Deciphering the Enigmatic Influence: Non-Coding RNAs Orchestrating Wnt/β-Catenin Signaling Pathway in Tumor Progression
Abstract
:1. Background
2. Introduction to the Wnt Signaling Pathway and the Involvement of ncRNAs in Cancer
3. The Roles and Mechanisms of ncRNAs Involved in the Wnt/β-Catenin Signaling Pathway in Tumors
3.1. The Impact of the Interplay between ncRNAs and the Wnt/β-Catenin Signaling Pathway on Breast Cancer
3.2. The Effect of the Interaction between ncRNA and Wnt/β-Catenin Signaling Pathway on Lung Cancer
3.3. The Effect of the Interaction between ncRNA and Wnt/β-Catenin Signaling Pathway on Colorectal Cancer
3.4. The Effect of Interaction between ncRNA and Wnt/β-Catenin Signaling Pathway on Prostate Cancer
3.5. The Effect of the Interaction between ncRNA and Wnt/β-Catenin Signaling Pathway on Gastric Cancer
4. Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Treloar, A.E.; Lupien, M. Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations. Cancer Discov. 2016, 6, 1215–1229. [Google Scholar] [CrossRef]
- Morel, D.; Jeffery, D.; Aspeslagh, S.; Almouzni, G.; Postel-Vinay, S. Combining epigenetic drugs with other therapies for solid tumours—Past lessons and future promise. Nat. Rev. Clin. Oncol. 2020, 17, 91–107. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, Y.; Mouliere, F. Toward the Early Detection of Cancer by Decoding the Epigenetic and Environmental Fingerprints of Cell-Free DNA. Cancer Cell 2019, 36, 350–368. [Google Scholar] [CrossRef]
- Calses, P.C.; Crawford, J.J.; Lill, J.R.; Dey, A. Hippo Pathway in Cancer: Aberrant Regulation and Therapeutic Opportunities. Trends Cancer 2019, 5, 297–307. [Google Scholar] [CrossRef]
- Pópulo, H.; Lopes, J.M.; Soares, P. The mTOR signalling pathway in human cancer. Int. J. Mol. Sci. 2012, 13, 1886–1918. [Google Scholar] [CrossRef]
- Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 2007, 26, 3279–3290. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Qu, Y. Targeting the β-catenin signaling for cancer therapy. Pharmacol. Res. 2020, 160, 104794. [Google Scholar] [CrossRef]
- Duchartre, Y.; Kim, Y.M.; Kahn, M. The Wnt signaling pathway in cancer. Crit. Rev. Oncol. Hematol. 2016, 99, 141–149. [Google Scholar] [CrossRef]
- Wang, B.; Tian, T.; Kalland, K.H.; Ke, X.; Qu, Y. Targeting Wnt/β-Catenin Signaling for Cancer Immunotherapy. Trends Pharmacol. Sci. 2018, 39, 648–658. [Google Scholar] [CrossRef]
- Yamamoto, D.; Oshima, H.; Wang, D.; Takeda, H.; Kita, K.; Lei, X.; Nakayama, M.; Murakami, K.; Ohama, T.; Takemura, H.; et al. Characterization of RNF43 frameshift mutations that drive Wnt ligand- and R-spondin-dependent colon cancer. J. Pathol. 2022, 257, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Taheriazam, A.; Bayanzadeh, S.D.; Heydari Farahani, M.; Mojtabavi, S.; Zandieh, M.A.; Gholami, S.; Heydargoy, M.H.; Jamali Hondori, M.; Kangarloo, Z.; Behroozaghdam, M.; et al. Non-coding RNA-based therapeutics in cancer therapy: An emphasis on Wnt/β-catenin control. Eur. J. Pharmacol. 2023, 951, 175781. [Google Scholar] [CrossRef]
- Rahmani, F.; Avan, A.; Hashemy, S.I.; Hassanian, S.M. Role of Wnt/β-catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J. Cell. Physiol. 2018, 233, 811–817. [Google Scholar] [CrossRef]
- Spaan, I.; Raymakers, R.A.; van de Stolpe, A.; Peperzak, V. Wnt signaling in multiple myeloma: A central player in disease with therapeutic potential. J. Hematol. Oncol. 2018, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Weng, W.; Zhang, Q.; Wu, Y.; Ni, S.; Tan, C.; Xu, M.; Sun, H.; Liu, C.; Wei, P.; et al. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J. Hematol. Oncol. 2018, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Esteller, M.; Pandolfi, P.P. The Epitranscriptome of Noncoding RNAs in Cancer. Cancer Discov. 2017, 7, 359–368. [Google Scholar] [CrossRef]
- Hombach, S.; Kretz, M. Non-coding RNAs: Classification, Biology and Functioning. Adv. Exp. Med. Biol. 2016, 937, 3–17. [Google Scholar] [CrossRef]
- Wei, L.; Wang, X.; Lv, L.; Liu, J.; Xing, H.; Song, Y.; Xie, M.; Lei, T.; Zhang, N.; Yang, M. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol. Cancer 2019, 18, 147. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Smith, A.J.; Sompel, K.M.; Elango, A.; Tennis, M.A. Non-Coding RNA and Frizzled Receptors in Cancer. Front. Mol. Biosci. 2021, 8, 712546. [Google Scholar] [CrossRef]
- Trzybulska, D.; Vergadi, E.; Tsatsanis, C. miRNA and Other Non-Coding RNAs as Promising Diagnostic Markers. eJIFCC 2018, 29, 221–226. [Google Scholar] [PubMed]
- Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Author Correction: Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 159. [Google Scholar] [CrossRef] [PubMed]
- Larrea, E.; Sole, C.; Manterola, L.; Goicoechea, I.; Armesto, M.; Arestin, M.; Caffarel, M.M.; Araujo, A.M.; Araiz, M.; Fernandez-Mercado, M.; et al. New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies. Int. J. Mol. Sci. 2016, 17, 627. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J. Role of Non-coding RNAs on the Radiotherapy Sensitivity and Resistance of Head and Neck Cancer: From Basic Research to Clinical Application. Front. Cell Dev. Biol. 2020, 8, 637435. [Google Scholar] [CrossRef] [PubMed]
- Slack, F.J.; Chinnaiyan, A.M. The Role of Non-coding RNAs in Oncology. Cell 2019, 179, 1033–1055. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294, 853–858. [Google Scholar] [CrossRef]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef]
- Zhao, W.; An, Y.; Liang, Y.; Xie, X.W. Role of HOTAIR long noncoding RNA in metastatic progression of lung cancer. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1930–1936. [Google Scholar]
- Wang, N.; Yu, Y.; Xu, B.; Zhang, M.; Li, Q.; Miao, L. Pivotal prognostic and diagnostic role of the long non-coding RNA colon cancer-associated transcript 1 expression in human cancer. Mol. Med. Rep. 2019, 19, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Dang, H.X.; Lim, D.A.; Feng, F.Y.; Maher, C.A. Long noncoding RNAs in cancer metastasis. Nat. Rev. Cancer 2021, 21, 446–460. [Google Scholar] [CrossRef]
- Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA 1976, 73, 3852–3856. [Google Scholar] [CrossRef] [PubMed]
- Cocquerelle, C.; Mascrez, B.; Hétuin, D.; Bailleul, B. Mis-splicing yields circular RNA molecules. FASEB J. 1993, 7, 155–160. [Google Scholar] [CrossRef]
- Alsaab, H.O. Pathological role of long non-coding (lnc) RNA in the regulation of Wnt/β-catenin signaling pathway during epithelial-mesenchymal transition (EMT). Pathol. Res. Pract. 2023, 248, 154566. [Google Scholar] [CrossRef]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 2018, 18, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Z.; Cheng, T.T.; He, Q.J.; Lei, Z.Y.; Chi, J.; Tang, Z.; Liao, Q.X.; Zhang, H.; Zeng, L.S.; Cui, S.Z. LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway. Mol. Cancer 2018, 17, 126. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Jiang, H.C.; Zhou, Y.C.; Jiang, B.; He, W.J.; Wang, Y.F.; Dong, J. MiR-125b regulates the proliferation and metastasis of triple negative breast cancer cells via the Wnt/β-catenin pathway and EMT. Biosci. Biotechnol. Biochem. 2019, 83, 1062–1071. [Google Scholar] [CrossRef]
- Liu, R.; Deng, P.; Zhang, Y.; Wang, Y.; Peng, C. Circ_0082182 promotes oncogenesis and metastasis of colorectal cancer in vitro and in vivo by sponging miR-411 and miR-1205 to activate the Wnt/β-catenin pathway. World J. Surg. Oncol. 2021, 19, 51. [Google Scholar] [CrossRef]
- Klaus, A.; Birchmeier, W. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 2008, 8, 387–398. [Google Scholar] [CrossRef]
- Nusse, R.; Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982, 31, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, X.; Feng, X.; Fan, X.; Jin, Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017, 8, 14089–14106. [Google Scholar] [CrossRef] [PubMed]
- Habas, R.; Dawid, I.B. Dishevelled and Wnt signaling: Is the nucleus the final frontier? J. Biol. 2005, 4, 2. [Google Scholar] [CrossRef]
- Kühl, M.; Sheldahl, L.C.; Park, M.; Miller, J.R.; Moon, R.T. The Wnt/Ca2+ pathway: A new vertebrate Wnt signaling pathway takes shape. Trends Genet. TIG 2000, 16, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Mlodzik, M. Planar cell polarization: Do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet. TIG 2002, 18, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Nusse, R.; Clevers, H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef]
- Cao, M.Q.; You, A.B.; Zhu, X.D.; Zhang, W.; Zhang, Y.Y.; Zhang, S.Z.; Zhang, K.W.; Cai, H.; Shi, W.K.; Li, X.L.; et al. miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J. Hematol. Oncol. 2018, 11, 12. [Google Scholar] [CrossRef]
- Ge, X.; Wang, X. Role of Wnt canonical pathway in hematological malignancies. J. Hematol. Oncol. 2010, 3, 33. [Google Scholar] [CrossRef]
- Gajos-Michniewicz, A.; Czyz, M. WNT Signaling in Melanoma. Int. J. Mol. Sci. 2020, 21, 4852. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, A.A.; Rakhmetova, V.S.; Kapanova, G.; Tashenova, G.; Tulebayeva, A.; Akhenbekova, A.; Ibekenov, O.; Turgambayeva, A.; Xu, B. Bufalin-Mediated Regulation of Cell Signaling Pathways in Different Cancers: Spotlight on JAK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R, and Non-Coding RNAs. Molecules 2023, 28, 2231. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, J.; Wei, Q.; Huang, Y.; Zhang, R.; Xiao, S.; Guo, D.; Chen, X.-Z.; Zhou, C.; Tang, J. Identification of Wnt/β-Catenin- and Autophagy-Related lncRNA Signature for Predicting Immune Efficacy in Pancreatic Adenocarcinoma. Biology 2023, 12, 319. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Lin, T.; Shan, M.; Lu, J.; Guo, Z. LINC00491 Facilitates Tumor Progression of Lung Adenocarcinoma via Wnt/β-Catenin-Signaling Pathway by Regulating MTSS1 Ubiquitination. Cells 2022, 11, 3737. [Google Scholar] [CrossRef] [PubMed]
- Monga, S.P. β-Catenin Signaling and Roles in Liver Homeostasis, Injury, and Tumorigenesis. Gastroenterology 2015, 148, 1294–1310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020, 13, 165. [Google Scholar] [CrossRef]
- Mafi, A.; Rismanchi, H.; Malek Mohammadi, M.; Hedayati, N.; Ghorbanhosseini, S.S.; Hosseini, S.A.; Gholinezhad, Y.; Mousavi Dehmordi, R.; Ghezelbash, B.; Zarepour, F.; et al. A spotlight on the interplay between Wnt/β-catenin signaling and circular RNAs in hepatocellular carcinoma progression. Front. Oncol. 2023, 13, 1224138. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.H.L.; Phon, B.W.S.; Sivalingam, M.; Radhakrishnan, A.K.; Kamarudin, M.N.A. Regulation of EMT Markers, Extracellular Matrix, and Associated Signalling Pathways by Long Non-Coding RNAs in Glioblastoma Mesenchymal Transition: A Scoping Review. Biology 2023, 12, 818. [Google Scholar] [CrossRef]
- Tian, Y.; Lai, T.; Li, Z.; Mao, M.; Jin, Y.; Liu, Y.; Guo, R. Role of non-coding RNA intertwined with the Wnt/β-catenin signaling pathway in endometrial cancer. Mol. Med. Rep. 2023, 28, 150. [Google Scholar] [CrossRef]
- Zhou, P.; Liu, Y.; Wu, G.; Lu, K.; Zhao, T.; Yang, L. LincRNA PRNCR1 activates the Wnt/β-catenin pathway to drive the deterioration of hepatocellular carcinoma via regulating miR-411-3p/ZEB1 axis. Biotechnol. Genet. Eng. Rev. 2023. [Google Scholar] [CrossRef]
- van Ooyen, A.; Nusse, R. Structure and nucleotide sequence of the putative mammary oncogene int-1; proviral insertions leave the protein-encoding domain intact. Cell 1984, 39, 233–240. [Google Scholar] [CrossRef]
- Shi, J.; Li, F.; Luo, M.; Wei, J.; Liu, X. Distinct Roles of Wnt/β-Catenin Signaling in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Mediat. Inflamm. 2017, 2017, 3520581. [Google Scholar] [CrossRef]
- Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene 2017, 36, 1461–1473. [Google Scholar] [CrossRef]
- Behrens, J.; von Kries, J.P.; Kühl, M.; Bruhn, L.; Wedlich, D.; Grosschedl, R.; Birchmeier, W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996, 382, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Peifer, M.; Pai, L.M.; Casey, M. Phosphorylation of the Drosophila adherens junction protein Armadillo: Roles for wingless signal and zeste-white 3 kinase. Dev. Biol. 1994, 166, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Rubinfeld, B.; Albert, I.; Porfiri, E.; Fiol, C.; Munemitsu, S.; Polakis, P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 1996, 272, 1023–1026. [Google Scholar] [CrossRef]
- Yost, C.; Torres, M.; Miller, J.R.; Huang, E.; Kimelman, D.; Moon, R.T. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 1996, 10, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Damsky, W.E.; Curley, D.P.; Santhanakrishnan, M.; Rosenbaum, L.E.; Platt, J.T.; Gould Rothberg, B.E.; Taketo, M.M.; Dankort, D.; Rimm, D.L.; McMahon, M.; et al. β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 2011, 20, 741–754. [Google Scholar] [CrossRef]
- Khramtsov, A.I.; Khramtsova, G.F.; Tretiakova, M.; Huo, D.; Olopade, O.I.; Goss, K.H. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol. 2010, 176, 2911–2920. [Google Scholar] [CrossRef]
- Kobayashi, M.; Honma, T.; Matsuda, Y.; Suzuki, Y.; Narisawa, R.; Ajioka, Y.; Asakura, H. Nuclear translocation of beta-catenin in colorectal cancer. Br. J. Cancer 2000, 82, 1689–1693. [Google Scholar] [CrossRef]
- Tao, J.; Calvisi, D.F.; Ranganathan, S.; Cigliano, A.; Zhou, L.; Singh, S.; Jiang, L.; Fan, B.; Terracciano, L.; Armeanu-Ebinger, S.; et al. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 2014, 147, 690–701. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Z. MiRNA-139-3p inhibits malignant progression in urothelial carcinoma of the bladder via targeting KIF18B and inactivating Wnt/beta-catenin pathway. Pharmacogenet. Genom. 2023, 33, 1–9. [Google Scholar] [CrossRef]
- Lu, C.; Jia, S.; Zhao, S.; Shao, X. MiR-342 regulates cell proliferation and apoptosis in hepatocellular carcinoma through Wnt/β-catenin signaling pathway. Cancer Biomark. Sect. A Dis. Markers 2019, 25, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.L.; Cao, G.H.; Liu, Y.J.; Liu, C.H. Effect of LncRNA HOTAIR on the proliferation, apoptosis and drug resistance of Wilms tumor cells through Wnt/β-catenin signaling pathway. Chin. J. Oncol. 2021, 43, 769–774. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Duan, X.; Ren, F.; Li, S.; Jin, Z.; Wang, Y.; Feng, Y.; Liu, Z.; Chang, Z. CREPT/RPRD1B, a Recently Identified Novel Protein Highly Expressed in Tumors, Enhances the β-Catenin·TCF4 Transcriptional Activity in Response to Wnt Signaling. J. Biol. Chem. 2014, 289, 22589–22599. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Yang, X.; He, X.; Ma, W.; Wang, J.; Zhou, Q.; Li, M.; Yu, S. MicroRNA-449b-5p suppresses the growth and invasion of breast cancer cells via inhibiting CREPT-mediated Wnt/β-catenin signaling. Chem. Biol. Interact. 2019, 302, 74–82. [Google Scholar] [CrossRef]
- Tian, D.; Luo, L.; Wang, T.; Qiao, J. MiR-296-3p inhibits cell proliferation by the SOX4-Wnt/βcatenin pathway in triple-negative breast cancer. J. Biosci. 2021, 46, 98. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, Q.; Dong, M.; Yu, Y. MicroRNA-638 inhibits the progression of breast cancer through targeting HOXA9 and suppressing Wnt/β-cadherin pathway. World J. Surg. Oncol. 2021, 19, 247. [Google Scholar] [CrossRef]
- Yao, J.; Li, G.; Liu, M.; Yang, S.; Su, H.; Ye, C. lnc-MICAL2-1 sponges miR-25 to regulate DKK3 expression and inhibits activation of the Wnt/β-catenin signaling pathway in breast cancer. Int. J. Mol. Med. 2022, 49, 23. [Google Scholar] [CrossRef]
- Pei, J.; Zhang, S.; Yang, X.; Han, C.; Pan, Y.; Li, J.; Wang, Z.; Sun, C.; Zhang, J. Long non-coding RNA RP11-283G6.5 confines breast cancer development through modulating miR-188-3p/TMED3/Wnt/β-catenin signalling. RNA Biol. 2021, 18, 287–302. [Google Scholar] [CrossRef]
- Zhao, Z.; Han, X.; Nie, C.; Lin, S.; Wang, J.; Fang, H. Circ_0008784 activates Wnt/β-catenin pathway to affect the proliferation and apoptosis of triple-negative breast cancer cells. Pathol. Res. Pract. 2023, 241, 154185. [Google Scholar] [CrossRef]
- Tan, Z.; Zhao, L.; Huang, S.; Jiang, Q.; Wei, Y.; Wu, J.L.; Zhang, Z.; Li, Y. Small peptide LINC00511-133aa encoded by LINC00511 regulates breast cancer cell invasion and stemness through the Wnt/β-catenin pathway. Mol. Cell. Probes 2023, 69, 101913. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhu, H.; Tang, L.; Gao, T.; Zhou, Y.; Gong, F.; Tan, Y.; Xie, L.; Wu, X.; Li, Y. Apatinib Inhibits Stem Properties and Malignant Biological Behaviors of Breast Cancer Stem Cells by Blocking Wnt/β-catenin Signal Pathway through Downregulating LncRNA ROR. Anti-Cancer Agents Med. Chem. 2022, 22, 1723–1734. [Google Scholar] [CrossRef] [PubMed]
- Xin, G.; Hua, D.; Yingxu, S. Exosomes transfer non-coding RNA to regulate breast cancer drug resistance. Cancer Res. Prev. Treat. 2022, 49, 1071–1076. [Google Scholar] [CrossRef]
- Cheng, S.; Huang, Y.; Lou, C.; He, Y.; Zhang, Y.; Zhang, Q. FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin β3/Wnt signaling under miR-137 regulation. Cancer Biol. Ther. 2019, 20, 328–337. [Google Scholar] [CrossRef]
- Kirby, T. Young non-smoker diagnosed with lung cancer. Lancet. Respir. Med. 2020, 8, 141–142. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y.; He, B.; Cui, J.; Zhang, C.; Wang, H.; Feng, W.; Wang, B.; Wei, D.; Wu, Y.; et al. Expression of miR-590 in lung cancer and its correlation with prognosis. Oncol. Lett. 2018, 15, 1753–1757. [Google Scholar] [CrossRef]
- Xu, B.B.; Gu, Z.F.; Ma, M.; Wang, J.Y.; Wang, H.N. MicroRNA-590-5p suppresses the proliferation and invasion of non-small cell lung cancer by regulating GAB1. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5954–5963. [Google Scholar] [CrossRef]
- Hao, X.; Su, A. MiR-590 suppresses the progression of non-small cell lung cancer by regulating YAP1 and Wnt/β-catenin signaling. Clin. Transl. Oncol. 2022, 24, 546–555. [Google Scholar] [CrossRef]
- Liu, S.; Yang, N.; Wang, L.; Wei, B.; Chen, J.; Gao, Y. lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/β-catenin signaling pathway. J. Cell. Physiol. 2020, 235, 7541–7553. [Google Scholar] [CrossRef]
- Lin, H.; Shangguan, Z.; Zhu, M.; Bao, L.; Zhang, Q.; Pan, S. lncRNA FLVCR1-AS1 silencing inhibits lung cancer cell proliferation, migration, and invasion by inhibiting the activity of the Wnt/β-catenin signaling pathway. J. Cell. Biochem. 2019, 120, 10625–10632. [Google Scholar] [CrossRef]
- Chen, T.; Feng, G.; Xing, Z.; Gao, X. Circ-EIF3I facilitates proliferation, migration, and invasion of lung cancer via regulating the activity of Wnt/β-catenin pathway through the miR-1253/NOVA2 axis. Thorac. Cancer 2022, 13, 3133–3144. [Google Scholar] [CrossRef]
- Ning, M.Y.; Cheng, Z.L.; Zhao, J. MicroRNA-448 targets SATB1 to reverse the cisplatin resistance in lung cancer via mediating Wnt/β-catenin signalling pathway. J. Biochem. 2020, 168, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Li, X.; Cai, C.; Hong, C.; Zhang, B. MicroRNA-32 and MicroRNA-548a Promote the Drug Sensitivity of Non-Small Cell Lung Cancer Cells to Cisplatin by Targeting ROBO1 and Inhibiting the Activation of Wnt/β-Catenin Axis. Cancer Manag. Res. 2021, 13, 3005–3016. [Google Scholar] [CrossRef]
- Li, X.; Zheng, H. LncRNA SNHG1 influences cell proliferation, migration, invasion, and apoptosis of non-small cell lung cancer cells via the miR-361-3p/FRAT1 axis. Thorac. Cancer 2020, 11, 295–304. [Google Scholar] [CrossRef]
- Shi, S.L.; Zhang, Z.H. Long non-coding RNA SNHG1 contributes to cisplatin resistance in non-small cell lung cancer by regulating miR-140-5p/Wnt/β-catenin pathway. Neoplasma 2019, 66, 756–765. [Google Scholar] [CrossRef]
- Lu, M.; Xiong, H.; Xia, Z.K.; Liu, B.; Wu, F.; Zhang, H.X.; Hu, C.H.; Liu, P. circRACGAP1 promotes non-small cell lung cancer proliferation by regulating miR-144-5p/CDKL1 signaling pathway. Cancer Gene Ther. 2021, 28, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhao, L.; Li, Q.; Xi, C.; Li, Y.; Li, Z. circ_0007385 served as competing endogenous RNA for miR-519d-3p to suppress malignant behaviors and cisplatin resistance of non-small cell lung cancer cells. Thorac. Cancer 2020, 11, 2196–2208. [Google Scholar] [CrossRef]
- Parizadeh, S.M.; Jafarzadeh-Esfehani, R.; Fazilat-Panah, D.; Hassanian, S.M.; Shahidsales, S.; Khazaei, M.; Parizadeh, S.M.R.; Ghayour-Mobarhan, M.; Ferns, G.A.; Avan, A. The potential therapeutic and prognostic impacts of the c-MET/HGF signaling pathway in colorectal cancer. IUBMB Life 2019, 71, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tu, J.; Liu, C.; Wang, L.; Yuan, X. MicroRNA-621 functions as a metastasis suppressor in colorectal cancer by directly targeting LEF1 and suppressing Wnt/β-catenin signaling. Life Sci. 2022, 308, 120941. [Google Scholar] [CrossRef]
- Han, T.; Gao, M.; Wang, X.; Li, W.; Zhuo, J.; Qu, Z.; Chen, Y. LINC00665 activates Wnt/β-catenin signaling pathway to facilitate tumor progression of colorectal cancer via upregulating CTNNB1. Exp. Mol. Pathol. 2021, 120, 104639. [Google Scholar] [CrossRef]
- Lv, L.; Huang, B.; Yi, L.; Zhang, L. Long non-coding RNA SNHG4 enhances RNF14 mRNA stability to promote the progression of colorectal cancer by recruiting TAF15 protein. Apoptosis 2022, 28, 414–431. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, J.; Shi, H.; Gao, B.; Zhou, H.; Zhang, Y.; Zhao, D.; Gao, S.; Wang, C.; Zhang, L. Hsa_circ_0026628 promotes the development of colorectal cancer by targeting SP1 to activate the Wnt/β-catenin pathway. Cell Death Dis. 2021, 12, 802. [Google Scholar] [CrossRef]
- Du, Y.L.; Liang, Y.; Shi, G.Q.; Cao, Y.; Qiu, J.; Yuan, L.; Yong, Z.; Liu, L.; Li, J. LINC00689 participates in proliferation, chemoresistance and metastasis via miR-31-5p/YAP/β-catenin axis in colorectal cancer. Exp. Cell Res. 2020, 395, 112176. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, L.; Sun, Q.; Chen, R.; Zhang, C.; Yang, P.; Tan, Y.; Peng, C.; Wang, T.; Jin, C.; et al. Hsa_circ_0001666 suppresses the progression of colorectal cancer through the miR-576-5p/PCDH10 axis. Clin. Transl. Med. 2021, 11, e565. [Google Scholar] [CrossRef]
- Tani, H.; Torimura, M. Identification of short-lived long non-coding RNAs as surrogate indicators for chemical stress response. Biochem. Biophys. Res. Commun. 2013, 439, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lin, H.; Kang, L.; Huang, P.; Huang, J.; Cai, J.; Xian, Z.; Zhu, P.; Huang, M.; Wang, L.; et al. Aberrant expression of long noncoding RNA SNHG15 correlates with liver metastasis and poor survival in colorectal cancer. J. Cell. Physiol. 2019, 234, 7032–7039. [Google Scholar] [CrossRef]
- Sun, X.; Bai, Y.; Yang, C.; Hu, S.; Hou, Z.; Wang, G. Long noncoding RNA SNHG15 enhances the development of colorectal carcinoma via functioning as a ceRNA through miR-141/SIRT1/Wnt/β-catenin axis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2536–2544. [Google Scholar] [CrossRef]
- Li, M.; Bian, Z.; Jin, G.; Zhang, J.; Yao, S.; Feng, Y.; Wang, X.; Yin, Y.; Fei, B.; You, Q.; et al. LncRNA-SNHG15 enhances cell proliferation in colorectal cancer by inhibiting miR-338-3p. Cancer Med. 2019, 8, 2404–2413. [Google Scholar] [CrossRef]
- Saeinasab, M.; Bahrami, A.R.; González, J.; Marchese, F.P.; Martinez, D.; Mowla, S.J.; Matin, M.M.; Huarte, M. SNHG15 is a bifunctional MYC-regulated noncoding locus encoding a lncRNA that promotes cell proliferation, invasion and drug resistance in colorectal cancer by interacting with AIF. J. Exp. Clin. Cancer Res. CR 2019, 38, 172. [Google Scholar] [CrossRef]
- Jiang, H.; Li, T.; Qu, Y.; Wang, X.; Li, B.; Song, J.; Sun, X.; Tang, Y.; Wan, J.; Yu, Y.; et al. Long non-coding RNA SNHG15 interacts with and stabilizes transcription factor Slug and promotes colon cancer progression. Cancer Lett. 2018, 425, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Olatubosun, M.O.; Abubakar, M.B.; Batiha, G.E.; Malami, I.; Ibrahim, K.G.; Abubakar, B.; Bello, M.B.; Alexiou, A.; Imam, M.U. LncRNA SNHG15: A potential therapeutic target in the treatment of colorectal cancer. Chem. Biol. Drug Des. 2023, 101, 1138–1150. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Basu, S.; Majumder, S.; Bhowal, A.; Ghosh, A.; Naskar, S.; Nandy, S.; Mukherjee, S.; Sinha, R.K.; Basu, K.; Karmakar, D.; et al. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia. PLoS ONE 2015, 10, e0125560. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, G.; Wei, M.; Lu, X.; Fu, H.; Feng, F.; Wang, S.; Lu, W.; Wu, N.; Lu, Z.; et al. The tumor suppressing effects of QKI-5 in prostate cancer: A novel diagnostic and prognostic protein. Cancer Biol. Ther. 2014, 15, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xie, S.; Liu, J.; Li, T.; Wang, W.; Xie, Z. MicroRNA-4429 suppresses proliferation of prostate cancer cells by targeting distal-less homeobox 1 and inactivating the Wnt/β-catenin pathway. BMC Urol. 2021, 21, 40. [Google Scholar] [CrossRef]
- Dai, J.; Yuan, G.; Li, Y.; Zhou, H. MicroRNA-596 is epigenetically inactivated and suppresses prostatic cancer cell growth and migration via regulating Wnt/β-catenin signaling. Clin. Transl. Oncol. 2021, 23, 1394–1404. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Y.; Huo, W.; Wang, W.H. MicroRNA-301a-3p overexpression promotes cell invasion and proliferation by targeting runt-related transcription factor 3 in prostate cancer. Mol. Med. Rep. 2019, 20, 3755–3763. [Google Scholar] [CrossRef] [PubMed]
- Xing, R. miR-3648 Promotes Prostate Cancer Cell Proliferation by Inhibiting Adenomatous Polyposis Coli 2. J. Nanosci. Nanotechnol. 2019, 19, 7526–7531. [Google Scholar] [CrossRef]
- Ding, L.; Lin, Y.; Chen, X.; Wang, R.; Lu, H.; Wang, H.; Luo, W.; Lu, Z.; Xia, L.; Zhou, X.; et al. circPHF16 suppresses prostate cancer metastasis via modulating miR-581/RNF128/Wnt/β-catenin pathway. Cell. Signal. 2023, 102, 110557. [Google Scholar] [CrossRef]
- Wang, X.; Wang, R.; Wu, Z.; Bai, P. Circular RNA ITCH suppressed prostate cancer progression by increasing HOXB13 expression via spongy miR-17-5p. Cancer Cell Int. 2019, 19, 328. [Google Scholar] [CrossRef]
- Han, Y.; Hu, H.; Zhou, J. Knockdown of LncRNA SNHG7 inhibited epithelial-mesenchymal transition in prostate cancer though miR-324-3p/WNT2B axis in vitro. Pathol. Res. Pract. 2019, 215, 152537. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.C.; Song, L.L.; Liang, Q.; Hao, L.; Zhang, Z.G.; Han, C.H. Long noncoding RNA LEF1-AS1 silencing suppresses the initiation and development of prostate cancer by acting as a molecular sponge of miR-330-5p via LEF1 repression. J. Cell. Physiol. 2019, 234, 12727–12744. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Wang, Q.; Yosefi, B.; Wei, S.; Wang, X.; Shen, D. The function of long noncoding RNA HOTAIRM1 in the progression of prostate cancer cells. Andrologia 2021, 53, e13897. [Google Scholar] [CrossRef]
- Rahmani, F.; Safavi, P.; Fathollahpour, A.; Tanhaye Kalate Sabz, F.; Tajzadeh, P.; Arefnezhad, M.; Ferns, G.A.; Hassanian, S.M.; Avan, A. The interplay between non-coding RNAs and Wnt/ß-catenin signaling pathway in urinary tract cancers: From tumorigenesis to metastasis. EXCLI J. 2022, 21, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yang, Y.; Ren, L.; Yang, J.; Wang, B.; Xing, T.; Chen, H.; Chen, M. miR-15a-3p Suppresses Prostate Cancer Cell Proliferation and Invasion by Targeting SLC39A7 Via Downregulating Wnt/β-Catenin Signaling Pathway. Cancer Biother. Radiopharm. 2019, 34, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Xu, G.C.; Liu, S.T.; Liu, T.; Geng, B. MiR-34a affects G2 arrest in prostate cancer PC3 cells via Wnt pathway and inhibits cell growth and migration. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8349–8358. [Google Scholar] [CrossRef]
- Wang, M.; Yin, C.; Wu, Z.; Wang, X.; Lin, Q.; Jiang, X.; Du, H.; Lang, C.; Peng, X.; Dai, Y. The long transcript of lncRNA TMPO-AS1 promotes bone metastases of prostate cancer by regulating the CSNK2A1/DDX3X complex in Wnt/β-catenin signaling. Cell Death Discov. 2023, 9, 287. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Q.; Liu, Y.; Xia, Z.Y. miR-425-5p suppresses tumorigenesis and DDP resistance in human-prostate cancer by targeting GSK3β and inactivating the Wnt/β-catenin signaling pathway. J. Biosci. 2019, 44, 102. [Google Scholar] [CrossRef]
- Mirzaei, S.; Paskeh, M.D.A.; Okina, E.; Gholami, M.H.; Hushmandi, K.; Hashemi, M.; Kalu, A.; Zarrabi, A.; Nabavi, N.; Rabiee, N.; et al. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. J. Exp. Clin. Cancer Res. CR 2022, 41, 214. [Google Scholar] [CrossRef]
- Venerito, M.; Vasapolli, R.; Rokkas, T.; Malfertheiner, P. Gastric cancer: Epidemiology, prevention, and therapy. Helicobacter 2018, 23 (Suppl. S1), e12518. [Google Scholar] [CrossRef]
- Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Przegląd Gastroenterol. 2019, 14, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.J.; Gao, J.B. Molecular mechanisms of chemoresistance in gastric cancer. World J. Gastrointest. Oncol. 2016, 8, 673–681. [Google Scholar] [CrossRef]
- Akhavanfar, R.; Shafagh, S.G.; Mohammadpour, B.; Farahmand, Y.; Lotfalizadeh, M.H.; Kookli, K.; Adili, A.; Siri, G.; Eshagh Hosseini, S.M. A comprehensive insight into the correlation between ncRNAs and the Wnt/β-catenin signalling pathway in gastric cancer pathogenesis. Cell Commun. Signal. CCS 2023, 21, 166. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, X.; Lin, H.; Deng, S.; Qin, Y.; He, J.; Hu, F.; Zhu, X.; Feng, X.; Wang, J.; et al. Dual activation of Hedgehog and Wnt/β-catenin signaling pathway caused by downregulation of SUFU targeted by miRNA-150 in human gastric cancer. Aging 2021, 13, 10749–10769. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Rafiei, H.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Wnt-regulating microRNAs role in gastric cancer malignancy. Life Sci. 2020, 250, 117547. [Google Scholar] [CrossRef]
- Chen, J.Q.; Huang, Z.P.; Li, H.F.; Ou, Y.L.; Huo, F.; Hu, L.K. MicroRNA-520f-3p inhibits proliferation of gastric cancer cells via targeting SOX9 and thereby inactivating Wnt signaling. Sci. Rep. 2020, 10, 6197. [Google Scholar] [CrossRef]
- Fang, X.; Pan, A. MiR-507 inhibits the progression of gastric carcinoma via targeting CBX4-mediated activation of Wnt/β-catenin and HIF-1α pathways. Clin. Transl. Oncol. 2022, 24, 2021–2028. [Google Scholar] [CrossRef]
- Li, J.; Sun, J.; Liu, Z.; Zeng, Z.; Ouyang, S.; Zhang, Z.; Ma, M.; Kang, W. The Roles of Non-Coding RNAs in Radiotherapy of Gastrointestinal Carcinoma. Front. Cell Dev. Biol. 2022, 10, 862563. [Google Scholar] [CrossRef]
- Liu, W.G.; Xu, Q. Upregulation of circHIPK3 promotes the progression of gastric cancer via Wnt/β-catenin pathway and indicates a poor prognosis. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7905–7912. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Yi, X.; Xiao, X.; Zheng, Q.; Ma, L. Circ_SMAD4 promotes gastric carcinogenesis by activating wnt/β-catenin pathway. Cell Prolif. 2021, 54, e12981. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Xu, Y.; Zhang, X.; Deng, S.; Yuan, Y.; Luo, X.; Hossain, M.T.; Zhu, X.; Du, K.; Hu, F.; et al. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol. Cancer 2021, 20, 158. [Google Scholar] [CrossRef] [PubMed]
- Luan, P.B.; Sun, X.M.; Yao, J. LINC00355 inhibits apoptosis and promotes proliferation of gastric cancer cells by regulating Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8377–8383. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, X.; Lin, H.; Deng, S.; Qin, Y.; Yuan, Y.; Feng, X.; Wang, J.; Chen, W.; Hu, F.; et al. SUFU mediates EMT and Wnt/β-catenin signaling pathway activation promoted by miRNA-324-5p in human gastric cancer. Cell Cycle 2020, 19, 2720–2733. [Google Scholar] [CrossRef]
- Shi, Q.; Zhou, C.; Xie, R.; Li, M.; Shen, P.; Lu, Y.; Ma, S. CircCNIH4 inhibits gastric cancer progression via regulating DKK2 and FRZB expression and Wnt/β-catenin pathway. J. Biol. Res. 2021, 28, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, K.; Hou, Y. Long non-coding RNA NNT-AS1 knockdown represses the progression of gastric cancer via modulating the miR-142-5p/SOX4/Wnt/β-catenin signaling pathway. Mol. Med. Rep. 2020, 22, 687–696. [Google Scholar] [CrossRef]
- Yang, C.; Han, S. The circular RNA circ0005654 interacts with specificity protein 1 via microRNA-363 sequestration to promote gastric cancer progression. Bioengineered 2021, 12, 6305–6317. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Zou, J.; Cao, G.; Li, Y.; Xing, C.; Wu, J. Exosomal circ_0091741 promotes gastric cancer cell autophagy and chemoresistance via the miR-330-3p/TRIM14/Dvl2/Wnt/β-catenin axis. Hum. Cell 2023, 36, 258–275. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.G.; Li, X.B.; Yin, R.H.; Li, X.F. lncRNA VIM-AS1 promotes cell proliferation, metastasis and epithelial-mesenchymal transition by activating the Wnt/β-catenin pathway in gastric cancer. Mol. Med. Rep. 2020, 22, 4567–4578. [Google Scholar] [CrossRef]
- Xu, Z.; Ran, J.; Gong, K.; Hou, Y.; Li, J.; Guo, Y. LncRNA SUMO1P3 regulates the invasion, migration and cell cycle of gastric cancer cells through Wnt/β-catenin signaling pathway. J. Recept. Signal Transduct. Res. 2021, 41, 574–581. [Google Scholar] [CrossRef]
- Zhou, W.; Ding, X.; Jin, P.; Li, P. miR-6838-5p Affects Cell Growth, Migration, and Invasion by Targeting GPRIN3 via the Wnt/β-Catenin Signaling Pathway in Gastric Cancer. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 2020, 87, 327–337. [Google Scholar] [CrossRef]
- Chen, B.; Dragomir, M.P.; Yang, C.; Li, Q.; Horst, D.; Calin, G.A. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct. Target. Ther. 2022, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Zhao, E.; Lan, Y.; Quan, F.; Zhu, X.; Suru, A.; Wan, L.; Xu, J.; Hu, J. Identification of a Six-lncRNA Signature With Prognostic Value for Breast Cancer Patients. Front. Genet. 2020, 11, 673. [Google Scholar] [CrossRef]
Cancer Type | ncRNAs | Expression | Mechanisms | Functions to Wnt Pathway | PMID |
---|---|---|---|---|---|
Breast cancer | miR-125b | Up | Wnt/β-catenin | Activation | 30950326 |
miR-296-3p | Down | SOX4 | Suppression | 34785625 | |
miR-96-5p | Down | CTNND1 | Suppression | 31913290 | |
miR-9501 | Up | β-catenin | Suppression | 32373971 | |
miR-548c-5p | Down | Wnt1 | Suppression | 32329856 | |
miR-516a-3p | Down | Pygopus2 | Suppression | 31273950 | |
miR-454-3p | Up | RPRD1A | Activation | 30809286 | |
miR-449b-5p | Down | CREPT | Suppression | 30738779 | |
miR-429 | Down | Wnt/β-catenin | Suppression | 32961031 | |
miR-34a | Up | Wnt3/Wnt1 | Activation | 30779084 | |
miR-340-5p | Down | LGR5 | Suppression | 30300682 | |
miR-296 | Down | FGFR1 | Suppression | 31841196 | |
miR-27a | Up | GSK-3β | Activation | 33025840 | |
miR-216a | Down | Wnt/β-catenin | Suppression | 30864744 | |
miR-193b | Down | c-Met | Suppression | 34863149 | |
miR-190 | Down | SOX9 | Activation | 30658681 | |
miR-135 | Down | Wnt/β-catenin | Suppression | 35730603 | |
miR-130a-3p | Down | NRARP | Suppression | 35797350 | |
miR-124-3p.1 | Up | Axin1 | Activation | 32125723 | |
lncRNA MICAL2-1 | Down | miR-25/DKK3 | Suppression | 34970696 | |
lncRNA RP11-283G6.5 | Down | miR-188-3p/TMED3 | Suppression | 34416888 | |
lncRNA RUSC1-AS-N | Up | Wnt1/β-catenin | Activation | 30569097 | |
lncRNA RBM5-AS1 | Up | Wnt/β-catenin | Activation | 35110544 | |
lncRNA HOTTIP | Up | miR-148a-3p/WNT1 | Activation | 32307830 | |
lncRNA HOTTIP | Up | Wnt/β-catenin | Activation | 30676763 | |
lncRNA H19 | Up | miR-340-3p/YWHAZ | Activation | 30676763 | |
lncRNA C5orf66-AS1 | Up | miR-149-5p/CTCF/CTNNB1 | Activation | 35499320 | |
lncRNA ASMTL-AS1 | Down | miR-1228-3p/SOX17 | Suppression | 34006305 | |
lncRNA LUCAT1 | Up | miR-5582-3p/TCF7L2 | Activation | 31300015 | |
lncRNA CCAT1 | Up | miR-204/211/miR-148a/152/ANXA2 | Activation | 31695775 | |
LINC01287 | Up | Wnt/β-catenin | Activation | 31173295 | |
LINC01234 | Up | miR-525-5p/MEIS2 | Activation | 34173712 | |
circ_0008784 | Up | miR-506-3p/CTNNB1 | Activation | 36436315 | |
circ-ITCH | Down | miR-214/miR-17 | Activation | 30509108 | |
circARL8B | Up | miR-653-5p/HMGA2 | Activation | 34050452 | |
circABCC4 | Up | miR-154-5p | Suppression | 34050452 | |
Lung cancer | miR-590 | Down | YAP1 | Suppression | 35031966 |
miR-448 | Down | SATB1 | Activation | 32525527 | |
miR-489-3p | Up | USP48 | Activation | 35413838 | |
miR-421 | Up | HOPX | Activation | 31115507 | |
miR-23B | Down | RUNX2 | Suppression | 32495614 | |
miR-20b | Down | APC | Activation | 31894264 | |
miR-1b-19p | Down | MYPT3 | Suppression | 33964297 | |
miR-147b | Down | RPS15A | Suppression | 31665807 | |
miR-103 | Up | KLF7 | Activation | 32582959 | |
miR-100 | Down | HOXA1 | Suppression | 32364673 | |
miR-520a | Up | RRM2 | Suppression | 33859925 | |
lncRNA SNHG11 | Up | miR-4436a/CTNNB1 | Activation | 32239719 | |
lncRNA FLVCR1-AS1 | Up | Wnt/β-catenin | Suppression | 30697812 | |
lncRNA-SNHG7 | Down | miR-181/cbx7 | Suppression | 32201260 | |
lncRNASEH1-AS1 | Up | miR-516a-5p/FOXK1 | Activation | 35166053 | |
lncRNA SNHG20 | Up | miR-197/TCF/LEF1 | Activation | 31957836 | |
lncRNA PVT1 | Up | miR-361-3p/SOX9 | Activation | 32197208 | |
lncRNA JPX | Up | miR-33a-5p/Twist1 | Activation | 32197208 | |
lncRNA HJURP | Up | β-catenin | Suppression | 31115012 | |
LncRNA DSCAM-AS1 | Up | miR-577/HMGB1 | Activation | 32386483 | |
lncRNA AWPPH | Up | Wnt/β-catenin | Activation | 32386483 | |
LncDBH-AS1 | Down | miR-155/AXIN1 | Activation | 33506901 | |
LINC01006 | Up | miR-129-2-3p/CTNNB1 | Activation | 33753463 | |
LINC00942 | Up | miR-5006-5p/FZD1 | Activation | 34253104 | |
LINC00669 | Up | Wnt/β-catenin | Activation | 36621836 | |
LINC00326 | Up | miR-657/DKK2 | Suppression | 36747258 | |
LINC00673-v4 | Up | DDX3/CK1ε | Activation | 31235588 | |
circ-EIF3I | Up | miR-1253/NOVA2 | Activation | 36193788 | |
has_circ_0017109 | Up | miR-671-5p/FZD4 | Activation | 36434577 | |
has_circ_0001946 | Up | miR-135a-5p/SIRT1 | Activation | 30841451 | |
hsa_circ_0066903 | Down | miR-3681-3p/miR-3909/GSK3B | Suppression | 35821283 | |
hsa_circ_0007059 | Down | miR-378 | Suppression | 31351967 | |
has_circ_0006427 | Down | miR-6783-3p/DKK1 | Suppression | 30470570 | |
circ-ZNF124 | Up | miR-498/YES1 | Suppression | 33186139 | |
circVAPA | Up | miR-876-5p/WNT5a | Activation | 33619796 | |
circ-PGC | Up | miR-2-532p/FOXR3 | Activation | 34494941 | |
circ_0067934 | Up | miR-1182/KLF8 | Activation | 32768951 | |
Colorectal cancer | miR-621 | Down | LEF1 | Suppression | 36087740 |
miR-576-5p | Up | Wnt5a | Activation | 33300054 | |
miR-532-3p | Down | ETS3/TGM1 | Suppression | 31570702 | |
miR-501-3p | Up | APC | Activation | 31364752 | |
miR-381 | Down | SPIN1 | Activation | 34753384 | |
miR-377-3p | Down | ZEB2/XIAP | Suppression | 32220639 | |
miR-30-5p | Down | USP2 | Suppression | 30338942 | |
miR-19a-3p | Up | FOXF2 | Suppression | 32103872 | |
miR-188 | Up | FOXL1 | Activation | 37305399 | |
miR-183-5p | Up | RCN2 | Suppression | 30896885 | |
miR-144-3p | Down | BCL6 | Suppression | 32206063 | |
miR-103/107 | Up | Axin2 | Activation | 31273221 | |
miR-6125 | Down | YTHDF2 | Activation | 34709763 | |
miR-520e | Down | AEG-1 | Suppression | 31574178 | |
LINC00665 | Up | miR-214-3p/CTNNB1 | Activation | 33865827 | |
lncRNA TUG1 | Up | miR-542-3p/TRIB2 | Activation | 34030715 | |
lncRNA PART1 | Up | miR-150-5p/miR-520h/CTNNB1 | Activation | 31669140 | |
lncRNA NEAT1 | Up | miR-486-5p/NR4A1 | Activation | 33337350 | |
lncRNA NEAT1 | Up | miR-34a/SIRT1 | Activation | 30312725 | |
lncRNA HCG18 | Up | miR-1271/MTDH | Activation | 31854468 | |
lncRNA ADAMTS9-AS1 | Down | Wnt/β-catenin | Suppression | 32889785 | |
LINC01315 | Up | Wnt/β-catenin | Activation | 35322763 | |
LINC00963-v2/-v3 | Down | miR-143/miR-217/miR-512/APC/Axin | Suppression | 36804476 | |
LINC00365 | Up | CDK1 | Activation | 31544991 | |
circ_0082182 | Up | miR-411/miR-1205 | Activation | 33596920 | |
hsa_circ_0026628 | Up | miR-346/SP1 | Activation | 34420031 | |
hsa_circ_0068464 | Up | miR-383 | Activation | 35168468 | |
hsa_circ_0009361 | Down | miR-582/APC2 | Suppression | 31109967 | |
hsa_circ_0005615 | Up | miR-149-5p/TNKS | Activation | 32393760 | |
hsa_circ_0005075 | Up | Wnt/β-catenin | Activation | 31081084 | |
circRASSF2 | Up | miR-195-5p/FZD4 | Activation | 33929991 | |
circPTK2 | Up | miR-136-5p/YTHDF1 | Activation | 34974791 | |
circ-IGF1R | Up | miR-362-5p/HMGB3 | Activation | 36542208 | |
circIFT80 | Up | miR-142/miR-568/miR-634/CTNNB1 | Activation | 35783013 | |
circAGFG1 | Up | miR-4262/miR-185-5/pYY1/CTNNB1 | Activation | 32681092 | |
circ-ACAP2 | Up | miR-143-3p/FZD4 | Activation | 34085707 | |
circ_0026344 | Down | miR-183 | Suppression | 31608699 | |
Prostate cancer | miR-4429 | Down | DLX1 | Suppression | 33740948 |
miR-596 | Down | β-catenin | Suppression | 33387246 | |
miR-15a-3p | Down | SLC39A7 | Suppression | 31135177 | |
miR-34a | Down | Wnt1 | Suppression | 32894541 | |
miR-425-5p | Down | GSK3β | Suppression | 31502580 | |
miR-653-5p | Down | SOX30 | Suppression | 31889959 | |
miR-95-3p | Up | DKK3 | Activation | 30779066 | |
lncRNA SOX2-OT | Up | miR-452-5p/HMGB3 | Suppression | 32407168 | |
lncRNA SNHG12 | Up | miR-195 | Activation | 30945357 | |
lncRNA HOTTIP | Up | Wnt/β-catenin | Suppression | 30809864 | |
LINC00115 | Up | miR-212-5p/FZD5 | Activation | 34697900 | |
circPHF16 | Down | miR-581/RNF128 | Suppression | 36503162 | |
Gastric cancer | miRNA-150 | Up | SUFU | Activation | 33848981 |
miR-520f-3p | Down | SOX9 | Suppression | 32277152 | |
miR-507 | Down | CBX4 | Suppression | 35819589 | |
miR-324-5p | Up | SUFU | Activation | 33017570 | |
miR-6838-5p | Down | GPRIN3 | Suppression | 33254176 | |
miR-192/-215 | Up | APC | Activation | 32091625 | |
miR-188-5p | Up | PTEN | Activation | 31138169 | |
miR-195-5p | Down | YAP | Activation | 31378888 | |
miR-381/miR-489 | Down | CUL4B | Suppression | 30483755 | |
miR-675 | Up | PITX1 | Activation | 31260797 | |
LINC00355 | Up | Wnt/β-catenin | Activation | 32894544 | |
lncRNA NNT-AS1 | Up | miR-142-5p/SOX4 | Activation | 32468065 | |
lncRNA VIM-AS1 | Up | miR-8052/FDZ1 | Activation | 33173977 | |
lncRNA SUMO1P3 | Up | Wnt/β-catenin | Activation | 33179980 | |
LINC01225 | Up | Wnt/β-catenin | Activation | 31460694 | |
LINC01503 | Up | Wnt/β-catenin | Activation | 32207034 | |
lncRNA H19 | Up | β-catenin | Activation | 34348271 | |
lncRNA MIR4435-2HG | Up | DSP | Activation | 31484163 | |
lncRNA NCK1-AS1 | Up | miR-22-3p/BCL9 | Activation | 33974352 | |
lncRNA SNHG11 | Up | miR-483-3p/miR-1276/CTNNB1/ATG12 | Activation | 33068778 | |
lncRNA ZEB2-AS1 | Up | Wnt/β-catenin | Activation | 30635820 | |
lncRNA ZFAS1 | Up | miR-200b/Wnt1 | Activation | 30999814 | |
LOC100505817 | Down | Wnt/β-catenin | Activation | 34385891 | |
LOC285194 | Down | Wnt/β-catenin | Suppression | 31991056 | |
circ0005654 | Up | miR-363/sp1 | Activation | 34499009 | |
circ_0091741 | Up | miR-330-3p/TRIM14 | Activation | 36323918 | |
circ-SFMBT2 | Up | miR-885-3p/CHD7 | Activation | 34387601 | |
cir-ITCH | Down | miR-17 | Suppression | 33060778 | |
hsa_circ_0001649 | Down | miR-20a/ERK | Suppression | 32212290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Du, Y.; Luo, L.; Xu, X.; Xiong, S.; Yang, X.; Guo, L.; Liang, T. Deciphering the Enigmatic Influence: Non-Coding RNAs Orchestrating Wnt/β-Catenin Signaling Pathway in Tumor Progression. Int. J. Mol. Sci. 2023, 24, 13909. https://doi.org/10.3390/ijms241813909
Yang X, Du Y, Luo L, Xu X, Xiong S, Yang X, Guo L, Liang T. Deciphering the Enigmatic Influence: Non-Coding RNAs Orchestrating Wnt/β-Catenin Signaling Pathway in Tumor Progression. International Journal of Molecular Sciences. 2023; 24(18):13909. https://doi.org/10.3390/ijms241813909
Chicago/Turabian StyleYang, Xinbing, Yajing Du, Lulu Luo, Xinru Xu, Shizheng Xiong, Xueni Yang, Li Guo, and Tingming Liang. 2023. "Deciphering the Enigmatic Influence: Non-Coding RNAs Orchestrating Wnt/β-Catenin Signaling Pathway in Tumor Progression" International Journal of Molecular Sciences 24, no. 18: 13909. https://doi.org/10.3390/ijms241813909
APA StyleYang, X., Du, Y., Luo, L., Xu, X., Xiong, S., Yang, X., Guo, L., & Liang, T. (2023). Deciphering the Enigmatic Influence: Non-Coding RNAs Orchestrating Wnt/β-Catenin Signaling Pathway in Tumor Progression. International Journal of Molecular Sciences, 24(18), 13909. https://doi.org/10.3390/ijms241813909