Targeting Inhibitor of Apoptosis Proteins to Overcome Chemotherapy Resistance—A Marriage between Targeted Therapy and Cytotoxic Chemotherapy
Abstract
:1. Introduction
2. Mechanisms of Action of Chemotherapy and Radiotherapy
3. Apoptosis Pathways in Health and Disease
4. Inhibition of Apoptosis Proteins in Cancer Biology and Treatment
5. Smac-Mimetics and Other Strategies for Apoptosis Inhibition
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tran, A.; Klossner, Q.; Crain, T.; Prasad, V. Shifting, Overlapping and Expanding Use of “Precision Oncology” Terminology: A Retrospective Literature Analysis. BMJ Open 2020, 10, e036357. [Google Scholar] [CrossRef] [PubMed]
- Narezkina, A.; Nasim, K. Anthracycline Cardiotoxicity: One Step Closer to Reversing the Irreversible. Circ. Heart Fail. 2019, 12, e005910. [Google Scholar] [CrossRef] [PubMed]
- Dempke, W.C.M.; Zielinski, R.; Winkler, C.; Silberman, S.; Reuther, S.; Priebe, W. Anthracycline-Induced Cardiotoxicity—Are We about to Clear This Hurdle? Eur. J. Cancer 2023, 185, 94–104. [Google Scholar] [CrossRef]
- García-Gutiérrez, V.; Breccia, M.; Jabbour, E.; Mauro, M.; Cortes, J.E. A Clinician Perspective on the Treatment of Chronic Myeloid Leukemia in the Chronic Phase. J. Hematol. Oncol. 2022, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Dent, S.F.; Morse, A.; Burnette, S.; Guha, A.; Moore, H. Cardiovascular Toxicity of Novel HER2-Targeted Therapies in the Treatment of Breast Cancer. Curr. Oncol. Rep. 2021, 23, 128. [Google Scholar] [CrossRef]
- Sartore-Bianchi, A.; Pietrantonio, F.; Lonardi, S.; Mussolin, B.; Rua, F.; Crisafulli, G.; Bartolini, A.; Fenocchio, E.; Amatu, A.; Manca, P.; et al. Circulating Tumor DNA to Guide Rechallenge with Panitumumab in Metastatic Colorectal Cancer: The Phase 2 CHRONOS Trial. Nat. Med. 2022, 28, 1612–1618. [Google Scholar] [CrossRef]
- Tilsed, C.M.; Fisher, S.A.; Nowak, A.K.; Lake, R.A.; Lesterhuis, W.J. Cancer Chemotherapy: Insights into Cellular and Tumor Microenvironmental Mechanisms of Action. Front. Oncol. 2022, 12, 960317. [Google Scholar] [CrossRef]
- Elbanna, M.; Chowdhury, N.N.; Rhome, R.; Fishel, M.L. Clinical and Preclinical Outcomes of Combining Targeted Therapy With Radiotherapy. Front. Oncol. 2021, 11, 749496. [Google Scholar] [CrossRef]
- Wanner, E.; Thoppil, H.; Riabowol, K. Senescence and Apoptosis: Architects of Mammalian Development. Front. Cell Dev. Biol. 2021, 8, 620089. [Google Scholar] [CrossRef]
- Schmitt, C.A.; Wang, B.; Demaria, M. Senescence and Cancer—Role and Therapeutic Opportunities. Nat. Rev. Clin. Oncol. 2022, 19, 619–636. [Google Scholar] [CrossRef]
- Domen, A.; Deben, C.; Verswyvel, J.; Flieswasser, T.; Prenen, H.; Peeters, M.; Lardon, F.; Wouters, A. Cellular Senescence in Cancer: Clinical Detection and Prognostic Implications. J. Exp. Clin. Cancer Res. 2022, 41, 360. [Google Scholar] [CrossRef] [PubMed]
- Roger, L.; Tomas, F.; Gire, V. Mechanisms and Regulation of Cellular Senescence. Int. J. Mol. Sci. 2021, 22, 13173. [Google Scholar] [CrossRef]
- Wang, L.; Lankhorst, L.; Bernards, R. Exploiting Senescence for the Treatment of Cancer. Nat. Rev. Cancer 2022, 22, 340–355. [Google Scholar] [CrossRef]
- Johnston, S.; Martin, M.; Di Leo, A.; Im, S.-A.; Awada, A.; Forrester, T.; Frenzel, M.; Hardebeck, M.C.; Cox, J.; Barriga, S.; et al. MONARCH 3 Final PFS: A Randomized Study of Abemaciclib as Initial Therapy for Advanced Breast Cancer. NPJ Breast Cancer 2019, 5, 5. [Google Scholar] [CrossRef]
- Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A.; Yap, Y.-S.; Sonke, G.S.; Hart, L.; Campone, M.; Petrakova, K.; Winer, E.P.; Janni, W.; et al. Overall Survival with Ribociclib plus Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2022, 386, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Cristofanilli, M.; Rugo, H.S.; Im, S.-A.; Slamon, D.J.; Harbeck, N.; Bondarenko, I.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; et al. Overall Survival with Palbociclib and Fulvestrant in Women with HR+/HER2− ABC: Updated Exploratory Analyses of PALOMA-3, a Double-Blind, Phase III Randomized Study. Clin. Cancer Res. 2022, 28, 3433–3442. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.R.D.; Toi, M.; O’Shaughnessy, J.; Rastogi, P.; Campone, M.; Neven, P.; Huang, C.-S.; Huober, J.; Jaliffe, G.G.; Cicin, I.; et al. Abemaciclib plus Endocrine Therapy for Hormone Receptor-Positive, HER2-Negative, Node-Positive, High-Risk Early Breast Cancer (MonarchE): Results from a Preplanned Interim Analysis of a Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2023, 24, 77–90. [Google Scholar] [CrossRef]
- Carpenter, V.J.; Saleh, T.; Gewirtz, D.A. Senolytics for Cancer Therapy: Is All That Glitters Really Gold? Cancers 2021, 13, 723. [Google Scholar] [CrossRef]
- Maldonado, E.B.; Parsons, S.; Chen, E.Y.; Haslam, A.; Prasad, V. Estimation of US Patients with Cancer Who May Respond to Cytotoxic Chemotherapy. Future Sci. OA 2020, 6, FSO600. [Google Scholar] [CrossRef]
- Tao, Y.; Sun, X.-S.; Pointreau, Y.; Le Tourneau, C.; Sire, C.; Kaminsky, M.-C.; Coutte, A.; Alfonsi, M.; Calderon, B.; Boisselier, P.; et al. Extended Follow-up of a Phase 2 Trial of Xevinapant plus Chemoradiotherapy in High-Risk Locally Advanced Squamous Cell Carcinoma of the Head and Neck: A Randomised Clinical Trial. Eur. J. Cancer 2023, 183, 24–37. [Google Scholar] [CrossRef]
- Bourhis, J.; Burtness, B.; Licitra, L.F.; Nutting, C.; Schoenfeld, J.D.; Omar, M.; Bouisset, F.; Nauwelaerts, H.; Urfer, Y.; Zanna, C.; et al. Xevinapant or Placebo plus Chemoradiotherapy in Locally Advanced Squamous Cell Carcinoma of the Head and Neck: TrilynX Phase III Study Design. Future Oncol. 2022, 18, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Kansal, V.; Kinney, B.L.C.; Uppada, S.; Saba, N.F.; Stokes, W.A.; Buchwald, Z.S.; Schmitt, N.C. The Expanding Role of IAP Antagonists for the Treatment of Head and Neck Cancer. Cancer Med. 2023, 12, 13958–13965. [Google Scholar] [CrossRef]
- Moon, J.; Kitty, I.; Renata, K.; Qin, S.; Zhao, F.; Kim, W. DNA Damage and Its Role in Cancer Therapeutics. Int. J. Mol. Sci. 2023, 24, 4741. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y.; Chen, C.-Y.; Lee, H.-L.; Chiou, J.-F.; Chen, Y.-J. Molecular Mechanisms of Chemotherapy Resistance in Head and Neck Cancers. Front. Oncol. 2021, 11, 640392. [Google Scholar] [CrossRef]
- Carneiro, B.A.; El-Deiry, W.S. Targeting Apoptosis in Cancer Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef]
- Cetraro, P.; Plaza-Diaz, J.; MacKenzie, A.; Abadía-Molina, F. A Review of the Current Impact of Inhibitors of Apoptosis Proteins and Their Repression in Cancer. Cancers 2022, 14, 1671. [Google Scholar] [CrossRef]
- Tu, H.; Costa, M. XIAP’s Profile in Human Cancer. Biomolecules 2020, 10, 1493. [Google Scholar] [CrossRef]
- Orr, J.N.; Waugh, R.; Colas, I. Ubiquitination in Plant Meiosis: Recent Advances and High Throughput Methods. Front. Plant Sci. 2021, 12, 667314. [Google Scholar] [CrossRef]
- Finlay, D.; Teriete, P.; Vamos, M.; Cosford, N.D.P.; Vuori, K. Inducing Death in Tumor Cells: Roles of the Inhibitor of Apoptosis Proteins. F1000Research 2017, 6, 587. [Google Scholar] [CrossRef]
- Oberoi-Khanuja, T.K.; Murali, A.; Rajalingam, K. IAPs on the Move: Role of Inhibitors of Apoptosis Proteins in Cell Migration. Cell Death Dis. 2013, 4, e784. [Google Scholar] [CrossRef] [PubMed]
- Lasica, M.; Anderson, M.A. Review of Venetoclax in CLL, AML and Multiple Myeloma. J. Pers. Med. 2021, 11, 463. [Google Scholar] [CrossRef]
- Ferris, R.L.; Harrington, K.; Schoenfeld, J.D.; Tahara, M.; Esdar, C.; Salmio, S.; Schroeder, A.; Bourhis, J. Inhibiting the Inhibitors: Development of the IAP Inhibitor Xevinapant for the Treatment of Locally Advanced Squamous Cell Carcinoma of the Head and Neck. Cancer Treat. Rev. 2023, 113, 102492. [Google Scholar] [CrossRef]
- Cai, Q.; Sun, H.; Peng, Y.; Lu, J.; Nikolovska-Coleska, Z.; McEachern, D.; Liu, L.; Qiu, S.; Yang, C.-Y.; Miller, R.; et al. A Potent and Orally Active Antagonist (SM-406/AT-406) of Multiple Inhibitor of Apoptosis Proteins (IAPs) in Clinical Development for Cancer Treatment. J. Med. Chem. 2011, 54, 2714–2726. [Google Scholar] [CrossRef]
- Allensworth, J.L.; Sauer, S.J.; Lyerly, H.K.; Morse, M.A.; Devi, G.R. Smac Mimetic Birinapant Induces Apoptosis and Enhances TRAIL Potency in Inflammatory Breast Cancer Cells in an IAP-Dependent and TNF-α-Independent Mechanism. Breast Cancer Res. Treat. 2013, 137, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.; Larisch, S. Targeting XIAP for Promoting Cancer Cell Death—The Story of ARTS and SMAC. Cells 2020, 9, 663. [Google Scholar] [CrossRef]
- Devi, G.R.; Finetti, P.; Morse, M.A.; Lee, S.; De Nonneville, A.; Van Laere, S.; Troy, J.; Geradts, J.; McCall, S.; Bertucci, F. Expression of X-Linked Inhibitor of Apoptosis Protein (XIAP) in Breast Cancer Is Associated with Shorter Survival and Resistance to Chemotherapy. Cancers 2021, 13, 2807. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, M.J.M.; Milutinovic, S.; Dickson, K.M.; Ho, W.C.; Boudreault, A.; Durkin, J.; Gillard, J.W.; Jaquith, J.B.; Morris, S.J.; Barker, P.A. CIAP1 and CIAP2 Facilitate Cancer Cell Survival by Functioning as E3 Ligases That Promote RIP1 Ubiquitination. Mol. Cell 2008, 30, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Crawford, N.; Stott, K.J.; Sessler, T.; McCann, C.; McDaid, W.; Lees, A.; Latimer, C.; Fox, J.P.; Munck, J.M.; Smyth, T.; et al. Clinical Positioning of the IAP Antagonist Tolinapant (ASTX660) in Colorectal Cancer. Mol. Cancer Ther. 2021, 20, 1627–1639. [Google Scholar] [CrossRef]
- Cortes, J.; Rugo, H.S.; Cescon, D.W.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 387, 217–226. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Dent, R.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; et al. Event-Free Survival with Pembrolizumab in Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 386, 556–567. [Google Scholar] [CrossRef]
- Yeung, T.L.; Jiang, F.; Qi, J.; Yu, H.; Chiu, L.-Y.; Marelli, B.; Wang, H.; Bonnemaison, M.; Jenkins, M.; Ferretti, R.; et al. Effect of Extended Treatment with IAP Inhibitor Xevinapant Post Radiotherapy (RT) on Efficacy and the Tumor Microenvironment (TME) in Preclinical Models. J. Clin. Oncol. 2023, 41, 6027. [Google Scholar] [CrossRef]
- Castells, M.; Milhas, D.; Gandy, C.; Thibault, B.; Rafii, A.; Delord, J.-P.; Couderc, B. Microenvironment Mesenchymal Cells Protect Ovarian Cancer Cell Lines from Apoptosis by Inhibiting XIAP Inactivation. Cell Death Dis. 2013, 4, e887. [Google Scholar] [CrossRef] [PubMed]
- Montero, J.; Haq, R. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discov. 2022, 12, 1217–1232. [Google Scholar] [CrossRef]
- Klener, P.; Sovilj, D.; Renesova, N.; Andera, L. BH3 Mimetics in Hematologic Malignancies. Int. J. Mol. Sci. 2021, 22, 10157. [Google Scholar] [CrossRef]
- Sharma, P.; Piya, S.; Ma, H.; Baran, N.; Muftuoglu, M.; Basyal, M.; Ruvolo, V.; Ward, G.; Smyth, T.; Sims, M.J.; et al. Abstract 5337: Tolinapant (ASTX660) Enhances the Anti-Leukemic Activity of Venetoclax and Dexamethasone in T Cell Acute Lymphoblastic Leukemia (T-ALL). Cancer Res. 2022, 82, 5337. [Google Scholar] [CrossRef]
- Sun, X.-S.; Tao, Y.; Le Tourneau, C.; Pointreau, Y.; Sire, C.; Kaminsky, M.-C.; Coutte, A.; Alfonsi, M.; Boisselier, P.; Martin, L.; et al. Debio 1143 and High-Dose Cisplatin Chemoradiotherapy in High-Risk Locoregionally Advanced Squamous Cell Carcinoma of the Head and Neck: A Double-Blind, Multicentre, Randomised, Phase 2 Study. Lancet Oncol. 2020, 21, 1173–1187. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, M.; Liu, Y.; Wang, X.; Li, Y.; Hu, X.; Qiu, Y.; Liang, W.; Wei, Y.; Zhong, Y. HPV Positive Status Is a Favorable Prognostic Factor in Non-Nasopharyngeal Head and Neck Squamous Cell Carcinoma Patients: A Retrospective Study from the Surveillance, Epidemiology, and End Results Database. Front. Oncol. 2021, 11, 688615. [Google Scholar] [CrossRef] [PubMed]
- Moussata, D.; Amara, S.; Siddeek, B.; Decaussin, M.; Hehlgans, S.; Paul-Bellon, R.; Mornex, F.; Gerard, J.-P.; Romestaing, P.; Rödel, F.; et al. XIAP as a Radioresistance Factor and Prognostic Marker for Radiotherapy in Human Rectal Adenocarcinoma. Am. J. Pathol. 2012, 181, 1271–1278. [Google Scholar] [CrossRef]
Drug | Study Reference | Phase | Study Population | Status | Summary |
---|---|---|---|---|---|
None | [48] | Preclinical | Human rectal carcinoma cell lines | - | XIAP seems to mediate radio-resistance in rectal cancer cell lines |
None | [38] | Preclinical | Cancer gene expression data from open data repositories | - | Bioinformatic analysis shows that high XIAP expressions correlate with markers of chemoresistance in breast cancer. |
Tolinapant (+FOLFOX) | [36] | Preclinical | Human and murine rectal carcinoma organoids | - | cIAP1/2 seems to mediate chemo-resistance in rectal cancer, and tolinapant can help overcome chemoresistance |
Tolinapant (+venetoclax) | [45] | Preclinical | In vitro cells of T cell acute lymphoblastic leukemia | - | Tolinapant sensitizes apoptosis of T cell leukemia cells induced via venetoclax or dexamethasone. |
Tolinapant (+pembrolizumab) | ASTEROID trial (NCT05082259) | Phase I | Multiple metastatic tumors | Ongoing, recruitment active | No results available. |
Tolinapant (+Decitabine/Cedazuridine) | NCT05403450 | Phase I/II | Patients with relapsed/Refractory Peripheral T-cell Lymphoma | Ongoing, recruiting active | No results available |
Tolinapant (+capecitabine), followed or preceded by mFOLFIRINOX or CAPOX | NCT05912075 | Phase Ib | Patients with locally advanced rectal cancer | Not yet recruiting | No results available |
Xevinapant (+avelumab) | NCT03270176 | Phase I | Multiple metastatic tumors including non-small cell lung cancer | Ongoing, recruitment in progress | No results available. |
Xevinapant (+high-dose cisplatin + radiation) | NCT02022098 [20] | Phase II | Locally advanced p16-negative head and neck cancers | Completed | At three years, the risk of death or disease progression was reduced by 67% for xevinapant plus chemo-radiation (adjusted HR 0.33; 95% CI, 0.17–0.67; p = 0.0019). The risk of death was decreased by approximately half in the xevinapant arm compared with placebo (adjusted HR 0.47; 95% CI, 0.27–0.84; p = 0.0101). Overall survival was prolonged. |
Xevinapant (+high-dose cisplatin + radiation) | TryllinX (NCT04459715) [21] | Phase III | Locally advanced p16-negative head and neck cancers | Ongoing, recruitment completed | No results available. |
Xevinapant (+high-dose cisplatin + radiation) | XRAY VISION (NCT05386550) | Phase III | Operable head and neck cancers in the neoadjuvant and adjuvant setting | Ongoing, actively recruiting | No results available. |
Xevinapant (+radiation) | RAVINA (NCT05724602) | Phase III | Locally advanced high-risk p16-negative and p16-positive patients unable to tolerate high-dose cisplatin | Not yet recruiting | No results available. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barroso, T.; Melo-Alvim, C.; Ribeiro, L.A.; Casimiro, S.; Costa, L. Targeting Inhibitor of Apoptosis Proteins to Overcome Chemotherapy Resistance—A Marriage between Targeted Therapy and Cytotoxic Chemotherapy. Int. J. Mol. Sci. 2023, 24, 13385. https://doi.org/10.3390/ijms241713385
Barroso T, Melo-Alvim C, Ribeiro LA, Casimiro S, Costa L. Targeting Inhibitor of Apoptosis Proteins to Overcome Chemotherapy Resistance—A Marriage between Targeted Therapy and Cytotoxic Chemotherapy. International Journal of Molecular Sciences. 2023; 24(17):13385. https://doi.org/10.3390/ijms241713385
Chicago/Turabian StyleBarroso, Tiago, Cecília Melo-Alvim, Leonor Abreu Ribeiro, Sandra Casimiro, and Luís Costa. 2023. "Targeting Inhibitor of Apoptosis Proteins to Overcome Chemotherapy Resistance—A Marriage between Targeted Therapy and Cytotoxic Chemotherapy" International Journal of Molecular Sciences 24, no. 17: 13385. https://doi.org/10.3390/ijms241713385
APA StyleBarroso, T., Melo-Alvim, C., Ribeiro, L. A., Casimiro, S., & Costa, L. (2023). Targeting Inhibitor of Apoptosis Proteins to Overcome Chemotherapy Resistance—A Marriage between Targeted Therapy and Cytotoxic Chemotherapy. International Journal of Molecular Sciences, 24(17), 13385. https://doi.org/10.3390/ijms241713385