A Multiplexed Urinary Biomarker Panel Has Potential for Alzheimer’s Disease Diagnosis Using Targeted Proteomics and Machine Learning
Abstract
:1. Introduction
- Screen the urine proteome in participants with AD and compare with healthy controls using untargeted proteomics to identity pathways and potential AD biomarkers;
- Create a translational and rapid test to validate any biomarkers using a multiplexed, targeted proteomic approach in an independent cohort;
- Use machine learning techniques to develop a ‘panel’ of biomarkers that could be used to help diagnose AD.
2. Results
2.1. Biomarker Discovery and Pathway Analyses: Comparison of Urinary Proteomic Analyses from AD Patients and Healthy Controls
2.2. Development of a Targeted and Multiplex Assay to Validate Potential Urinary Proteomic Biomarkers of AD
2.3. Individual Biomarkers and Univariate Analyses for the Diagnosis of AD
2.4. Multilinear Regression and Machine Learning Analyses of Multiple Biomarkers for Improving the Specificity and Sensitivity for Diagnosing AD
3. Discussion
4. Materials and Methods
4.1. Discovery Cohort
4.2. Validation Cohort
4.3. CSF Sample Collection, Pre-Analytical Handling, and Analysis
4.4. Urine Sample Collection and Pre-Clinical Handling
4.5. Urinary Creatinine Measurements
4.6. Development of a High-Throughput, Multiplexed and Targeted Proteomic Assay
4.7. Statistical Analysis
4.8. Pathway Analysis
4.9. Ethics
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Zetterberg, H.; Bendlin, B.B. Biomarkers for Alzheimer’s disease—Preparing for a new era of disease-modifying therapies. Mol. Psychiatry 2021, 26, 296–308. [Google Scholar] [CrossRef]
- García-Morales, V.; González-Acedo, A.; Melguizo-Rodríguez, L.; Pardo-Moreno, T.; Costela-Ruiz, V.J.; Montiel-Troya, M.; Ramos-Rodríguez, J.J. Current understanding of the physiopathology, diagnosis and therapeutic approach to Alzheimer’s disease. Biomedicines 2021, 9, 1910. [Google Scholar] [CrossRef]
- Keshavan, A.; O’Shea, F.; Chapman, M.D.; Hart, M.S.; Lunn, M.P.; Paterson, R.W.; Rohrer, J.D.; Mummery, C.J.; Fox, N.C.; Zetterberg, H. CSF biomarkers for dementia. Pract. Neurol. 2022, 22, 285–294. [Google Scholar] [CrossRef]
- Bridel, C.; Van Wieringen, W.N.; Zetterberg, H.; Tijms, B.M.; Teunissen, C.E.; Alvarez-Cermeño, J.C.; Andreasson, U.; Axelsson, M.; Bäckström, D.C.; Bartos, A. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: A systematic review and meta-analysis. JAMA Neurol. 2019, 76, 1035–1048. [Google Scholar] [CrossRef]
- Skillbäck, T.; Farahmand, B.; Bartlett, J.W.; Rosén, C.; Mattsson, N.; Nägga, K.; Kilander, L.; Religa, D.; Wimo, A.; Winblad, B. CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology 2014, 83, 1945–1953. [Google Scholar] [CrossRef]
- Zetterberg, H.; Schott, J.M. Blood biomarkers for Alzheimer’s disease and related disorders. Acta Neurol. Scand. 2022, 146, 51–55. [Google Scholar] [CrossRef]
- Barthélemy, N.R.; Horie, K.; Sato, C.; Bateman, R.J. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J. Exp. Med. 2020, 217, e20200861. [Google Scholar] [CrossRef]
- Janelidze, S.; Berron, D.; Smith, R.; Strandberg, O.; Proctor, N.K.; Dage, J.L.; Stomrud, E.; Palmqvist, S.; Mattsson-Carlgren, N.; Hansson, O. Associations of plasma phospho-tau217 levels with tau positron emission tomography in early Alzheimer disease. JAMA Neurol. 2021, 78, 149–156. [Google Scholar] [CrossRef]
- Janelidze, S.; Palmqvist, S.; Leuzy, A.; Stomrud, E.; Verberk, I.M.; Zetterberg, H.; Ashton, N.J.; Pesini, P.; Sarasa, L.; Allué, J.A. Detecting amyloid positivity in early Alzheimer’s disease using combinations of plasma Aβ42/Aβ40 and p-tau. Alzheimer’s Dement. 2022, 18, 283–293. [Google Scholar] [CrossRef]
- Therriault, J.; Servaes, S.; Tissot, C.; Rahmouni, N.; Ashton, N.J.; Benedet, A.L.; Karikari, T.K.; Macedo, A.C.; Lussier, F.Z.; Stevenson, J. Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer’s disease. Alzheimer’s Dement. 2023. [Google Scholar] [CrossRef]
- Strupp, M.; Brandt, T.; Müller, A. Incidence of post-lumbar puncture syndrome reduced by reinserting the stylet: A randomized prospective study of 600 patients. J. Neurol. 1998, 245, 589–592. [Google Scholar] [CrossRef]
- Toby, T.K.; Fornelli, L.; Srzentić, K.; DeHart, C.J.; Levitsky, J.; Friedewald, J.; Kelleher, N.L. A comprehensive pipeline for translational top-down proteomics from a single blood draw. Nat. Protoc. 2019, 14, 119–152. [Google Scholar] [CrossRef]
- Yao, F.; Hong, X.; Li, S.; Zhang, Y.; Zhao, Q.; Du, W.; Wang, Y.; Ni, J. Urine-based biomarkers for Alzheimer’s disease identified through coupling computational and experimental methods. J. Alzheimer’s Dis. 2018, 65, 421–431. [Google Scholar] [CrossRef]
- Chen, R.; Yi, Y.; Xiao, W.; Zhong, B.; Zhang, L.; Zeng, Y. Urinary protein biomarkers based on LC–MS/MS analysis to discriminate vascular dementia from Alzheimer’s disease in Han Chinese population. Front. Aging Neurosci. 2023, 15, 1070854. [Google Scholar] [CrossRef]
- Zhou, X.; Sheikh, A.M.; Matsumoto, K.-i.; Mitaki, S.; Shibly, A.Z.; Zhang, Y.; Yano, S.; Nagai, A. iTRAQ-Based Proteomic Analysis of APP Transgenic Mouse Urine Exosomes. Int. J. Mol. Sci. 2022, 24, 672. [Google Scholar] [CrossRef]
- Saiyed, N.; Yilmaz, A.; Vishweswariah, S.; Maiti, A.K.; Ustun, I.; Bartolone, S.; Brown-Hughes, T.; Thorpe, R.J., Jr.; Osentoski, T.; Ruff, S. Urinary Cytokines as Potential Biomarkers of Mild Cognitive Impairment and Alzheimer’s Disease: A Pilot Study. J. Alzheimers Dis. Rep. 2022, 7, 649–657. [Google Scholar] [CrossRef]
- Watanabe, Y.; Hirao, Y.; Kasuga, K.; Tokutake, T.; Kitamura, K.; Niida, S.; Ikeuchi, T.; Nakamura, K.; Yamamoto, T. Urinary apolipoprotein C3 is a potential biomarker for Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2021, 10, 94–104. [Google Scholar] [CrossRef]
- Swensen, A.C.; He, J.; Fang, A.C.; Ye, Y.; Nicora, C.D.; Shi, T.; Liu, A.Y.; Sigdel, T.K.; Sarwal, M.M.; Qian, W.-J. A comprehensive urine proteome database generated from patients with various renal conditions and prostate cancer. Front. Med. 2021, 8, 548212. [Google Scholar] [CrossRef]
- Adachi, J.; Kumar, C.; Zhang, Y.; Olsen, J.V.; Mann, M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol. 2006, 7, 1–16. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Meng, W.; Ni, Y.; Gao, Y. Dynamic urinary proteomic analysis in a Walker 256 intracerebral tumor model. Cancer Med. 2019, 8, 3553–3565. [Google Scholar] [CrossRef]
- Virreira Winter, S.; Karayel, O.; Strauss, M.T.; Padmanabhan, S.; Surface, M.; Merchant, K.; Alcalay, R.N.; Mann, M. Urinary proteome profiling for stratifying patients with familial Parkinson’s disease. EMBO Mol. Med. 2021, 13, e13257. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhu, J.; Guan, Y.; Xie, F.; Cai, X.; Deng, J.; Wei, Y.; He, R.; Fang, Z. Systematic evaluation of urinary formic acid as a new potential biomarker for Alzheimer’s disease. Front. Aging Neurosci. 2022, 14, 1364. [Google Scholar] [CrossRef]
- Hrubešová, K.; Fousková, M.; Habartová, L.; Fišar, Z.; Jirák, R.; Raboch, J.; SETNIčKA, V. Search for biomarkers of Alzheimer’s disease: Recent insights, current challenges and future prospects. Clin. Biochem. 2019, 72, 39–51. [Google Scholar] [CrossRef]
- Yoshida, M.; Higashi, K.; Kuni, K.; Mizoi, M.; Saiki, R.; Nakamura, M.; Waragai, M.; Uemura, K.; Toida, T.; Kashiwagi, K. Distinguishing mild cognitive impairment from Alzheimer’s disease with acrolein metabolites and creatinine in urine. Clin. Chim. Acta 2015, 441, 115–121. [Google Scholar] [CrossRef]
- Tsou, H.-H.; Hsu, W.-C.; Fuh, J.-L.; Chen, S.-P.; Liu, T.-Y.; Wang, H.-T. Alterations in acrolein metabolism contribute to Alzheimer’s disease. J. Alzheimers Dis. 2018, 61, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Captur, G.; Heywood, W.E.; Coats, C.; Rosmini, S.; Patel, V.; Lopes, L.R.; Collis, R.; Patel, N.; Syrris, P.; Bassett, P. Identification of a multiplex biomarker panel for hypertrophic cardiomyopathy using quantitative proteomics and machine learning. Mol. Cell Proteom. 2020, 19, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Doykov, I.; Hällqvist, J.; Gilmour, K.C.; Grandjean, L.; Mills, K.; Heywood, W.E. ‘The long tail of Covid-19’-The detection of a prolonged inflammatory response after a SARS-CoV-2 infection in asymptomatic and mildly affected patients. F1000Research 2020, 9, 1349. [Google Scholar] [CrossRef]
- Bateman, R.J.; Xiong, C.; Benzinger, T.L.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 2012, 367, 795–804. [Google Scholar] [CrossRef]
- Van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Budd Haeberlein, S.; Aisen, P.; Barkhof, F.; Chalkias, S.; Chen, T.; Cohen, S.; Dent, G.; Hansson, O.; Harrison, K.; Von Hehn, C. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J. Prev. Alzheimers Dis. 2022, 9, 197–210. [Google Scholar] [CrossRef]
- Hampel, H.; Shaw, L.M.; Aisen, P.; Chen, C.; Lleó, A.; Iwatsubo, T.; Iwata, A.; Yamada, M.; Ikeuchi, T.; Jia, J. State-of-the-art of lumbar puncture and its place in the journey of patients with Alzheimer’s disease. Alzheimer’s Dement. 2022, 18, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Maestre, G.E. Assessing dementia in resource-poor regions. Curr. Neurol. Neurosci. Rep. 2012, 12, 511–519. [Google Scholar] [CrossRef]
- Ferri, C.P.; Jacob, K. Dementia in low-income and middle-income countries: Different realities mandate tailored solutions. PLoS Med. 2017, 14, e1002271. [Google Scholar] [CrossRef] [PubMed]
- Barthélemy, N.R.; Saef, B.A.; Li, Y.; Gordon, B.A.; He, Y.; Horie, K.; Sato, C.; Ovod, V.; Benzinger, T.L.; Morris, J.C. The relationship of soluble p-tau isoforms with brain amyloid and tau deposition in sporadic AD. Alzheimer’s Dement. 2022, 18, e067885. [Google Scholar] [CrossRef]
- Ashton, N.J.; Puig-Pijoan, A.; Milà-Alomà, M.; Fernández-Lebrero, A.; García-Escobar, G.; González-Ortiz, F.; Kac, P.R.; Brum, W.S.; Benedet, A.L.; Lantero-Rodriguez, J. Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays. Alzheimer’s Dement. 2023, 19, 1913–1924. [Google Scholar] [CrossRef]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef]
- Wolf, S.; Mielke, D.; Barner, C.; Malinova, V.; Kerz, T.; Wostrack, M.; Czorlich, P.; Salih, F.; Engel, D.C.; Ehlert, A. Effectiveness of Lumbar Cerebrospinal Fluid Drain Among Patients with Aneurysmal Subarachnoid Hemorrhage: A Randomized Clinical Trial. JAMA Neurol. 2023, 80, 833–842. [Google Scholar] [CrossRef]
- Janelidze, S.; Teunissen, C.E.; Zetterberg, H.; Allué, J.A.; Sarasa, L.; Eichenlaub, U.; Bittner, T.; Ovod, V.; Verberk, I.M.; Toba, K. Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in Alzheimer disease. JAMA Neurol. 2021, 78, 1375–1382. [Google Scholar] [CrossRef]
- Kurz, C.; Stöckl, L.; Schrurs, I.; Suridjan, I.; Gürsel, S.Ü.; Bittner, T.; Jethwa, A.; Perneczky, R. Impact of pre-analytical sample handling factors on plasma biomarkers of Alzheimer’s disease. J. Neurochem. 2023, 165, 95–105. [Google Scholar] [CrossRef]
- Fernandez, V.; Pottier, C.P.; Budde, J.P.; Wang, F.; Norton, J.; Gentsch, J.; Morris, J.C.; Goate, A.M.; Beecham, G.W.; Reitz, C. An enrichment of rare variants and the lysosomal pathways are important contributors to early onset Alzheimer disease. Alzheimer’s Dement. 2021, 17, e055341. [Google Scholar] [CrossRef]
- Dehghan, A.; Pinto, R.C.; Karaman, I.; Huang, J.; Durainayagam, B.R.; Ghanbari, M.; Nazeer, A.; Zhong, Q.; Liggi, S.; Whiley, L. Metabolome-wide association study on ABCA7 indicates a role of ceramide metabolism in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2022, 119, e2206083119. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Hirao, Y.; Kasuga, K.; Tokutake, T.; Semizu, Y.; Kitamura, K.; Ikeuchi, T.; Nakamura, K.; Yamamoto, T. Molecular network analysis of the urinary proteome of Alzheimer’s disease patients. Dement. Geriatr. Cogn. Disord. 2019, 9, 53–65. [Google Scholar] [CrossRef]
- Slattery, C.F.; Zhang, J.; Paterson, R.W.; Foulkes, A.J.; Carton, A.; Macpherson, K.; Mancini, L.; Thomas, D.L.; Modat, M.; Toussaint, N. ApoE influences regional white-matter axonal density loss in Alzheimer’s disease. Neurobiol. Aging 2017, 57, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.W.; Slattery, C.F.; Poole, T.; Nicholas, J.M.; Magdalinou, N.K.; Toombs, J.; Chapman, M.D.; Lunn, M.P.; Heslegrave, A.J.; Foiani, M.S. Cerebrospinal fluid in the differential diagnosis of Alzheimer’s disease: Clinical utility of an extended panel of biomarkers in a specialist cognitive clinic. Alzheimer’s Res. Ther. 2018, 10, 32. [Google Scholar] [CrossRef]
- Patel, N.; Mills, P.; Davison, J.; Cleary, M.; Gissen, P.; Banushi, B.; Doykov, I.; Dorman, M.; Mills, K.; Heywood, W.E. Free urinary glycosylated hydroxylysine as an indicator of altered collagen degradation in the mucopolysaccharidoses. J. Inherit. Metab. Dis. 2020, 43, 309–317. [Google Scholar] [CrossRef]
- Bennett, K.; Callard, R.; Heywood, W.; Harper, J.; Jayakumar, A.; Clayman, G.L.; Di, W.-L.; Mills, K. New role for LEKTI in skin barrier formation: Label-free quantitative proteomic identification of caspase 14 as a novel target for the protease inhibitor LEKTI. J. Proteome Res. 2010, 9, 4289–4294. [Google Scholar] [CrossRef]
- Bliss, E.; Heywood, W.E.; Benatti, M.; Sebire, N.J.; Mills, K. An optimised method for the proteomic profiling of full thickness human skin. Biol. Proced. Online 2016, 18, 15. [Google Scholar] [CrossRef]
- Jchallqvist/mrmIntegrate. Available online: https://github.com/jchallqvist/mrmIntegrate (accessed on 4 April 2023).
- Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef] [PubMed]
- Python. Available online: https://www.python.org/ (accessed on 18 June 2023).
(a) | ||
AD (n = 6) | Control (n = 5) | |
Sex (% Male) | 50 | 75 |
Age (years) | 59.2 ± 4.1 | 59.3 ± 3.9 |
Positive APO ε4 status (%) | 83 | Not tested |
MMSE score | 24.2 ± 3.5 | 29.4 ± 0.9 |
CSF Aβ1-42 (pg/mL) | 453 ± 93.4 | 1073.2 ± 196.5 |
CSF T-tau (pg/mL) | 1407 ± 985.3 | 304 ± 80.1 |
CSF P-tau 181 (pg/mL) | 121.4 ±89.5 | 42.4 ± 8.0 |
BMI | 24.1 ± 2.3 | 25.98 ± 2.2 |
(b) | ||
AD (N = 9) | Control (N = 12) | |
Sex (% Male) | 67 | 50 |
Age (years) | 62.3 ± 3.0 | 59.1 ± 6.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hällqvist, J.; Pinto, R.C.; Heywood, W.E.; Cordey, J.; Foulkes, A.J.M.; Slattery, C.F.; Leckey, C.A.; Murphy, E.C.; Zetterberg, H.; Schott, J.M.; et al. A Multiplexed Urinary Biomarker Panel Has Potential for Alzheimer’s Disease Diagnosis Using Targeted Proteomics and Machine Learning. Int. J. Mol. Sci. 2023, 24, 13758. https://doi.org/10.3390/ijms241813758
Hällqvist J, Pinto RC, Heywood WE, Cordey J, Foulkes AJM, Slattery CF, Leckey CA, Murphy EC, Zetterberg H, Schott JM, et al. A Multiplexed Urinary Biomarker Panel Has Potential for Alzheimer’s Disease Diagnosis Using Targeted Proteomics and Machine Learning. International Journal of Molecular Sciences. 2023; 24(18):13758. https://doi.org/10.3390/ijms241813758
Chicago/Turabian StyleHällqvist, Jenny, Rui C. Pinto, Wendy E. Heywood, Jonjo Cordey, Alexander J. M. Foulkes, Catherine F. Slattery, Claire A. Leckey, Eimear C. Murphy, Henrik Zetterberg, Jonathan M. Schott, and et al. 2023. "A Multiplexed Urinary Biomarker Panel Has Potential for Alzheimer’s Disease Diagnosis Using Targeted Proteomics and Machine Learning" International Journal of Molecular Sciences 24, no. 18: 13758. https://doi.org/10.3390/ijms241813758
APA StyleHällqvist, J., Pinto, R. C., Heywood, W. E., Cordey, J., Foulkes, A. J. M., Slattery, C. F., Leckey, C. A., Murphy, E. C., Zetterberg, H., Schott, J. M., Mills, K., & Paterson, R. W. (2023). A Multiplexed Urinary Biomarker Panel Has Potential for Alzheimer’s Disease Diagnosis Using Targeted Proteomics and Machine Learning. International Journal of Molecular Sciences, 24(18), 13758. https://doi.org/10.3390/ijms241813758