The Enigma of Mammaglobin: Redefining the Biomarker Paradigm in Breast Carcinoma
Abstract
:1. Introduction
2. The Pivotal Role of Biomarkers in Breast Carcinoma
3. Expression Patterns of Mammaglobin-A in Diverse Human Tissues
4. Tumoral Expression of Mammaglobin
4.1. Mammaglobin in Breast Carcinoma Tissue: Its Potential Role as a Marker
Mammaglobin Expression and Its Correlation with Hormone Receptor Status in Breast Cancer
4.2. Peritumoral Expression of Mammaglobin: A New Dimension in Breast Carcinoma Research
5. Mammaglobin Expression in Metastatic Breast Carcinoma: Potential Implications for Disease Detection and Monitoring
5.1. Mammaglobin: A Promising Marker for Lymph Node Metastasis in Breast Cancer
5.2. Circulating Mammaglobin: A Potential Diagnostic Marker for Breast Cancer
Mammaglobin and Circulating Tumor Cells (CTCs): A Novel Diagnostic Avenue in Breast Cancer
5.3. Mammaglobin: A Potential Indicator for Bone Marrow Metastasis in Breast Cancer
6. Mammaglobin in Breast Cancer: A Multifaceted Entity
6.1. The Biological Function of Mammaglobin in Breast Carcinoma: A Dual Role
6.2. Expression of Mammaglobin-A in Other Carcinomas
6.3. Mammaglobin-A as a Promising Therapeutic Target in Breast Cancer
6.4. Mammaglobin as a Potential Target for Breast Cancer Immunotherapy
7. Current Challenges and Future Perspectives
- Sensitivity and Specificity: Enhancing the sensitivity and specificity of mammaglobin detection in breast carcinoma is imperative. Future studies need to concentrate on refining the techniques used in mammaglobin detection to boost accuracy.
- Method Standardization: Currently, a universal protocol for detecting and quantifying mammaglobin across diverse sample types is absent, creating hurdles for comparison between studies. The establishment of shared protocols should be prioritized.
- Biological Role Comprehension: The biological role mammaglobin plays in breast carcinoma is not entirely clear. Clarifying its exact function could offer critical insights into its effectiveness as a diagnostic and prognostic marker and potential as a therapeutic target.
- Early Detection and Diagnosis: Enhanced detection methods could pave the way for the use of mammaglobin as a non-invasive biomarker for the early detection and diagnosis of breast carcinoma.
- Prognostic Marker: Mammaglobin may become a valuable prognostic marker if larger prospective studies substantiate the link between its levels and disease progression/outcomes.
- Personalized Therapy: If mammaglobin is proven to be integral to the pathogenesis of breast carcinoma, it could be considered a target for personalized therapies.
- Companion Diagnostic Tool: In conjunction with other established biomarkers, mammaglobin could serve as a companion diagnostic tool to improve diagnostic accuracy and inform treatment choices.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.X.; Lim, Z.L.; Ho, P.J.; Li, J. Breast Cancer in Asia: Incidence, Mortality, Early Detection, Mammography Programs, and Risk-Based Screening Initiatives. Cancers 2022, 14, 4218. [Google Scholar] [CrossRef]
- Li, J.; Guan, X.; Fan, Z.; Ching, L.M.; Li, Y.; Wang, X.; Cao, W.M.; Liu, D.X. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers 2020, 12, 2767. [Google Scholar] [CrossRef] [PubMed]
- Patani, N.; Martin, L.A.; Dowsett, M. Biomarkers for the clinical management of breast cancer: International perspective. Int. J. Cancer 2013, 133, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zafrakas, M.; Petschke, B.; Donner, A.; Fritzsche, F.; Kristiansen, G.; Knüchel, R.; Dahl, E. Expression analysis of mammaglobin A (SCGB2A2) and lipophilin B (SCGB1D2) in more than 300 human tumors and matching normal tissues reveals their co-expression in gynecologic malignancies. BMC Cancer 2006, 6, 88. [Google Scholar] [CrossRef]
- Jackson, B.C.; Thompson, D.C.; Wright, M.W.; McAndrews, M.; Bernard, A.; Nebert, D.W.; Vasiliou, V. Update of the human secretoglobin (SCGB) gene superfamily and an example of ‘evolutionary bloom’ of androgen-binding protein genes within the mouse Scgb gene superfamily. Hum. Genom. 2011, 5, 691–702. [Google Scholar] [CrossRef]
- Wang, Z.; Spaulding, B.; Sienko, A.; Liang, Y.; Li, H.; Nielsen, G.; Yub Gong, G.; Ro, J.Y.; Jim Zhai, Q. Mammaglobin, a valuable diagnostic marker for metastatic breast carcinoma. Int. J. Clin. Exp. Pathol. 2009, 2, 384–389. [Google Scholar]
- Gorbokon, N.; Timm, P.; Dum, D.; Menz, A.; Büscheck, F.; Völkel, C.; Hinsch, A.; Lennartz, M.; Luebke, A.M.; Hube-Magg, C.; et al. Mammaglobin-A Expression Is Highly Specific for Tumors Derived from the Breast, the Female Genital Tract, and the Salivary Gland. Diagnostics 2023, 13, 1202. [Google Scholar] [CrossRef]
- Al Joudi, F.S. Human mammaglobin in breast cancer: A brief review of its clinical utility. Indian J. Med. Res. 2014, 139, 675–685. [Google Scholar]
- Klug, J.; Beier, H.; Bernard, A.; Chilton, B.; Fleming, T.; Lehrer, R.; Miele, L.; Pattabiraman, N.; Singh, G. Uteroglobin/Clara Cell 10—kDa Family of Proteins: Nomenclature Committee Report. Ann. New York Acad. Sci. 2000, 923, 348–354. [Google Scholar] [CrossRef]
- Zehentner, B.K.; Carter, D. Mammaglobin: A candidate diagnostic marker for breast cancer. Clin. Biochem. 2004, 37, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Ghersevich, S.; Ceballos, M.P. Mammaglobin A: Review and clinical utility. Adv. Clin. Chem. 2014, 64, 241–268. [Google Scholar] [PubMed]
- Carter, D.; Valliere-Douglass, J.; Cornellison, C.; Retter, M.; Johnson, J.; Bennington, A.; Fleming, T.; Reed, S.; Houghton, R.; Diamond, D.; et al. Purification and Characterization of the Mammaglobin/Lipophilin B Complex, a Promising Diagnostic Marker for Breast Cancer. Biochemistry 2002, 41, 6714–6722. [Google Scholar] [CrossRef]
- Fleming, T.P.; Watson, M.A. Mammaglobin, a breast-specific gene, and its utility as a marker for breast cancer. Ann. N. Y. Acad. Sci. 2000, 923, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Milosevic, B.; Cvetkovic, A.; Ninkovic, S.; Markovic, S.; Mitrovic, S.; Stojanovic, B.; Radunovic, A.; Vulovic, M.; Cvetkovic, D. Mammaglobin expression in tissue as a predictor of breast carcinoma aggressiveness. Vojnosanit. Pregl. 2021, 78, 160–170. [Google Scholar] [CrossRef]
- Monsalve-Lancheros, A.; Ibáñez-Pinilla, M.; Ramírez-Clavijo, S. Detection of mammagloblin by RT-PCR as a biomarker for lymph node metastasis in breast cancer patients: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0216989. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, P.; Wu, D.; Jiang, Y. Prognostic role of plasma mammaglobin A expression in breast carcinoma patients: A meta-analysis. Onco Targets Ther. 2018, 11, 3245–3255. [Google Scholar] [CrossRef]
- Wilkinson, L.; Gathani, T. Understanding breast cancer as a global health concern. Br. J. Radiol. 2022, 95, 20211033. [Google Scholar] [CrossRef]
- Richman, J.; Dowsett, M. Beyond 5 years: Enduring risk of recurrence in oestrogen receptor-positive breast cancer. Nat. Rev. Clin. Oncol. 2019, 16, 296–311. [Google Scholar] [CrossRef]
- Li, G.; Hu, J.; Hu, G. Biomarker Studies in Early Detection and Prognosis of Breast Cancer. Adv. Exp. Med. Biol. 2017, 1026, 27–39. [Google Scholar] [CrossRef]
- Darb-Esfahani, S.; von Minckwitz, G.; Denkert, C.; Ataseven, B.; Högel, B.; Mehta, K.; Kaltenecker, G.; Rüdiger, T.; Pfitzner, B.; Kittel, K.; et al. Gross cystic disease fluid protein 15 (GCDFP-15) expression in breast cancer subtypes. BMC Cancer 2014, 14, 546. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Pelliccia, C.; Teti, V.; Bellezza, G.; Mandarano, M.; Ferri, I.; Hartmann, K.; Laible, M.; Sahin, U.; Varga, Z.; et al. Looking for more reliable biomarkers in breast cancer: Comparison between routine methods and RT-qPCR. PLoS ONE 2021, 16, e0255580. [Google Scholar] [CrossRef] [PubMed]
- Anoop, T.M.; Joseph, P.R.; Soman, S.; Chacko, S.; Mathew, M. Significance of serum carcinoembryonic antigen in metastatic breast cancer patients: A prospective study. World J. Clin. Oncol. 2022, 13, 529–539. [Google Scholar] [CrossRef]
- Lin, D.; Genzen, J. Comparison of Breast Cancer Tumor Marker Test Results: A Retrospective Analysis of Paired CA 15-3 and CA 27.29 Testing at a National Reference Laboratory. Am. J. Clin. Pathol. 2017, 147, S156. [Google Scholar] [CrossRef]
- Pal, M.; Muinao, T.; Boruah, H.P.D.; Mahindroo, N. Current advances in prognostic and diagnostic biomarkers for solid cancers: Detection techniques and future challenges. Biomed. Pharmacother. 2022, 146, 112488. [Google Scholar] [CrossRef] [PubMed]
- Győrffy, B.; Hatzis, C.; Sanft, T.; Hofstatter, E.; Aktas, B.; Pusztai, L. Multigene prognostic tests in breast cancer: Past, present, future. Breast Cancer Res. 2015, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Sinn, P.; Aulmann, S.; Wirtz, R.; Schott, S.; Marmé, F.; Varga, Z.; Lebeau, A.; Kreipe, H.; Schneeweiss, A. Multigene Assays for Classification, Prognosis, and Prediction in Breast Cancer: A Critical Review on the Background and Clinical Utility. Geburtshilfe Frauenheilkd 2013, 73, 932–940. [Google Scholar] [CrossRef]
- Thibodeau, S.; Voutsadakis, I.A. The Oncotype Dx Assay in ER-Positive, HER2-Negative Breast Cancer Patients: A Real Life Experience from a Single Cancer Center. Eur. J. Breast Health 2019, 15, 163–170. [Google Scholar] [CrossRef]
- Sarhadi, V.K.; Armengol, G. Molecular Biomarkers in Cancer. Biomolecules 2022, 12, 1021. [Google Scholar] [CrossRef]
- Mehrpouya, M.; Pourhashem, Z.; Yardehnavi, N.; Oladnabi, M. Evaluation of cytokeratin 19 as a prognostic tumoral and metastatic marker with focus on improved detection methods. J. Cell. Physiol. 2019, 234, 21425–21435. [Google Scholar] [CrossRef]
- Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat. 2012, 136, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, P.F.; Rabascio, C.; Gigli, F.; Corsini, C.; Giordano, G.; Bertolini, F.; Martinelli, G. A new comprehensive gene expression panel to study tumor micrometastasis in patients with high-risk breast cancer. Int. J. Oncol. 2007, 30, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J. Serum tumor markers in breast cancer: Are they of clinical value? Clin. Chem. 2006, 52, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Corradini, P.; Voena, C.; Astolfi, M.; Delloro, S.; Pilotti, S.; Arrigoni, G.; Bregni, M.; Pileri, A.; Gianni, A.M. Maspin and mammaglobin genes are specific markers for RT-PCR detection of minimal residual disease in patients with breast cancer. Ann. Oncol. 2001, 12, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Zehentner, B.K.; Persing, D.H.; Deme, A.; Toure, P.; Hawes, S.E.; Brooks, L.; Feng, Q.; Hayes, D.C.; Critichlow, C.W.; Houghton, R.L.; et al. Mammaglobin as a novel breast cancer biomarker: Multigene reverse transcription-PCR assay and sandwich ELISA. Clin. Chem. 2004, 50, 2069–2076. [Google Scholar] [CrossRef] [PubMed]
- Banys-Paluchowski, M.; Witzel, I.; Aktas, B.; Fasching, P.A.; Hartkopf, A.; Janni, W.; Kasimir-Bauer, S.; Pantel, K.; Schön, G.; Rack, B.; et al. The prognostic relevance of urokinase-type plasminogen activator (uPA) in the blood of patients with metastatic breast cancer. Sci. Rep. 2019, 9, 2318. [Google Scholar] [CrossRef]
- Duffy, M.J. Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: From pilot to level 1 evidence studies. Clin. Chem. 2002, 48, 1194–1197. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, J.; Xiao, J.; Wang, Y.; Wang, H.; Shi, H.; Yue, C.; Jia, F.; Li, P.; Hu, Z.; et al. Prognostic Relevance of Estrogen Receptor Status in Circulating Tumor Cells in Breast Cancer Patients Treated With Endocrine Therapy. Front. Oncol. 2022, 12, 866293. [Google Scholar] [CrossRef]
- Li, Z.; Wei, H.; Li, S.; Wu, P.; Mao, X. The Role of Progesterone Receptors in Breast Cancer. Drug Des. Dev. Ther. 2022, 16, 305–314. [Google Scholar] [CrossRef]
- Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef]
- Mehrgou, A.; Akouchekian, M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med. J. Islam. Repub. Iran 2016, 30, 369. [Google Scholar] [PubMed]
- Liu, Z.Z.; Xie, X.D.; Qu, S.X.; Zheng, Z.D.; Wang, Y.K. Small breast epithelial mucin (SBEM) has the potential to be a marker for predicting hematogenous micrometastasis and response to neoadjuvant chemotherapy in breast cancer. Clin. Exp. Metastasis 2010, 27, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.G.; Yu, F.; Yao, Q.; Chen, J.H.; Wang, L. The role of survivin in diagnosis, prognosis and treatment of breast cancer. J. Thorac. Dis. 2010, 2, 100–110. [Google Scholar] [PubMed]
- Davey, M.G.; Hynes, S.O.; Kerin, M.J.; Miller, N.; Lowery, A.J. Ki-67 as a Prognostic Biomarker in Invasive Breast Cancer. Cancers 2021, 13, 4455. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Sawabe, M.; Soejima, Y.; Mieno, M.N.; Arai, T.; Honma, N. Gross Cystic Disease Fluid Protein-15 (GCDFP-15) Expression Characterizes Breast Mucinous Carcinomas in Older Women. Diagnostics 2022, 12, 3129. [Google Scholar] [CrossRef]
- Baker, E.; Whiteoak, N.; Hall, L.; France, J.; Wilson, D.; Bhaskar, P. Mammaglobin-A, VEGFR3, and Ki67 in Human Breast Cancer Pathology and Five Year Survival. Breast Cancer 2019, 13, 1178223419858957. [Google Scholar] [CrossRef]
- Onuma, K.; Dabbs, D.J.; Bhargava, R. Mammaglobin expression in the female genital tract: Immunohistochemical analysis in benign and neoplastic endocervix and endometrium. Int. J. Gynecol. Pathol. 2008, 27, 418–425. [Google Scholar] [CrossRef]
- Watson, M.A.; Fleming, T.P. Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. Cancer Res. 1996, 56, 860–865. [Google Scholar]
- Nguyen, H.M.; Dao, M.Q. Detection of human mammaglobin mRNA in breast cancer cells among Vietnamese women. Breast Cancer 2019, 11, 143–150. [Google Scholar] [CrossRef]
- Jaramillo, A.; Majumder, K.; Manna, P.P.; Fleming, T.P.; Doherty, G.; Dipersio, J.F.; Mohanakumar, T. Identification of HLA-A3-restricted CD8+ T cell epitopes derived from mammaglobin-A, a tumor-associated antigen of human breast cancer. Int. J. Cancer 2002, 102, 499–506. [Google Scholar] [CrossRef]
- Galvis-Jiménez, J.M.; Curtidor, H.; Patarroyo, M.A.; Monterrey, P.; Ramírez-Clavijo, S.R. Mammaglobin peptide as a novel biomarker for breast cancer detection. Cancer Biol. Ther. 2013, 14, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.; Dillon, D.C.; Reynolds, L.D.; Retter, M.W.; Fanger, G.; Molesh, D.A.; Sleath, P.R.; McNeill, P.D.; Vedvick, T.S.; Reed, S.G.; et al. Serum antibodies to lipophilin B detected in late stage breast cancer patients. Clin. Cancer Res. 2003, 9, 749–754. [Google Scholar] [PubMed]
- Li, G.; Zhang, J.; Jin, K.; He, K.; Wang, H.; Lu, H.; Teng, L. Human mammaglobin: A superior marker for reverse-transcriptase PCR in detecting circulating tumor cells in breast cancer patients. Biomark. Med. 2011, 5, 249–260. [Google Scholar] [CrossRef]
- Friedmann-Morvinski, D.; Verma, I.M. Dedifferentiation and reprogramming: Origins of cancer stem cells. EMBO Rep. 2014, 15, 244–253. [Google Scholar] [CrossRef]
- O’Brien, N.; Maguire, T.M.; O’Donovan, N.; Lynch, N.; Hill, A.D.; McDermott, E.; O’Higgins, N.; Duffy, M.J. Mammaglobin a: A promising marker for breast cancer. Clin. Chem. 2002, 48, 1362–1364. [Google Scholar] [CrossRef] [PubMed]
- Neophytou, C.M.; Panagi, M.; Stylianopoulos, T.; Papageorgis, P. The Role of Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers 2021, 13, 2053. [Google Scholar] [CrossRef] [PubMed]
- Leygue, E.; Snell, L.; Dotzlaw, H.; Hole, K.; Troup, S.; Hiller-Hitchcock, T.; Murphy, L.C.; Watson, P.H. Mammaglobin, a potential marker of breast cancer nodal metastasis. J. Pathol. 1999, 189, 28–33. [Google Scholar] [CrossRef]
- Ataollahi, M.R.; Sharifi, J.; Paknahad, M.R.; Paknahad, A. Breast cancer and associated factors: A review. J. Med. Life 2015, 8, 6–11. [Google Scholar]
- Birnbaum, J.K.; Duggan, C.; Anderson, B.O.; Etzioni, R. Early detection and treatment strategies for breast cancer in low-income and upper middle-income countries: A modelling study. Lancet Glob. Health 2018, 6, e885–e893. [Google Scholar] [CrossRef]
- Riggio, A.I.; Varley, K.E.; Welm, A.L. The lingering mysteries of metastatic recurrence in breast cancer. Br. J. Cancer 2021, 124, 13–26. [Google Scholar] [CrossRef]
- Zanghì, G.; Di Stefano, G.; Caponnetto, A.; Vecchio, R.; Lanaia, A.; La Terra, A.; Leanza, V.; Basile, F. Breast cancer and sentinel lymph node micrometastases: Indications for lymphadenectomy and literature review. G. Chir. 2014, 35, 260–265. [Google Scholar]
- Graham, L.J.; Shupe, M.P.; Schneble, E.J.; Flynt, F.L.; Clemenshaw, M.N.; Kirkpatrick, A.D.; Gallagher, C.; Nissan, A.; Henry, L.; Stojadinovic, A.; et al. Current approaches and challenges in monitoring treatment responses in breast cancer. J. Cancer 2014, 5, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, K.; Massagué, J. Targeting metastatic cancer. Nat. Med. 2021, 27, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020, 5, 28. [Google Scholar] [CrossRef]
- Redig, A.J.; McAllister, S.S. Breast cancer as a systemic disease: A view of metastasis. J. Intern. Med. 2013, 274, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Chivukula, M.; Dabbs, D.J. Chapter 21—Immunocytology. In Diagnostic Immunohistochemistry, 3rd ed.; Dabbs, D.J., Ed.; W.B. Saunders: Philadelphia, PA, USA, 2011; pp. 890–918. [Google Scholar]
- Maguire, A.; Brogi, E. Sentinel lymph nodes for breast carcinoma: An update on current practice. Histopathology 2016, 68, 152–167. [Google Scholar] [CrossRef]
- Leung, K. VivoTag-S 680-anti-human mammaglobin-A monoclonal antibody. In Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda, MD, USA, 2004. [Google Scholar]
- Gillanders, W.E.; Mikhitarian, K.; Hebert, R.; Mauldin, P.D.; Palesch, Y.; Walters, C.; Urist, M.M.; Mann, G.B.; Doherty, G.; Herrmann, V.M.; et al. Molecular detection of micrometastatic breast cancer in histopathology-negative axillary lymph nodes correlates with traditional predictors of prognosis: An interim analysis of a prospective multi-institutional cohort study. Ann. Surg. 2004, 239, 828–837; discussion 837–840. [Google Scholar] [CrossRef]
- Shang, J.; Zhao, M.; Deng, H.; Liu, C.; Cai, L.; Liu, Y. A clinical diagnostic test on the detection of sentinel lymph node metastasis in breast neoplasms using a 1-step RT-PCR. Gland. Surg. 2022, 11, 1628–1638. [Google Scholar] [CrossRef]
- Berger, J.; Mueller-Holzner, E.; Fiegl, H.; Marth, C.; Daxenbichler, G. Evaluation of three mRNA markers for the detection of lymph node metastases. Anticancer Res. 2006, 26, 3855–3860. [Google Scholar]
- Gimbergues, P.; Dauplat, M.M.; Cayre, A.; Durando, X.; Le Bouedec, G.; Finat-Duclos, F.; Portefaix, G.; Kwiatkowski, F.; Dauplat, J.; Penault-Llorca, F.; et al. Correlation between molecular metastases in sentinel lymph nodes of breast cancer patients and St Gallen risk category. Eur. J. Surg. Oncol. 2007, 33, 16–22. [Google Scholar] [CrossRef]
- Tafreshi, N.K.; Enkemann, S.A.; Bui, M.M.; Lloyd, M.C.; Abrahams, D.; Huynh, A.S.; Kim, J.; Grobmyer, S.R.; Carter, W.B.; Vagner, J.; et al. A mammaglobin-A targeting agent for noninvasive detection of breast cancer metastasis in lymph nodes. Cancer Res. 2011, 71, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Min, C.J.; Tafra, L.; Verbanac, K.M. Identification of superior markers for polymerase chain reaction detection of breast cancer metastases in sentinel lymph nodes. Cancer Res. 1998, 58, 4581–4584. [Google Scholar] [PubMed]
- Harrison, B. Update on sentinel node pathology in breast cancer. Semin. Diagn. Pathol. 2022, 39, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Zach, O.; Kasparu, H.; Krieger, O.; Hehenwarter, W.; Girschikofsky, M.; Lutz, D. Detection of circulating mammary carcinoma cells in the peripheral blood of breast cancer patients via a nested reverse transcriptase polymerase chain reaction assay for mammaglobin mRNA. J. Clin. Oncol. 1999, 17, 2015–2019. [Google Scholar] [CrossRef]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target. Ther. 2021, 6, 404. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Crucial roles of circulating tumor cells in the metastatic cascade and tumor immune escape: Biology and clinical translation. J. Immunother. Cancer 2022, 10, e005615. [Google Scholar] [CrossRef]
- Li, C.; Zhang, T. Human mammaglobin: A specific marker for breast cancer prognosis. J. Buon 2016, 21, 35–41. [Google Scholar]
- Fabisiewicz, A.; Kulik, J.; Kober, P.; Brewczyńska, E.; Pieńkowski, T.; Siedlecki, J.A. Detection of circulating breast cancer cells in peripheral blood by a two-marker reverse transcriptase-polymerase chain reaction assay. Acta Biochim. Pol. 2004, 51, 747–755. [Google Scholar] [CrossRef]
- Guo, F.; Kuo, Y.F.; Shih, Y.C.T.; Giordano, S.H.; Berenson, A.B. Trends in breast cancer mortality by stage at diagnosis among young women in the United States. Cancer 2018, 124, 3500–3509. [Google Scholar] [CrossRef]
- Ginsburg, O.; Yip, C.H.; Brooks, A.; Cabanes, A.; Caleffi, M.; Dunstan Yataco, J.A.; Gyawali, B.; McCormack, V.; McLaughlin de Anderson, M.; Mehrotra, R.; et al. Breast cancer early detection: A phased approach to implementation. Cancer 2020, 126 (Suppl. S10), 2379–2393. [Google Scholar] [CrossRef]
- Talaat, I.M.; Hachim, M.Y.; Hachim, I.Y.; Ibrahim, R.A.E.; Ahmed, M.; Tayel, H.Y. Bone marrow mammaglobin-1 (SCGB2A2) immunohistochemistry expression as a breast cancer specific marker for early detection of bone marrow micrometastases. Sci. Rep. 2020, 10, 13061. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.L.; Tomé, M.J.; Correia, A.E.; Passos-Coelho, J.L. Human mammaglobin RT-PCR assay for detection of occult breast cancer cells in hematopoietic products. Ann. Oncol. 2002, 13, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Picot, N.; Guerrette, R.; Beauregard, A.P.; Jean, S.; Michaud, P.; Harquail, J.; Benzina, S.; Robichaud, G.A. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol. Carcinog. 2016, 55, 1150–1162. [Google Scholar] [CrossRef]
- Kusumastuti, R.; Kumagai, Y.; Ishihara, S.; Enomoto, A.; Murakami, T.; Yasuda, M.; Haga, H. Mammaglobin 1 mediates progression of trastuzumab-resistant breast cancer cells through regulation of cyclins and NF-κB. FEBS Open Bio 2022, 12, 1797–1813. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Goedegebuure, P.; Gillanders, W.E. Mammaglobin-A is a target for breast cancer vaccination. Oncoimmunology 2016, 5, e1069940. [Google Scholar] [CrossRef] [PubMed]
- Riazi Rad, F.; Ajdary, S.; Omranipour, R.; Alimohammadian, M.H.; Hassan, Z.M. Comparative analysis of CD4+ and CD8+ T cells in tumor tissues, lymph nodes and the peripheral blood from patients with breast cancer. Iran Biomed. J. 2015, 19, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Tiriveedhi, V.; Fleming, T.P.; Goedegebuure, P.S.; Naughton, M.; Ma, C.; Lockhart, C.; Gao, F.; Gillanders, W.E.; Mohanakumar, T. Mammaglobin-A cDNA vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ICOShi T cells. Breast Cancer Res. Treat. 2013, 138, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Bharat, A.; Benshoff, N.; Fleming, T.P.; Dietz, J.R.; Gillanders, W.E.; Mohanakumar, T. Characterization of the role of CD8+T cells in breast cancer immunity following mammaglobin-A DNA vaccination using HLA-class-I tetramers. Breast Cancer Res. Treat. 2008, 110, 453–463. [Google Scholar] [CrossRef]
- Narayanan, K.; Jaramillo, A.; Benshoff, N.D.; Campbell, L.G.; Fleming, T.P.; Dietz, J.R.; Mohanakumar, T. Response of established human breast tumors to vaccination with mammaglobin-A cDNA. J. Natl. Cancer Inst. 2004, 96, 1388–1396. [Google Scholar] [CrossRef]
- Ilias Basha, H.; Tiriveedhi, V.; Fleming, T.P.; Gillanders, W.E.; Mohanakumar, T. Identification of immunodominant HLA-B7-restricted CD8+ cytotoxic T cell epitopes derived from mammaglobin-A expressed on human breast cancers. Breast Cancer Res. Treat. 2011, 127, 81–89. [Google Scholar] [CrossRef]
- Tanaka, Y.; Amos, K.D.; Fleming, T.P.; Eberlein, T.J.; Goedegebuure, P.S. Mammaglobin-A is a tumor-associated antigen in human breast carcinoma. Surgery 2003, 133, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, A.; Narayanan, K.; Campbell, L.G.; Benshoff, N.D.; Lybarger, L.; Hansen, T.H.; Fleming, T.P.; Dietz, J.R.; Mohanakumar, T. Recognition of HLA-A2-restricted mammaglobin-A-derived epitopes by CD8+ cytotoxic T lymphocytes from breast cancer patients. Breast Cancer Res. Treat. 2004, 88, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.P.; Jaramillo, A.; Majumder, K.; Campbell, L.G.; Fleming, T.P.; Dietz, J.R.; Dipersio, J.F.; Mohanakumar, T. Generation of CD8+ cytotoxic T lymphocytes against breast cancer cells by stimulation with mammaglobin-A-pulsed dendritic cells. Breast Cancer Res. Treat. 2003, 79, 133–136. [Google Scholar] [CrossRef]
- Zuo, L.; Li, L.; Wang, Q.; Fleming, T.P.; You, S. Mammaglobin as a potential molecular target for breast cancer drug delivery. Cancer Cell Int. 2009, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Viehl, C.T.; Tanaka, Y.; Chen, T.; Frey, D.M.; Tran, A.; Fleming, T.P.; Eberlein, T.J.; Goedegebuure, P.S. Tat mammaglobin fusion protein transduced dendritic cells stimulate mammaglobin-specific CD4 and CD8 T cells. Breast Cancer Res. Treat. 2005, 91, 271–278. [Google Scholar] [CrossRef]
- Goedegebuure, P.S.; Watson, M.A.; Viehl, C.T.; Fleming, T.P. Mammaglobin-based strategies for treatment of breast cancer. Curr. Cancer Drug Targets 2004, 4, 531–542. [Google Scholar] [CrossRef]
- Shi, C.X.; Long, M.A.; Liu, L.; Graham, F.L.; Gauldie, J.; Hitt, M.M. The human SCGB2A2 (mammaglobin-1) promoter/enhancer in a helper-dependent adenovirus vector directs high levels of transgene expression in mammary carcinoma cells but not in normal nonmammary cells. Mol. Ther. 2004, 10, 758–767. [Google Scholar] [CrossRef]
- Baxevanis, C.N.; Voutsas, I.F.; Gritzapis, A.D.; Perez, S.A.; Papamichail, M. HER-2/neu as a target for cancer vaccines. Immunotherapy 2010, 2, 213–226. [Google Scholar] [CrossRef]
- Koh, E.H.; Cho, Y.W.; Mun, Y.J.; Ryu, J.H.; Kim, E.J.; Choi, D.S.; Maeng, K.Y.; Han, J.; Kang, D. Upregulation of human mammaglobin reduces migration and invasion of breast cancer cells. Cancer Investig. 2014, 32, 22–29. [Google Scholar] [CrossRef]
Tumour Marker | Specific Remarks |
---|---|
Carcinoembryonic antigen (CEA) | Noted for its involvement in recurrence and correlation with circulating tumor cell discovery, yet its sensitivity is considered low [23]. |
Cytokeratins (CK19 and CK20) | Known for their low sensitivity, these markers can be found in both normal cells and a variety of tumors [30]. |
Epidermal growth factor receptor (EGFR) | Similar to cytokeratins, EGFR presents with low sensitivity and can be identified in normal cells and various tumors [31]. |
Maspin | This marker is associated with a reduced risk of recurrence [32]. |
Polymorphic epithelial mucin (MUC-1) | Adverse outcomes are linked to high pre-operative CA 15-3 levels. CA27-29 offers little utility. Low sensitivity and expression in normal cells and hematological tumors are its key characteristics [33,34]. |
B726P | When used in tandem with hMAG, B726P could aid in distinguishing between mammary and non-mammary tissues [35]. |
Urokinase plasminogen activator (uPA) | The presence of this marker might provide valuable information for prognosis [36]. |
Plasminogen activator inhibitor 1 (PAI-1) | Similar to uPA, PAI-1 can be helpful in determining prognosis [37]. |
Estrogen receptor (ER) | Detectable in primary lung adenocarcinomas, ER is used for predicting hormonal therapy responses in breast cancer despite its limited prognostic significance [38]. |
Progesterone receptor (PR) | PR is considered a key factor for hormonal therapy [39]. |
Human epidermal growth factor receptor-2 (HER-2) | Human epidermal growth factor receptor-2 (HER-2) is highly expressed in breast cancers with an amplified ERBB2 gene, i.e., those of the HER2 molecular subtype, making HER-2 instrumental in the selection process for Herceptin therapy [40]. |
Breast cancer 1 and 2 early onset (BRAC-1 and BRAC-2) | These markers can assist in identifying high-risk patients [41]. |
Small breast epithelial mucin (SBEM) | SBEM is detectable in roughly 52% of breast tumors, with no presence in non-breast tumors [42]. |
Survivin | This marker does not have specificity for breast cancer [43]. |
Ki67 | Ki67 is thought to act as an indicator of breast cancer progression [44]. |
Gross cystic disease fluid protein 15 (GCDFP-15) | This marker is noted for its significant link with mammary differentiation and has shown a correlation with mammaglobin expression. Research is ongoing into its potential as a breast cancer biomarker [45]. |
Human mammaglobin (hMAG) | hMAG exhibits high expression (80–90%) in breast tumors and is particularly sensitive (97%) in detecting residual disease [9]. |
Prognostic Factor | Mammaglobin-A Expression |
---|---|
Tumor Subtype and Stage | Variable expression with positivity rates ranging from 59% to 100% for lobular breast carcinomas and 25% to 94% for invasive breast carcinomas |
Hormone Receptor Status | Elevated levels correlate with estrogen receptor (ER) and progesterone receptor (PR) status |
Tumor Grade | High tumor grade associated with overexpression of human mammaglobin (hMAM) |
Cell Proliferation | Higher Ki-67 proliferation index observed in hMAM-positive invasive breast cancer |
Peritumoral Expression | Presence detected, suggesting a possible link with local invasion, metastasis, and aggressive disease phenotypes |
Metastatic Context | Method of Detection | Specific Findings | Potential Implications |
---|---|---|---|
Lymph Node Metastasis | VivoTag-S 680, RT-PCR | Presence in positive lymph nodes, absent in normal/sentinel nodes | Guiding surgical decisions, improved prognosis |
Circulating Mammaglobin | RT-PCR | Detected in 25% of patients | Potential diagnostic marker |
Circulating Tumor Cells (CTCs) | RT-PCR (hMAM mRNA) | hMAM mRNA expressed in 70–80% of breast cancers | Indicates a higher number of CTCs and a higher risk of advanced disease progression |
Bone Marrow Metastasis | Bone marrow aspirates, immunohistochemical staining | Mammaglobin expression is higher in patients with metastasis | Potential marker for metastasis |
Area | Challenge/Prospect | Description |
---|---|---|
Sensitivity and Specificity | Challenge | Enhancing the detection accuracy of mammaglobin in breast carcinoma |
Method Standardization | Challenge | Establishing a universal protocol for detecting and quantifying mammaglobin |
Biological Role Comprehension | Challenge | Understanding the exact role of mammaglobin in breast carcinoma |
Early Detection and Diagnosis | Prospect | Using mammaglobin as a non-invasive biomarker for early detection and diagnosis |
Prognostic Marker | Prospect | Establishing mammaglobin as a valuable prognostic marker through larger prospective studies |
Personalized Therapy | Prospect | Exploring mammaglobin as a potential target for personalized therapies |
Companion Diagnostic Tool | Prospect | Utilizing mammaglobin alongside other established biomarkers to improve diagnostic accuracy and inform treatment choices |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milosevic, B.; Stojanovic, B.; Cvetkovic, A.; Jovanovic, I.; Spasic, M.; Stojanovic, M.D.; Stankovic, V.; Sekulic, M.; Stojanovic, B.S.; Zdravkovic, N.; et al. The Enigma of Mammaglobin: Redefining the Biomarker Paradigm in Breast Carcinoma. Int. J. Mol. Sci. 2023, 24, 13407. https://doi.org/10.3390/ijms241713407
Milosevic B, Stojanovic B, Cvetkovic A, Jovanovic I, Spasic M, Stojanovic MD, Stankovic V, Sekulic M, Stojanovic BS, Zdravkovic N, et al. The Enigma of Mammaglobin: Redefining the Biomarker Paradigm in Breast Carcinoma. International Journal of Molecular Sciences. 2023; 24(17):13407. https://doi.org/10.3390/ijms241713407
Chicago/Turabian StyleMilosevic, Bojan, Bojan Stojanovic, Aleksandar Cvetkovic, Ivan Jovanovic, Marko Spasic, Milica Dimitrijevic Stojanovic, Vesna Stankovic, Marija Sekulic, Bojana S. Stojanovic, Natasa Zdravkovic, and et al. 2023. "The Enigma of Mammaglobin: Redefining the Biomarker Paradigm in Breast Carcinoma" International Journal of Molecular Sciences 24, no. 17: 13407. https://doi.org/10.3390/ijms241713407
APA StyleMilosevic, B., Stojanovic, B., Cvetkovic, A., Jovanovic, I., Spasic, M., Stojanovic, M. D., Stankovic, V., Sekulic, M., Stojanovic, B. S., Zdravkovic, N., Mitrovic, M., Stojanovic, J., Laketic, D., Vulovic, M., & Cvetkovic, D. (2023). The Enigma of Mammaglobin: Redefining the Biomarker Paradigm in Breast Carcinoma. International Journal of Molecular Sciences, 24(17), 13407. https://doi.org/10.3390/ijms241713407