iwaki, D.; Machida, T.; Kanno, K.; Ishida, Y.; Endo, Y.; Fujita, T. Role of complement in a murine model of peanut-induced anaphylaxis. Immunobiology 2013, 218, 844–850. [Google Scholar] [CrossRef]
- Finkelman, F.D.; Khodoun, M.V.; Strait, R. Human IgE-independent systemic anaphylaxis. J. Allergy Clin. Immunol. 2016, 137, 1674–1680. [Google Scholar] [CrossRef]
- Cianferoni, A. Non-IgE-mediated anaphylaxis. J. Allergy Clin. Immunol. 2021, 147, 1123–1131. [Google Scholar] [CrossRef]
- Bruhns, P.; Jonsson, F. Mouse and human FcR effector functions. Immunol. Rev. 2015, 268, 25–51. [Google Scholar] [CrossRef]
- Kuhlen, J.L.; Virkud, Y.V. Pathogenesis, newly recognized etiologies, and management of idiopathic anaphylaxis. Discov. Med. 2015, 19, 137–144. [Google Scholar]
- Haeggstrom, J.Z.; Funk, C.D. Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chem. Rev. 2011, 111, 5866–5898. [Google Scholar] [CrossRef]
- Yamaga, S.; Yanase, Y.; Ishii, K.; Ohshimo, S.; Shime, N.; Hide, M. Decreased intracellular histamine concentration and basophil activation in anaphylaxis. Allergol. Int. 2020, 69, 78–83. [Google Scholar] [CrossRef]
- Schanzenbacher, J.; Köhl, J.; Karsten, C.M. Anaphylatoxins spark the flame in early autoimmunity. Front. Immunol. 2022, 13, 958392. [Google Scholar] [CrossRef]
- Guo, Q.; Subramanian, H.; Gupta, K.; Ali, H. Regulation of C3a receptor signaling in human mast cells by G protein coupled receptor kinases. PLoS ONE. 2011, 6, e22559. [Google Scholar] [CrossRef]
- Yuste-Montalvo, A.; Fernandez-Bravo, S.; Oliva, T.; Pastor-Vargas, C.; Betancor, D.; Goikoetxea, M.J.; Laguna, J.J.; López, J.A.; Alvarez-Llamas, G.; Cuesta-Herranz, J.; et al. Proteomic and Biological Analysis of an In Vitro Human Endothelial System in Response to Drug Anaphylaxis. Front. Immunol. 2021, 12, 692569. [Google Scholar] [CrossRef]
- Regal, J.F.; Klos, A. Minor role of the C3a receptor in systemic anaphylaxis in the guinea pig. Immunopharmacology 2000, 46, 15–28. [Google Scholar] [CrossRef]
- Szebeni, J. Complement activation-related pseudoallergy: A stress reaction in blood triggered by nanomedicines and biologicals. Mol. Immunol. 2014, 61, 163–173. [Google Scholar] [CrossRef]
- Jürgensen, H.; Behrendt, H.; Damerau, B.; Schmutzler, W. The effects of the anaphylatoxins C3a and C5a on isolated mast cells from rat and man. Agents Actions 1986, 18, 153–154. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, Y.; Xia, H.Z.; Sanchez-Muñoz, L.B.; Dellinger, A.L.; Escribano, L.; Schwartz, L.B. Generation of anaphylatoxins by human beta-tryptase from C3, C4, and C5. J. Immunol. 2008, 180, 6307–6316. [Google Scholar] [CrossRef]
- van der Linden, P.W.; Hack, C.E.; Kerckhaert, J.A.; Struyvenberg, A.; van der Zwan, J.C. Preliminary report: Complement activation in wasp-sting anaphylaxis. Lancet 1990, 336, 904–906. [Google Scholar] [CrossRef] [PubMed]
- Khodoun, M.; Strait, R.; Orekov, T.; Hogan, S.; Karasuyama, H.; Herbert, D.R.; Köhl, J.; Finkelman, F.D. Peanuts can contribute to anaphylactic shock by activating complement. J. Allergy Clin. Immunol. 2009, 123, 342–351. [Google Scholar] [CrossRef]
- Jönsson, F.; Mancardi, D.A.; Kita, Y.; Karasuyama, H.; Iannascoli, B.; Van Rooijen, N.; Shimizu, T.; Daëron, M.; Bruhns, P. Mouse and human neutrophils induce anaphylaxis. J. Clin. Investig. 2011, 121, 1484–1496. [Google Scholar] [CrossRef]
- Jönsson, F.; de Chaisemartin, L.; Granger, V.; Gouel-Chéron, A.; Gillis, C.M.; Zhu, Q.; Dib, F.; Nicaise-Roland, P.; Ganneau, C.; Hurtado-Nedelec, M.; et al. An IgG-induced neutrophil activation pathway contributes to human drug-induced anaphylaxis. Sci. Transl. Med. 2019, 11, eaat1479. [Google Scholar] [CrossRef]
- Steenholdt, C.; Svenson, M.; Bendtzen, K.; Thomsen, O.O.; Brynskov, J.; Ainsworth, M.A. Acute and delayed hypersensitivity reactions to infliximab and adalimumab in a patient with Crohn’s disease. J. Crohns Colitis 2012, 6, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Umeda, Y.; Fukumoto, Y.; Miyauchi, T.; Imaizumi, M.; Shimabukuro, K.; Mori, Y.; Takemura, H. Anaphylactic shock related to aprotinin induced by anti-aprotinin immunoglobulin G antibody alone; report of a case. Kyobu Geka 2007, 60, 69–71. [Google Scholar]
- Hedin, H.; Richter, W.; Messmer, K.; Renck, H.; Ljungstrom, K.G.; Laubenthal, H. Incidence, pathomechanism and prevention of dextran-induced anaphylactoid / anaphylactic reactions in man. Dev. Biol. Stand. 1980, 48, 179–189. [Google Scholar]
- Bergamaschini, L.; Mannucci, P.M.; Federici, A.B.; Coppola, R.; Guzzoni, S.; Agostoni, A. Posttransfusion anaphylactic reactions in a patient with severe von Willebrand disease: Role of complement and alloantibodies to von Willebrand factor. J. Lab. Clin. Med. 1995, 125, 348–355. [Google Scholar]
- Lessof, M.H.; Sobotka, A.K.; Lichtenstein, L.M. Effects of passive antibody in bee venom anaphylaxis. Johns Hopkins Med. J. 1978, 142, 1–7. [Google Scholar]
- Durham, S.R. Mechanisms of immunotherapy to aeroallergens. Clin. Exp. Allergy 2011, 41, 1235–1246. [Google Scholar]
- Durham, S.R.; Shamji, M.H. Allergen immunotherapy: Past, present and future. Nat. Rev. Immunol. 2023, 23, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.B.; Farley, C.R.; Pinelli, D.F.; Adams, L.E.; Cragg, M.S.; Boss, J.M.; Scharer, C.D.; Fribourg, M.; Cravedi, P.; Heeger, P.S.; et al. Signaling through the Inhibitory Fc Receptor FcγRIIB Induces CD8+ T Cell Apoptosis to Limit T Cell Immunity. Immunity 2020, 52, 136–150.e6. [Google Scholar] [CrossRef]
- Bilò, M.B.; Martini, M.; Tontini, C.; Mohamed, O.E.; Krishna, M.T. Idiopathic anaphylaxis. Clin. Exp. Allergy 2019, 49, 942–952. [Google Scholar] [CrossRef]
- Tanno, L.K.; Bierrenbach, A.L.; Simons, F.E.R.; Cardona, V.; Thong, B.Y.; Molinari, N.; Calderon, M.A.; Worm, M.; Chang, Y.S.; Papadopoulos, N.G.; et al. Critical view of anaphylaxis epidemiology: Open questions and new perspectives. Allergy Asthma Clin. Immunol. 2018, 14, 12. [Google Scholar] [CrossRef]
- Guo, C.; Greenberger, P.A. Idiopathic anaphylaxis. Allergy Asthma Proc. 2019, 40, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Burrows, A.G.; Ellis, A.K. Idiopathic anaphylaxis: Diagnosis and management. Allergy Asthma Proc. 2021, 42, 481–488. [Google Scholar] [CrossRef]
- Skypala, I.J. Food-Induced Anaphylaxis: Role of Hidden Allergens and Cofactors. Front. Immunol. 2019, 10, 673. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Costa, J.; Mafra, I. Detection and Quantification of Milk Ingredients as Hidden Allergens in Meat Products by a Novel Specific Real-Time PCR Method. Biomolecules 2019, 9, 804. [Google Scholar] [CrossRef]
- Zanotti, R.; Tanasi, I.; Crosera, L.; Bonifacio, M.; Schena, D.; Orsolini, G.; Mastropaolo, F.; Tebaldi, M.; Olivieri, E.; Bonadonna, P. Systemic Mastocytosis: Multidisciplinary Approach. Mediterr J. Hematol. Infect. Dis. 2021, 13, e2021068. [Google Scholar] [CrossRef]
- Jackson, C.W.; Pratt, C.M.; Rupprecht, C.P.; Pattanaik, D.; Krishnaswamy, G. Mastocytosis and Mast Cell Activation Disorders: Clearing the Air. Int. J. Mol. Sci. 2021, 22, 11270. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.S.; Skovbo, S.; Vestergaard, H.; Kristensen, T.; Moller, M.; Bindslev-Jensen, C.; Fryzek, J.P.; Broesby-Olsen, S. Epidemiology of Systemic Mastocytosis in Denmark. Br. J. Haematol. 2014, 166, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Brockow, K.; Plata-Nazar, K.; Lange, M.; Nedoszytko, B.; Niedoszytko, M.; Valent, P. Mediator-Related Symptoms and Anaphylaxis in Children with Mastocytosis. Int. J. Mol. Sci. 2021, 22, 2684. [Google Scholar] [CrossRef]
- Rama, T.A.; Morgado, J.M.; Henriques, A.; Escribano, L.; Alvarez-Twose, I.; Sanchez-Muñoz, L.; Moreira, A.; Romão, J.; Órfão, A.; Matito, A. Mastocytosis presenting with mast cell-mediator release-associated symptoms elicited by cyclo oxygenase inhibitors: Prevalence, clinical, and laboratory features. Clin. Transl. Allergy 2022, 12, e12132. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Musella, V.; Lupia, C.; Palma, E.; Britti, D. Therapeutic Use of Bee Venom and Potential Applications in Veterinary Medicine. Vet. Sci. 2023, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Niedoszytko, M.; de Monchy, J.; van Doormaal, J.J.; Jassem, E.; Oude Elberink, J.N.G. Mastocytosis and Insect Venom Allergy: Diagnosis, Safety and Efficacy of Venom Immunotherapy. Allergy 2009, 64, 1237–1245. [Google Scholar] [CrossRef]
- Alvarez-Twose, I.; Matito, A. Mastocytosis presenting as insect anaphylaxis: Gender differences and natural history. Curr. Opin. Allergy Clin. Immunol. 2019, 19, 468–474. [Google Scholar] [CrossRef]
- Bonadonna, P.; Nalin, F.; Olivieri, F. Hereditary alpha-tryptasemia. Curr. Opin. Allergy Clin. Immunol. 2022, 22, 277–282. [Google Scholar] [CrossRef]
- Chollet, M.B.; Akin, C. Hereditary alpha tryptasemia is not associated with specific clinical phenotypes. J. Allergy Clin. Immunol. 2022, 149, 728–735.e2. [Google Scholar] [CrossRef]
- Lyons, J.J. Hereditary Alpha Tryptasemia: Genotyping and Associated Clinical Features. Immunol. Allergy Clin. N. Am. 2018, 38, 483–495. [Google Scholar] [CrossRef]
- Caslin, H.L.; Kiwanuka, K.N.; Haque, T.T.; Taruselli, M.T.; MacKnight, H.P.; Paranjape, A.; Ryan, J.J. Controlling Mast Cell Activation and Homeostasis: Work Influenced by Bill Paul That Continues Today. Front. Immunol. 2018, 9, 868. [Google Scholar] [CrossRef]
- Poto, R.; Criscuolo, G.; Marone, G.; Brightling, C.E.; Varricchi, G. Human Lung Mast Cells: Therapeutic Implications in Asthma. Int. J. Mol. Sci. 2022, 23, 14466. [Google Scholar] [CrossRef] [PubMed]
- Vadas, P.; Gold, M.; Perelman, B.; Liss, G.M.; Lack, G.; Blyth, T.; Simons, F.E.; Simons, K.J.; Cass, D.; Yeung, J. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N. Engl. J. Med. 2008, 358, 28–35. [Google Scholar] [CrossRef]
- Thangam, E.B.; Jemima, E.A.; Singh, H.; Baig, M.S.; Khan, M.; Mathias, C.B.; Church, M.K.; Saluja, R. The Role of Histamine and Histamine Receptors in Mast Cell-Mediated Allergy and Inflammation: The Hunt for New Therapeutic Targets. Front. Immunol. 2018, 9, 1873. [Google Scholar] [CrossRef] [PubMed]
- Chirumbolo, S.; Bjørklund, G.; Sboarina, A.; Vella, A. The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Hum. Vaccin. Immunother. 2018, 14, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Barcik, W.; Wawrzyniak, M.; Akdis, C.A.; O’Mahony, L. Immune regulation by histamine and histamine-secreting bacteria. Curr. Opin. Immunol. 2017, 48, 108–113. [Google Scholar] [CrossRef]
- Barcik, W.; Pugin, B.; Brescó, M.S.; Westermann, P.; Rinaldi, A.; Groeger, D.; Van Elst, D.; Sokolowska, M.; Krawczyk, K.; Frei, R.; et al. Bacterial secretion of histamine within the gut influences immune responses within the lung. Allergy 2019, 74, 899–909. [Google Scholar] [CrossRef]
- Comas-Basté, O.; Sánchez-Pérez, S.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.; Vidal-Carou, M.D.C. Histamine Intolerance: The Current State of the Art. Biomolecules 2020, 10, 1181. [Google Scholar] [CrossRef]
- Jutel, M.; Blaser, K.; Akdis, C.A. Histamine receptors in immune regulation and allergen-specific immunotherapy. Immunol. Allergy Clin. N. Am. 2006, 26, 245–259. [Google Scholar] [CrossRef]
- Windaus, A.; Vogt, W. Synthese des Imidazolyl-äthylamins. Berichte Dtsch. Chem. Gesellschaft. 1907, 40, 3691–3695. [Google Scholar] [CrossRef]
- Kettner, L.; Seitl, I.; Fischer, L. Recent advances in the application of microbial diamine oxidases and other histamine-oxidizing enzymes. World J. Microbiol. Biotechnol. 2022, 38, 232. [Google Scholar] [CrossRef]
- Hrubisko, M.; Danis, R.; Huorka, M.; Wawruch, M. Histamine Intolerance-The More We Know the Less We Know. A Review. Nutrients 2021, 13, 2228. [Google Scholar] [CrossRef]
- O’Mahony, L.; Akdis, M.; Akdis, C.A. Regulation of the immune response and inflammation by histamine and histamine receptors. J. Allergy Clin. Immunol. 2011, 128, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Layritz, C.M.; Hagel, A.F.; Graf, V.; Reiser, C.; Klinghammer, L.; Ropers, D.; Achenbach, S.; Raithel, M. Histamine in atrial fibrillation (AF)—Is there any connection? Results from an unselected population. Int. J. Cardiol. 2014, 172, e432–e433. [Google Scholar] [CrossRef] [PubMed]
- Panula, P. Histamine receptors, agonists, and antagonists in health and disease. Handb. Clin. Neurol. 2021, 180, 377–387. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Z. Targeting Histamine and Histamine Receptors for the Precise Regulation of Feeding. Curr. Top Behav. Neurosci. 2022, 59, 355–387. [Google Scholar] [CrossRef]
- Branco, A.C.C.C.; Yoshikawa, F.S.Y.; Pietrobon, A.J.; Sato, M.N. Role of Histamine in Modulating the Immune Response and Inflammation. Mediat. Inflamm. 2018, 2018, 9524075. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.L.; Cho, J. Pathophysiological Roles of Histamine Receptors in Cancer Progression: Implications and Perspectives as Potential Molecular Targets. Biomolecules 2021, 11, 1232. [Google Scholar] [CrossRef]
- Lamers, C.B. The changing role of H2-receptor antagonists in acid-related diseases. Eur. J. Gastroenterol. Hepatol. 1996, 8 (Suppl. 1), S3–S7. [Google Scholar] [CrossRef]
- Gantz, I.; DelValle, J.; Wang, L.D.; Tashiro, T.; Munzert, G.; Guo, Y.J.; Konda, Y.; Yamada, T. Molecular basis for the interaction of histamine with the histamine H2 receptor. J. Biol. Chem. 1992, 267, 20840–20843. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.E.; Ganellin, C.R. Histamine and its receptors. Br. J. Pharmacol. 2006, 147 (Suppl. 1), S127–S135. [Google Scholar] [CrossRef] [PubMed]
- Ferstl, R.; Frei, R.; Barcik, W.; Schiavi, E.; Wanke, K.; Ziegler, M.; Rodriguez-Perez, N.; Groeger, D.; Konieczna, P.; Zeiter, S.; et al. Histamine receptor 2 modifies iNKT cell activity within the inflamed lung. Allergy 2017, 72, 1925–1935. [Google Scholar] [CrossRef] [PubMed]
- Neumann, J.; Kirchhefer, U.; Dhein, S.; Hofmann, B.; Gergs, U. The Roles of Cardiovascular H2-Histamine Receptors Under Normal and Pathophysiological Conditions. Front. Pharmacol. 2021, 12, 732842. [Google Scholar] [CrossRef]
- Novak, N.; Mete, N.; Bussmann, C.; Maintz, L.; Bieber, T.; Akdis, M.; Zumkehr, J.; Jutel, M.; Akdis, C. Early suppression of basophil activation during allergen-specific immunotherapy by histamine receptor 2. J. Allergy Clin. Immunol. 2012, 130, 1153–1158.e2. [Google Scholar] [CrossRef]
- Levi, R.; Malm, J.R.; Bowman, F.O.; Rosen, M.R. The Arrhythmogenic Actions of Histamine on Human Atrial Fibers. Circ. Res. 1981, 49, 545–550. [Google Scholar] [CrossRef]
- Frommeyer, G.; Sterneberg, M.; Dechering, D.G.; Kaese, S.; Bögeholz, N.; Pott, C.; Fehr, M.; Bogossian, H.; Milberg, P.; Eckardt, L. Effective suppression of atrial fibrillation by the antihistaminic agent antazoline: First experimental insights into a novel antiarrhythmic agent. Cardiovasc. Ther. 2017, 35, e12244. [Google Scholar] [CrossRef]
- Abdulrazzaq, Y.M.; Bastaki, S.M.A.; Adeghate, E. Histamine H3 receptor antagonists—Roles in neurological and endocrine diseases and diabetes mellitus. Biomed. Pharmacother. 2022, 150, 112947. [Google Scholar] [CrossRef]
- Deiteren, A.; de Man, J.G.; Pelckmans, P.A.; de Winter, B.Y. Histamine H4 Receptors in the Gastrointestinal Tract. Br. J. Pharmacol. 2015, 172, 1165–1178. [Google Scholar] [CrossRef]
- Clauzure, M.; Táquez Delgado, M.A.; Phillip, J.M.; Revuelta, M.; Cerchietti, L.; Medina, V.A. Histamine H4 Receptor Agonism Induces Antitumor Effects in Human T-Cell Lymphoma. Int. J. Mol. Sci. 2022, 23, 1378. [Google Scholar] [CrossRef]
- Mirzahosseini, A.; Dalmadi, B.; Csutora, P. Histamine receptor H4 regulates mast cell degranulation and IgE induced FcεRI upregulation in murine bone marrow-derived mast cells. Cell. Immunol. 2013, 283, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Reher, T.M.; Neumann, D.; Buschauer, A.; Seifert, R. Incomplete activation of human eosinophils via the histamine H4-receptor: Evidence for ligand-specific receptor conformations. Biochem. Pharmacol. 2012, 84, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Cano, R.; Picado, C.; Valero, A.; Bartra, J. Mechanisms of Anaphylaxis Beyond IgE. J. Investig. Allergol. Clin. Immunol. 2016, 26, 73–82, quiz 2p following 83. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.J.; Baumert, J.L.; Beyer, K.; Boyle, R.J.; Chan, C.H.; Clark, A.T.; Crevel, R.W.; DunnGalvin, A.; Fernández-Rivas, M.; Gowland, M.H.; et al. Can we identify patients at risk of life-threatening allergic reactions to food? Allergy 2016, 71, 1241–1255. [Google Scholar] [CrossRef]
- Benveniste, J. Platelet-activating factor, a new mediator of anaphylaxis and immune complex deposition from rabbit and human basophils. Nature 1974, 249, 581–582. [Google Scholar] [CrossRef]
- Blank, M.L.; Lee, T.; Fitzgerald, V.; Snyder, F. A specific acetylhydrolase for 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (a hypotensive and platelet-activating lipid). J. Biol. Chem. 1981, 256, 175–178. [Google Scholar] [CrossRef]
- Gill, P.; Jindal, N.L.; Jagdis, A.; Vadas, P. Platelets in the immune response: Revisiting platelet-activating factor in anaphylaxis. J. Allergy Clin. Immunol. 2015, 135, 1424–1432. [Google Scholar] [CrossRef]
- Demopoulos, C.A.; Pinckard, R.N.; Hanahan, D.J. Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J. Biol. Chem. 1979, 254, 9355–9358. [Google Scholar] [CrossRef]
- da Silva Junior, I.A.; de Sousa Andrade, L.N.; Jancar, S.; Chammas, R. Platelet activating factor receptor antagonists improve the efficacy of experimental chemo- and radiotherapy. Clinics 2018, 73 (Suppl. 1), e792s. [Google Scholar] [CrossRef]
- Upton, J.E.M.; Grunebaum, E.; Sussman, G.; Vadas, P. Platelet Activating Factor (PAF): A Mediator of Inflammation. Biofactors 2022, 48, 1189–1202. [Google Scholar] [CrossRef]
- Pałgan, K.; Bartuzi, Z. Platelet activating factor in allergies. Int. J. Immunopathol. Pharmacol. 2015, 28, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Felix, S.B.; Steger, A.; Baumann, G.; Busch, R.; Ochsenfeld, G.; Berdel, W.E. Platelet-activating factor-induced coronary constriction in the isolated perfused guinea pig heart and antagonistic effects of the PAF antagonist WEB 2086. J. Lipid Mediat. 1990, 2, 9–20. [Google Scholar]
- Hu, W.; Kinnaird, A.A.; Man, R.Y. Mechanisms of the coronary vascular effects of platelet-activating factor in the rat perfused heart. Br. J. Pharmacol. 1991, 103, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Nuñez-Borque, E.; Fernandez-Bravo, S.; Yuste-Montalvo, A.; Esteban, V. Pathophysiological, Cellular, and Molecular Events of the Vascular System in Anaphylaxis. Front. Immunol. 2022, 13, 836222. [Google Scholar] [CrossRef]
- Balbino, B.; Sibilano, R.; Starkl, P.; Marichal, T.; Gaudenzio, N.; Karasuyama, H.; Bruhns, P.; Tsai, M.; Reber, L.L.; Galli, S.J. Pathways of immediate hypothermia and leukocyte infiltration in an adjuvant-free mouse model of anaphylaxis. J. Allergy Clin. Immunol. 2017, 139, 584–596.e10. [Google Scholar] [CrossRef]
- Eisaf, M.; Tselepis, A.D. Effect of hypolipidemic drugs on lipoprotein-associated platelet activating factor acetylhydrolase. Implication for atherosclerosis. Biochem. Pharmacol. 2003, 66, 2069–2073. [Google Scholar] [CrossRef]
- Perelman, B.; Adil, A.; Vadas, P. Relationship between platelet activating factor acetylhydrolase activity and apolipoprotein B levels in patients with peanut allergy. Allergy Asthma Clin. Immunol. 2014, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, H. Role of leukotrienes in asthma pathophysiology. Pediatr. Pulmonol. 2000, 30, 166–176. [Google Scholar] [CrossRef]
- Ono, E.; Taniguchi, M.; Mita, H.; Fukutomi, Y.; Higashi, N.; Miyazaki, E.; Kumamoto, T.; Akiyama, K. Increased production of cysteinyl leukotrienes and prostaglandin D2 during human anaphylaxis. Clin. Exp. Allergy 2009, 39, 72–80. [Google Scholar] [CrossRef]
- Kim, H.K.; Song, C.H.; Bae, Y.S.; Im, S.Y.; Lee, H.K. Glutamine Prevents Late-Phase Anaphylaxis via MAPK Phosphatase 1-Dependent Cytosolic Phospholipase A2 Deactivation. Int. Arch. Allergy Immunol. 2016, 171, 61–70. [Google Scholar] [CrossRef]
- Taniguchi, M.; Higashi, N.; Ono, E.; Mita, H.; Akiyama, K. Hyperleukotrieneuria in patients with allergic and inflammatory disease. Allergol. Int. 2008, 57, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Palma, A.M.; Hanes, M.R.; Marshall, J.S. Mast Cell Modulation of B Cell Responses: An Under-Appreciated Partnership in Host Defence. Front. Immunol. 2021, 12, 718499. [Google Scholar] [CrossRef] [PubMed]
- Cardona, V.; Ansotegui, I.J.; Ebisawa, M.; El-Gamal, Y.; Fernandez Rivas, M.; Fineman, S.; Geller, M.; Gonzalez-Estrada, A.; Greenberger, P.A.; Sanchez Borges, M.; et al. World allergy organization anaphylaxis guidance 2020. World Allergy Organ. J. 2020, 13, 100472. [Google Scholar] [CrossRef] [PubMed]
- Lyons, J.J. Inherited and acquired determinants of serum tryptase levels in humans. Ann. Allergy Asthma Immunol. 2021, 127, 420–426. [Google Scholar] [CrossRef]
- Caughey, G.H. Mast cell proteases as pharmacological targets. Eur. J. Pharmacol. 2016, 778, 44–55. [Google Scholar] [CrossRef]
- Fu, Z.; Akula, S.; Thorpe, M.; Hellman, L. Highly selective cleavage of TH2-Promoting cytokines by the human and the mouse mast cell tryptases, indicating a potent negative feedback loop on TH2 immunity. Int. J. Mol. Sci. 2019, 20, 5147. [Google Scholar] [CrossRef]
- Akula, S.; Paivandy, A.; Fu, Z.; Thorpe, M.; Pejler, G.; Hellman, L. Quantitative In-Depth Analysis of the Mouse Mast Cell Transcriptome Reveals Organ-Specific Mast Cell Heterogeneity. Cells 2020, 9, 211. [Google Scholar] [CrossRef]
- Tomasiak-Łozowska, M.M.; Klimek, M.; Lis, A.; Moniuszko, M.; Bodzenta-Łukaszyk, A. Markers of anaphylaxis—A systematic review. Adv. Med. Sci. 2018, 63, 265–277. [Google Scholar] [CrossRef]
- Varney, V.A.; Nicholas, A.; Warner, A.; Sumar, N. IgE-Mediated Systemic Anaphylaxis And Its Association With Gene Polymorphisms Of ACE, Angiotensinogen And Chymase. J. Asthma Allergy 2019, 12, 343–361. [Google Scholar] [CrossRef]
- Galvan-Blasco, P.; Gil-Serrano, J.; Sala-Cunill, A. New Biomarkers in Anaphylaxis (Beyond Tryptase). Curr. Treat. Options Allergy 2022, 9, 303–322. [Google Scholar] [CrossRef]
- McHugh, K.; Repanshek, Z. Anaphylaxis: Emergency Department Treatment. Emerg. Med. Clin. N. Am. 2022, 40, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Navalpakam, A.; Thanaputkaiporn, N.; Poowuttikul, P. Management of Anaphylaxis. Immunol. Allergy Clin. N. Am. 2022, 42, 65–76. [Google Scholar] [CrossRef]
- Dribin, T.E.; Castells, M. Anaphylaxis: Data Gaps and Research Needs. Immunol. Allergy Clin. N. Am. 2022, 42, 187–200. [Google Scholar] [CrossRef]
- Kraft, M.; Scherer Hofmeier, K.; Ruëff, F.; Pföhler, C.; Renaudin, J.M.; Bilò, M.B.; Treudler, R.; Lang, R.; Cichocka-Jarosz, E.; Fernandez-Rivas, M.; et al. Risk Factors and Characteristics of Biphasic Anaphylaxis. J. Allergy Clin. Immunol. Pract. 2020, 8, 3388–3395.e6. [Google Scholar] [CrossRef]
- Sargant, N.; Dodd, A.; Hughes, A.; Whyte, A.F.; Soar, J.; Turner, P.J. Refractory anaphylaxis: Treatment algorithm. Allergy 2021, 76, 1595–1597. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.E. Anaphylaxis management: Time to re-evaluate the role of corticosteroids. J. Allergy Clin. Immunol. Pract. 2019, 7, 2239–2240. [Google Scholar] [CrossRef] [PubMed]
- Syed, M.; Kammala, A.K.; Callahan, B.; Oskeritzian, C.A.; Subramanian, H. Lactic acid suppresses MRGPRX2 mediated mast cell responses. Cell Immunol. 2021, 368, 104422. [Google Scholar] [CrossRef]
Mast Cells | Basophils | References | |
---|---|---|---|
Origin | Bone marrow. In mouse a phenotypic identification of mast cell progenitors (MCps) was made in fetal blood. The development of MCps into mast cells is dependent on stem cell factor (SCF). SCF is the most important factor in differentiation, proliferation, survival and function of mast cells and their progenitors. (IL-3) supports development and function. | Bone marrow. The research performed in mouse blood cell hematopoiesis suggest basophils develop from hematopoietic stem cells (HSCs) via myeloid progenitors (CMPs): granulocyte-monocyte progenitors (GMPs), and granulocyte progenitors (GPs) in the bone marrow. Further development continues in the bone marrow or in the spleen. | [44,45] |
Location | Different tissue. | Peripheral blood. | [45,46,47] |
Types | MCTC- store tryptases, chymases, and carboxypeptidases. Prevail in the skin, lymph nodes, lung and the gut submucosa. Express C5aR. MCT- contain only tryptases and prevail in the intestinal and pulmonary mucosa. Mast cells expressing tryptase and carboxipeptidase A3. Localized in the airway epithelium in asthmatic subjects and esophageal in patients with eosinophilic esophagitis. MC1- anti tumorigenic mast cells MC2- tumorigenic mast cells | IL-3-induced line of basophils. Thymic stromal lymphopoietin (TSLP)-induced line of basophils. Lower responsiveness to IgE/antigen complexes. | [48,49] [50,51] [38,40,41] |
Function | Mast cells and basophils play a crucial role in anaphylaxis. | [45,46,52,53] | |
Associated with infections to certain parasites (Sarcoptes scabiei, Strongyloides ratti, S. brasiliensis, Schistosoma mansoni, Leishmania, Toxoplasma, Trypanosoma, Plasmodium). Carboxypeptidase A, tryptase β, chymase play an important role in resistance to the venoms of hymenoptera and snakes. Mouse mast cell protease 4 stimulates immune responses to the venoms of the Gila monster lizard (Heloderma suspectum) and some species of toxic scorpions. Antimicrobial activity (against S. Aureus by ejecting extracellular DNA traps) may be activated by a variety of bacterial and viral products. | Take part in innate immunity. | [46] [47,50] | |
Life span | Months | Days | [54,55] |
Tryptase content | High. | Low, about 500 times less than in mast cells. | [48,56,57] |
Basogranulin | Unknown. | released upon both IgE-dependent and IgE-independent stimulation. | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pałgan, K. Mast Cells and Basophils in IgE-Independent Anaphylaxis. Int. J. Mol. Sci. 2023, 24, 12802. https://doi.org/10.3390/ijms241612802
Pałgan K. Mast Cells and Basophils in IgE-Independent Anaphylaxis. International Journal of Molecular Sciences. 2023; 24(16):12802. https://doi.org/10.3390/ijms241612802
Chicago/Turabian StylePałgan, Krzysztof. 2023. "Mast Cells and Basophils in IgE-Independent Anaphylaxis" International Journal of Molecular Sciences 24, no. 16: 12802. https://doi.org/10.3390/ijms241612802
APA StylePałgan, K. (2023). Mast Cells and Basophils in IgE-Independent Anaphylaxis. International Journal of Molecular Sciences, 24(16), 12802. https://doi.org/10.3390/ijms241612802