Calcitonin Gene-Related Peptide Systemic Effects: Embracing the Complexity of Its Biological Roles—A Narrative Review
Abstract
:1. Introduction
2. CGRP Biology
2.1. CGRP Isoforms
2.2. Regulation of CGRP Synthesis and Release
2.3. CGRP Receptor
2.4. Intracellular Signaling
3. Physiological and Pathophysiological Effect of CGRP
3.1. CGRP in the Cardiovascular System
3.1.1. CGRP as a Vasodilator
3.1.2. CGRP in the Regulation of Systemic Circulation
3.1.3. CGRP Physiologic Effect in the Heart
3.1.4. CGRP in Myocardial Infarction and Heart Failure
3.1.5. CGRP in Atherosclerosis and Vascular Remodeling
3.2. CGRP in the Skin
CGRP in Cutaneous Wound Healing
3.3. CGRP in the Respiratory System
3.3.1. CGRP and Asthma
3.3.2. CGRP and Pulmonary Hypertension
3.3.3. CGRP and COVID-19
3.4. CGRP and the Gastrointestinal System
3.4.1. CGRP and the Stomach
3.4.2. CGRP and Metabolic Syndrome
3.5. CGRP and the Musculoskeletal System
3.6. CGRP and the Urinary System
3.7. CGRP and Sex Hormones
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Russell, F.A.; King, R.; Smillie, S.-J.; Kodji, X.; Brain, S.D.; Pressly, J.D.; Soni, H.; Jiang, S.; Wei, J.; Liu, R.; et al. Calcitonin Gene-Related Peptide: Physiology and Pathophysiology. Physiol. Rev. 2014, 94, 1099–1142. [Google Scholar] [CrossRef]
- Morris, H.R.; Panico, M.; Etienne, T.; Tippins, J.; Girgis, S.I.; MacIntyre, I. Isolation and characterization of human calcitonin gene-related peptide. Nature 1984, 308, 746–748. [Google Scholar] [CrossRef]
- Amara, S.G.; Arriza, J.L.; Leff, S.E.; Swanson, L.W.; Evans, R.M.; Rosenfeld, M.G. Expression in Brain of a Messenger RNA Encoding a Novel Neuropeptide Homologous to Calcitonin Gene-Related Peptide. Science 1985, 229, 1094–1097. [Google Scholar] [CrossRef]
- Maggi, C.A. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog. Neurobiol. 1995, 45, 1–98. [Google Scholar] [CrossRef]
- Goadsby, P.J.; Edvinsson, L.; Ekman, R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann. Neurol. 1988, 23, 193–196. [Google Scholar] [CrossRef]
- Goadsby, P.J.; Edvinsson, L.; Ekman, R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol. 1990, 28, 183–187. [Google Scholar] [CrossRef]
- Lassen, L.H.; Haderslev, P.A.; Jacobsen, V.B.; Iversen, H.K.; Sperling, B.; Olesen, J. Cgrp May Play A Causative Role in Migraine. Cephalalgia Int. J. Headache 2002, 22, 54–61. [Google Scholar] [CrossRef]
- Goadsby, P.J.; Edvinsson, L. Peripheral and Central Trigeminovascular Activation in Cat is Blocked by the Serotonin (5HT)-I D Receptor Agonist 311C90. Headache J. Head Face Pain 1994, 34, 394–399. [Google Scholar] [CrossRef]
- Altamura, C.; Brunelli, N.; Marcosano, M.; Fofi, L.; Vernieri, F. Gepants—A long way to cure: A narrative review. Neurol. Sci. 2022, 43, 5697–5708. [Google Scholar] [CrossRef] [PubMed]
- Brain, S.D.; Williams, T.J.; Tippins, J.R.; Morris, H.R.; MacIntyre, I. Calcitonin gene-related peptide is a potent vasodilator. Nature 1985, 313, 54–56. [Google Scholar] [CrossRef]
- Ray, J.C.; Allen, P.; Bacsi, A.; Bosco, J.J.; Chen, L.; Eller, M.; Kua, H.; Lim, L.L.; Matharu, M.S.; Monif, M.; et al. Inflammatory complications of CGRP monoclonal antibodies: A case series. J. Headache Pain 2021, 22, 121. [Google Scholar] [CrossRef]
- Alstergren, P.; Appelgren, A.; Appelgren, B.; Kopp, S.; Lundeberg, T.; Theodorsson, E. Co-variation of neuropeptide Y, calcitonin gene-related peptide, substance P and neurokinin A in joint fluid from patients with temporomandibular joint arthritis. Arch. Oral Biol. 1995, 40, 127–135. [Google Scholar] [CrossRef]
- Wimalawansa, S.J.; Morris, H.R.; Etienne, A.; Blench, I.; Panico, M.; MacIntyre, I. Isolation, purification and characterization of β-hCGRP from human spinal cord. Biochem. Biophys. Res. Commun. 1990, 167, 993–1000. [Google Scholar] [CrossRef]
- Donnerer, J.; Stein, C. Evidence for an Increase in the Release of CGRP from Sensory Nerves during Inflammation. Ann. N. Y. Acad. Sci. 1992, 657, 505–506. [Google Scholar] [CrossRef]
- Supowit, S.C.; Zhao, H.; DiPette, D.J. Nerve growth factor enhances calcitonin gene-related peptide expression in the spontaneously hypertensive rat. Hypertension 2001, 37 Pt 2, 728–732. [Google Scholar] [CrossRef]
- Jang, M.-U.; Park, J.-W.; Kho, H.-S.; Chung, S.-C.; Chung, J.-W. Plasma and saliva levels of nerve growth factor and neuropeptides in chronic migraine patients. Oral Dis. 2010, 17, 187–193. [Google Scholar] [CrossRef]
- Salio, C.; Averill, S.; Priestley, J.; Merighi, A. Costorage of BDNF and neuropeptides within individual dense-core vesicles in central and peripheral neurons. Dev. Neurobiol. 2007, 67, 326–338. [Google Scholar] [CrossRef]
- Schlereth, T.; Schukraft, J.; Krämer-Best, H.H.; Geber, C.; Ackermann, T.; Birklein, F. Interaction of calcitonin gene related peptide (CGRP) and substance P (SP) in human skin. Neuropeptides 2016, 59, 57–62. [Google Scholar] [CrossRef]
- Matteoli, M.; Haimann, C.; Torri-Tarelli, F.; Polak, J.M.; Ceccarelli, B.; De Camilli, P. Differential effect of alpha-latrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction. Proc. Natl. Acad. Sci. USA 1988, 85, 7366–7370. [Google Scholar] [CrossRef]
- Meng, J.; Wang, J.; Lawrence, G.; Dolly, J.O.; Etournay, R.; Zwaenepoel, I.; Perfettini, I.; Legrain, P.; Petit, C.; El-Amraoui, A. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J. Cell Sci. 2007, 120 Pt 16, 2864–2874. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Vriens, J.; Appendino, G.; Nilius, B. Pharmacology of Vanilloid Transient Receptor Potential Cation Channels. Mol. Pharmacol. 2009, 75, 1262–1279. [Google Scholar] [CrossRef]
- Deng, P.-Y.; Li, Y.-J. Calcitonin gene-related peptide and hypertension. Peptides 2005, 26, 1676–1685. [Google Scholar] [CrossRef] [PubMed]
- Choksi, T.; Hay, D.L.; Legon, S.; Poyner, D.R.; Hagner, S.; Bloom, S.R.; Smith, D.M. Comparison of the expression of calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) with CGRP and adrenomedullin binding in cell lines. Br. J. Pharmacol. 2002, 136, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Muff, R.; Leuthäuser, K.; Bühlmann, N.; Foord, S.M.; Fischer, J.A.; Born, W. Receptor activity modifying proteins regulate the activity of a calcitonin gene-related peptide receptor in rabbit aortic endothelial cells. FEBS Lett. 1998, 441, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.T.; Huang, Y.; Brayden, J.E.; Hescheler, J.; Standen, N.B. Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature 1990, 344, 770–773. [Google Scholar] [CrossRef]
- Smillie, S.-J.; King, R.; Kodji, X.; Outzen, E.; Pozsgai, G.; Fernandes, E.; Marshall, N.; de Winter, P.; Heads, R.J.; Dessapt-Baradez, C.; et al. An Ongoing Role of α-Calcitonin Gene–Related Peptide as Part of a Protective Network Against Hypertension, Vascular Hypertrophy, and Oxidative Stress. Hypertension 2014, 63, 1056–1062. [Google Scholar] [CrossRef]
- McGillis, J.P.; Miller, C.N.; Schneider, D.B.; Fernandez, S.; Knopf, M. Calcitonin gene-related peptide induces AP-1 activity by a PKA and c-fos-dependent mechanism in pre-B cells. J. Neuroimmunol. 2002, 123, 83–90. [Google Scholar] [CrossRef]
- Kawase, T.; Okuda, K.; Burns, D.M.; Russell, F.A.; King, R.; Smillie, S.-J.; Kodji, X.; Brain, S.D. Immature osteoblastic MG63 cells possess two calcitonin gene-related peptide receptor subtypes that respond differently to [Cys(Acm)2,7] calcitonin gene-related peptide and CGRP8–37. Am. J. Physiol. Physiol. 2005, 289, C811–C818. [Google Scholar] [CrossRef]
- Schaeffer, C.; Vandroux, D.; Thomassin, L.; Athias, P.; Rochette, L.; Connat, J.-L. Calcitonin gene-related peptide partly protects cultured smooth muscle cells from apoptosis induced by an oxidative stress via activation of ERK1/2 MAPK. Biochim. et Biophys. Acta (BBA)-Mol. Cell Res. 2003, 1643, 65–73. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, W.; Chabot, J.-G.; Quirion, R. Calcitonin gene-related peptide as a regulator of neuronal CaMKII–CREB, microglial p38–NFκB and astroglial ERK–Stat1/3 cascades mediating the development of tolerance to morphine-induced analgesia. Pain 2010, 151, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Brain, S.D.; Tippins, J.R.; Morris, H.R.; Maclntyre, I.; Williams, T.J. Potent Vasodilator Activity of Calcitonin Gene-Related Peptide in Human Skin. J. Investig. Dermatol. 1986, 87, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Itabashi, A.; Kashiwabara, H.; Shibuya, M.; Tanaka, K.; Masaoka, H.; Katayama, S.; Ishii, J. The interaction of calcitonin gene-related peptide with angiotensin II on blood pressure and renin release. J. Hypertens. 1988, 6, S418–S420. [Google Scholar] [CrossRef] [PubMed]
- Portaluppi, F.; Vergnani, L.; Margutti, A.; Ambrosio, M.R.; Bondanelli, M.; Trasforini, G.; Rossi, R.; Degli Uberti, E.C. Modulatory effect of the renin-angiotensin system on the plasma levels of calcitonin gene-related peptide in normal man. J. Clin. Endocrinol. Metab. 1993, 77, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Tatasciore, A.; Renda, G.; Zimarino, M.; Soccio, M.; Bilo, G.; Parati, G.; Schillaci, G.; De Caterina, R. Awake Systolic Blood Pressure Variability Correlates with Target-Organ Damage in Hypertensive Subjects. Hypertension 2007, 50, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Gangula, P.R.R.; Zhao, H.; Supowit, S.; Wimalawansa, S.; DiPette, D.; Yallampalli, C.; Russell, F.A.; King, R.; Smillie, S.-J.; Kodji, X.; et al. Pregnancy and steroid hormones enhance the vasodilation responses to CGRP in rats. Am. J. Physiol. Circ. Physiol. 1999, 276, H284–H288. [Google Scholar] [CrossRef]
- Ando, K.; Pegram, B.L.; Frohlich, E.D.; Russell, F.A.; King, R.; Smillie, S.-J.; Kodji, X.; Brain, S.D.; Grant, A.D. Hemodynamic effects of calcitonin gene-related peptide in spontaneously hypertensive rats. Am. J. Physiol. Integr. Comp. Physiol. 1990, 258 Pt 2, R425–R429. [Google Scholar] [CrossRef]
- Gardiner, S.M.; Compton, A.M.; Kemp, P.A.; Bennett, T.; Bose, C.; Foulkes, R.; Hughes, B. Antagonistic Effect of Human α-Calcitonin Gene–Related Peptide (8–37) on Regional Hemodynamic Actions of Rat Islet Amyloid Polypeptide in Conscious Long-Evans Rats. Diabetes 1991, 40, 948–951. [Google Scholar] [CrossRef]
- Olesen, J.; Diener, H.-C.; Husstedt, I.W.; Goadsby, P.J.; Hall, D.; Meier, U.; Pollentier, S.; Lesko, L.M. Calcitonin Gene–Related Peptide Receptor Antagonist BIBN 4096 BS for the Acute Treatment of Migraine. N. Engl. J. Med. 2004, 350, 1104–1110. [Google Scholar] [CrossRef]
- Petersen, K.; Birk, S.; Lassen, L.; Kruuse, C.; Jonassen, O.; Lesko, L.; Olesen, J. The CGRP-Antagonist, BIBN4096BS Does not Affect Cerebral or Systemic Haemodynamics in Healthy Volunteers. Cephalalgia 2005, 25, 139–147. [Google Scholar] [CrossRef]
- Luo, X.-L.; Yang, T.-L.; Chen, X.-P.; Li, Y.-J. Association of CALCA genetic polymorphism with essential hypertension. Chin. Med. J. 2008, 121, 1407–1410. [Google Scholar] [CrossRef] [PubMed]
- Mulderry, P.K.; Ghatei, M.A.; Bishop, A.E.; Allen, Y.S.; Polak, J.; Bloom, S.R. Distribution and chromatographic characterisation of CGRP-like immunoreactivity in the brain and gut of the rat. Regul. Pept. 1985, 12, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.M.; Hua, Y.; Fredholm, B.B. Capsaicin-induced stimulation of the guinea-pig atrium. Involvement of a novel sensory transmitter or a direct action on myocytes? Naunyn-Schmiedeberg’s Arch. Pharmacol. 1984, 325, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.Y.; Edvinsson, L.; Eftekhari, S.; Kimblad, P.O.; Kane, S.A.; Lynch, J.; Hargreaves, R.J.; de Vries, R.; Garrelds, I.M.; Bogaerdt, A.J.v.D.; et al. Characterization of the Calcitonin Gene-Related Peptide Receptor Antagonist Telcagepant (MK-0974) in Human Isolated Coronary Arteries. Experiment 2010, 334, 746–752. [Google Scholar] [CrossRef]
- Tuo, Y.; Guo, X.; Zhang, X.; Wang, Z.; Zhou, J.; Xia, L.; Zhang, Y.; Wen, J.; Jin, D. The biological effects and mechanisms of calcitonin gene-related peptide on human endothelial cell. J. Recept. Signal Transduct. 2013, 33, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Carnevale, K.A.; DiPette, D.J.; Supowit, S.C. Renal protective effects of α-calcitonin gene-related peptide in deoxycorticosterone-salt hypertension. Am. J. Physiol. Physiol. 2013, 304, F1000–F1008. [Google Scholar] [CrossRef]
- Zhao, F.-P.; Guo, Z.; Wang, P.-F. Calcitonin gene related peptide (CGRP) inhibits norepinephrine induced apoptosis in cultured rat cardiomyocytes not via PKA or PKC pathways. Neurosci. Lett. 2010, 482, 163–166. [Google Scholar] [CrossRef]
- Mair, J.; Lechleitner, P.; Längle, T.; Wiedermann, C.; Dienstl, F.; Saria, A. Plasma CGRP in acute myocardial infarction. Lancet 1990, 335, 168. [Google Scholar] [CrossRef]
- Preibisz, J.J. Calcitonin Gene-Related Peptide and Regulation of Human Cardiovascular Homeostasis. Am. J. Hypertens. 1993, 6 Pt 1, 434–450. [Google Scholar] [CrossRef]
- Dubois-Randé, J.L.; Merlet, P.; Benvenuti, C.; Sediame, S.; Macquin-Mavier, I.; Chabrier, E.; Braquet, P.; Castaigne, A.; Adnot, S. Effects of calcitonin gene-related peptide on cardiac contractility, coronary hemodynamics and myocardial energetics in idiopathic dilated cardiomyopathy. Am. J. Cardiol. 1992, 70, 906–912. [Google Scholar] [CrossRef]
- Gennari, C.; Nami, R.; Agnusdei, D.; Fischer, J.A. Improved cardiac performance with human calcitonin gene related peptide in patients with congestive heart failure. Cardiovasc. Res. 1990, 24, 239–241. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.N.; Roberts, R.H.; Timmis, A.D. Calcitonin gene-related peptide: A haemodynamic study of a novel vasodilator in patients with severe chronic heart failure. Int. J. Cardiol. 1992, 37, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Uren, N.G.; Seydoux, C.; Davies, G.J. Effect of intravenous calcitonin gene related peptide on ischaemia threshold and coronary stenosis severity in humans. Cardiovasc. Res. 1993, 27, 1477–1481. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Song, Q.J.; Xiao, J. Calcitonin gene-related peptide: An endogenous mediator of preconditioning. Acta Pharmacol. Sin. 2000, 21, 865–869. [Google Scholar] [PubMed]
- Wang, L.H.; Zhou, S.X.; Li, R.C.; Zheng, L.R.; Zhu, J.H.; Hu, S.J.; Sun, Y.L. Serum Levels of Calcitonin Gene-Related Peptide and Substance P are Decreased in Patients with Diabetes Mellitus and Coronary Artery Disease. J. Int. Med. Res. 2012, 40, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Chaitman, B.R.; Ho, A.P.; Behm, M.O.; Rowe, J.F.; Palcza, J.S.; Laethem, T.; Heirman, I.; Panebianco, D.L.; Kobalava, Z.; Martsevich, S.Y.; et al. A Randomized, Placebo-Controlled Study of the Effects of Telcagepant on Exercise Time in Patients with Stable Angina. Clin. Pharmacol. Ther. 2012, 91, 459–466. [Google Scholar] [CrossRef]
- Schiffrin, E.L. Beyond blood pressure: The endothelium and atherosclerosis progression*. Am. J. Hypertens. 2002, 15 Pt 2, 115S–122S. [Google Scholar] [CrossRef]
- DeFeudis, F. Coronary atherosclerosis: Current therapeutic approaches and future trends. Life Sci. 1991, 49, 689–705. [Google Scholar] [CrossRef]
- Huang, J.; Stohl, L.L.; Zhou, X.; Ding, W.; Granstein, R.D. Calcitonin gene-related peptide inhibits chemokine production by human dermal microvascular endothelial cells. Brain Behav. Immun. 2011, 25, 787–799. [Google Scholar] [CrossRef]
- Yang, L.; Sakurai, T.; Kamiyoshi, A.; Ichikawa-Shindo, Y.; Kawate, H.; Yoshizawa, T.; Koyama, T.; Iesato, Y.; Uetake, R.; Yamauchi, A.; et al. Endogenous CGRP protects against neointimal hyperplasia following wire-induced vascular injury. J. Mol. Cell. Cardiol. 2013, 59, 55–66. [Google Scholar] [CrossRef]
- Altamura, C.; Viticchi, G.; Fallacara, A.; Costa, C.M.; Brunelli, N.; Fiori, C.; Silvestrini, M.; Vernieri, F. Erenumab does not alter cerebral hemodynamics and endothelial function in migraine without aura. Cephalalgia 2020, 41, 90–98. [Google Scholar] [CrossRef]
- Li, Y.; Fiscus, R.; Wu, J.; Yang, L.; Wang, X. The antiproliferative effects of calcitonin gene-related peptide in different passages of cultured vascular smooth muscle cells. Neuropeptides 1997, 31, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Roosterman, D.; Goerge, T.; Schneider, S.W.; Bunnett, N.W.; Steinhoff, M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol. Rev. 2006, 86, 1309–1379. [Google Scholar] [CrossRef] [PubMed]
- Brain, S.; Williams, T. Inflammatory oedema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular permeability. Br. J. Pharmacol. 1985, 86, 855–860. [Google Scholar] [CrossRef]
- Hay, D.L.; Poyner, D.R. Calcitonin gene-related peptide, adrenomedullin and flushing. Maturitas 2009, 64, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Buckley, T.L.; Brain, S.D.; Collins, P.D.; Williams, T.J. Inflammatory edema induced by interactions between IL-1 and the neuropeptide calcitonin gene-related peptide. J. Immunol. 1991, 146, 3424–3430. [Google Scholar] [CrossRef]
- Antúnez, C.; Torres, M.; López, S.; Rodriguez-Pena, R.; Blanca, M.; Mayorga, C.; Santamaría-Babi, L. Calcitonin gene-related peptide modulates interleukin-13 in circulating cutaneous lymphocyte-associated antigen-positive T cells in patients with atopic dermatitis. Br. J. Dermatol. 2009, 161, 547–553. [Google Scholar] [CrossRef]
- Khalil, Z.; Helme, R. Sensory Peptides as Neuromodulators of Wound Healing in Aged Rats. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1996, 51, B354–B361. [Google Scholar] [CrossRef]
- Toda, M.; Suzuki, T.; Hosono, K.; Kurihara, Y.; Kurihara, H.; Hayashi, I.; Kitasato, H.; Hoka, S.; Majima, M. Roles of calcitonin gene-related peptide in facilitation of wound healing and angiogenesis. BioMedicine 2008, 62, 352–359. [Google Scholar] [CrossRef]
- Roggenkamp, D.; Köpnick, S.; Stäb, F.; Wenck, H.; Schmelz, M.; Neufang, G. Epidermal Nerve Fibers Modulate Keratinocyte Growth via Neuropeptide Signaling in an Innervated Skin Model. J. Investig. Dermatol. 2013, 133, 1620–1628. [Google Scholar] [CrossRef]
- Scholzen, T.; Armstrong, C.A.; Bunnett, N.W.; Luger, T.A.; Olerud, J.E.; Ansel, J.C. Neuropeptides in the skin: Interactions between the neuroendocrine and the skin immune systems. Exp. Dermatol. 1998, 7, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Pavón-Romero, G.F.; Serrano-Pérez, N.H.; García-Sánchez, L.; Ramírez-Jiménez, F.; Terán, L.M. Neuroimmune Pathophysiology in Asthma. Front. Cell Dev. Biol. 2021, 9, 663535. [Google Scholar] [CrossRef] [PubMed]
- Dakhama, A.; Larsen, G.L.; Gelfand, E.W. Calcitonin gene-related peptide: Role in airway homeostasis. Curr. Opin. Pharmacol. 2004, 4, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, M.; Sun, G.-Y.; Liu, Y.-P.; Ran, W.-Z.; Peng, L.; Guan, C.-X. Calcitonin gene-related peptide promotes the wound healing of human bronchial epithelial cells via PKC and MAPK pathways. Regul. Pept. 2013, 184, 22–29. [Google Scholar] [CrossRef]
- Skaria, T.; Wälchli, T.; Vogel, J. CGRP Receptor Antagonism in COVID-19: Potential Cardiopulmonary Adverse Effects. Trends Mol. Med. 2020, 27, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Keith, I.M.; Ekman, R. Dynamic Aspects of Regulatory Lung Peptides in Chronic Hypoxic Pulmonary Hypertension. Exp. Lung Res. 1992, 18, 205–224. [Google Scholar] [CrossRef] [PubMed]
- Champion, H.C.; Bivalacqua, T.J.; Lambert, D.; McNamara, D.B.; Kadowitz, P.J. The influence of candesartan and PD123319 on responses to angiotensin II in the hindquarters vascular bed of the rat. J. Am. Soc. Nephrol. 1999, 10 (Suppl. S11), S95–S97. [Google Scholar]
- Vaishnava, P.; Wang, D.H. Capsaicin Sensitive-Sensory Nerves and Blood Pressure Regulation. Curr. Med. Chem. Hematol. Agents 2003, 1, 177–188. [Google Scholar] [CrossRef]
- Deng, W.; Hilaire, R.-C.S.; Chattergoon, N.N.; Jeter, J.R.; Kadowitz, P.J. Inhibition of vascular smooth muscle cell proliferation in vitro by genetically engineered marrow stromal cells secreting calcitonin gene-related peptide. Life Sci. 2006, 78, 1830–1838. [Google Scholar] [CrossRef]
- Sharkey, K.A. Substance P and Calcitonin Gene-Related Peptide (CGRP) in Gastrointestinal Inflammation. Ann. N. Y. Acad. Sci. 1992, 664, 425–442. [Google Scholar] [CrossRef]
- Taché, Y.; Raybould, H.; Wei, J.Y. Central and Peripheral Actions of Calcitonin Gene-Related Peptide on Gastric Secretory and Motor Function. Adv. Exp. Med. Biol. 1991, 298, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Magierowska, K.; Wojcik, D.; Chmura, A.; Bakalarz, D.; Wierdak, M.; Kwiecien, S.; Sliwowski, Z.; Brzozowski, T.; Magierowski, M. Alterations in Gastric Mucosal Expression of Calcitonin Gene-Related Peptides, Vanilloid Receptors, and Heme Oxygenase-1 Mediate Gastroprotective Action of Carbon Monoxide against Ethanol-Induced Gastric Mucosal Lesions. Int. J. Mol. Sci. 2018, 19, 2960. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, S. Capsaicin Receptor as Target of Calcitonin Gene-Related Peptide in the Gut. Prog. Drug Res. 2014, 68, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Mózsik, G.; Szolcsányi, J.; Dömötör, A. Capsaicin research as a new tool to approach of the human gastrointestinal physiology, pathology and pharmacology. Inflammopharmacology 2007, 15, 232–245. [Google Scholar] [CrossRef]
- Lenz, H.J.; De Schepper, H.U.; De Man, J.G.; Ruyssers, N.E.; Deiteren, A.; Van Nassauw, L.; Timmermans, J.-P.; Martinet, W.; Herman, A.G.; Pelckmans, P.A.; et al. Calcitonin and CGRP inhibit gastrointestinal transit via distinct neuronal pathways. Am. J. Physiol. Liver Physiol. 1988, 254 Pt 1, G920–G924. [Google Scholar] [CrossRef]
- Ailani, J.; Kaiser, E.A.; Mathew, P.G.; McAllister, P.; Russo, A.F.; Vélez, C.; Ramajo, A.P.; Abdrabboh, A.; Xu, C.; Rasmussen, S.; et al. Role of Calcitonin Gene-Related Peptide on the Gastrointestinal Symptoms of Migraine—Clinical Considerations: A Narrative Review. Neurology 2022, 99, 841–853. [Google Scholar] [CrossRef]
- Haanes, K.A.; Edvinsson, L.; Sams, A. Understanding side-effects of anti-CGRP and anti-CGRP receptor antibodies. J. Headache Pain 2020, 21, 26. [Google Scholar] [CrossRef]
- Nilsson, C.; Hansen, T.K.; Rosenquist, C.; Hartmann, B.; Kodra, J.T.; Lau, J.F.; Clausen, T.R.; Raun, K.; Sams, A. Long acting analogue of the calcitonin gene-related peptide induces positive metabolic effects and secretion of the glucagon-like peptide-1. Eur. J. Pharmacol. 2016, 773, 24–31. [Google Scholar] [CrossRef]
- Handelsman, Y.; Wyne, K.; Cannon, A.; Shannon, M.; Schneider, D. Glycemic Efficacy, Weight Effects, and Safety of Once-Weekly Glucagon-Like Peptide-1 Receptor Agonists. J. Manag. Care Spec. Pharm. 2018, 24, S14–S29. [Google Scholar] [CrossRef]
- Bretherton-Watt, D.; Ghatei, M.A.; Jamal, H.; Gilbey, S.G.; Jones, P.M.; Bloom, S.R. The Physiology of Calcitonin Gene?Related Peptide in the Islet Compared with That of Islet Amyloid Polypeptide (Amylin). Ann. N. Y. Acad. Sci. 1992, 657, 299–312. [Google Scholar] [CrossRef]
- Gram, D.X.; Hansen, A.J.; Wilken, M.; Elm, T.; Svendsen, O.; Carr, R.D.; Ahrén, B.; Brand, C.L. Plasma calcitonin gene-related peptide is increased prior to obesity, and sensory nerve desensitization by capsaicin improves oral glucose tolerance in obese Zucker rats. Eur. J. Endocrinol. 2005, 153, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.S.; Li, X.; Whiting, L.; Glyn-Jones, S.; Zhang, S.; Hickey, A.J.; Sewell, M.A.; Ruggiero, K.; Phillips, A.R.J.; Kraegen, E.W.; et al. Mice Lacking the Neuropeptide alpha-Calcitonin Gene-Related Peptide Are Protected against Diet-Induced Obesity. Endocrinology 2010, 151, 4257–4269. [Google Scholar] [CrossRef]
- Geary, N. Effects of glucagon, insulin, amylin and CGRP on feeding. Neuropeptides 1999, 33, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Arnalich, F.; de Miguel, E.; Perez-Ayala, C.; Martinez, M.; Vazquez, J.; Gijon-Banos, J.; Hernanz, A. Neuropeptides and interleukin-6 in human joint inflammation. Relationship between intraarticular substance P and interleukin-6 concentrations. Neurosci. Lett. 1994, 170, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Hernanz, A.; DE Miguel, E.; Romera, N.; Perez-Ayala, C.; Gijon, J.; Arnalich, F. Calcitonin gene-related peptide II, substance P and vasoactive intestinal peptide in plasma and synovial fluid from patients with inflammatory joint disease. Rheumatology 1993, 32, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Holmlund, A.; Ekblom, A.; Hansson, P.; Lind, J.; Lundeberg, T.; Theodorsson, E. Concentrations of neuropeptides substance P, neurokinin A, calcitonin gene-related peptide, neuropeptide Y and vasoactive intestinal polypeptide in synovial fluid of the human temporomandibular joint: A correlation with symptoms, signs and arthroscopicfindings. Int. J. Oral Maxillofac. Surg. 1991, 20, 228–231. [Google Scholar] [CrossRef]
- Raap, T.; Jüsten, H.P.; Miller, L.E.; Cutolo, M.; Schölmerich, J.; Straub, R.H. Neurotransmitter modulation of interleukin 6 (IL-6) and IL-8 secretion of synovial fibroblasts in patients with rheumatoid arthritis compared to osteoarthritis. J. Rheumatol. 2000, 27, 2558–2565. [Google Scholar]
- Takeba, Y.; Suzuki, N.; Kaneko, A.; Asai, T.; Sakane, T. Evidence for neural regulation of inflammatory synovial cell func-tions by secreting calcitonin gene-related peptide and vasoactive intestinal peptide in patients with rheumatoid arthritis. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1999, 42, 2418–2429. [Google Scholar] [CrossRef]
- McDougall, J.J.; Ferrell, W.R.; Bray, R.C.; Russell, F.A.; King, R.; Smillie, S.-J.; Kodji, X.; Brain, S.D.; Miller, D.; Forrester, K.; et al. Neurogenic origin of articular hyperemia in early degenerative joint disease. Am. J. Physiol. Integr. Comp. Physiol. 1999, 276, R745–R752. [Google Scholar] [CrossRef]
- Baig, J.A.; Iqbal, M.P.; Rehman, R.; Qureshi, A.A.; Ahmed, M. Anti-inflammatory role of methotrexate in adjuvant arthri-tis: Effect on substance p and calcitonin gene-related Peptide in thymus and spleen. J. Coll. Physicians Surg. Pak. 2007, 17, 490–494. [Google Scholar]
- Benschop, R.; Collins, E.; Darling, R.; Allan, B.; Leung, D.; Conner, E.; Nelson, J.; Gaynor, B.; Xu, J.; Wang, X.-F.; et al. Development of a novel antibody to calcitonin gene-related peptide for the treatment of osteoarthritis-related pain. Osteoarthr. Cartil. 2014, 22, 578–585. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Chen, X.; Li, Y.; Mi, J.; Qin, L. The Effects of Calcitonin Gene-Related Peptide on Bone Homeostasis and Regeneration. Curr. Osteoporos. Rep. 2020, 18, 621–632. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, Z.; Wang, B.; Yuan, Y.; Zhang, Q.; Li, Y.; Du, Y.; Gong, P. Neuronal TRPV1-CGRP axis regulates bone defect repair through Hippo signaling pathway. Cell. Signal. 2023, 109, 110779. [Google Scholar] [CrossRef]
- Kurtz, A.; Muff, R.; Fischer, J.A. Calcitonin gene products and the kidney. J. Mol. Med. 1989, 67, 870–875. [Google Scholar] [CrossRef]
- Villarreal, D.; Freeman, R.H.; Verburg, K.M.; Brands, M.W. Effects of Calcitonin Gene-Related Peptide on Renal Blood Flow in the Rat. Exp. Biol. Med. 1988, 188, 316–322. [Google Scholar] [CrossRef]
- Kurtz, A.; Schurek, H.-J.; Jelkmann, W.; Muff, R.; Lipp, H.-P.; Heckmann, U.; Eckardt, K.-U.; Scholz, H.; Fischer, J.A.; Bauer, C. Renal mesangium is a target for calcitonin gene-related peptide. Kidney Int. 1989, 36, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Haas, H.G.; Dambacher, M.A.; Aga, J.G.; Lauffenburger, T. Renal effects of calcitonin and parathyroid extract in man. Studies in hypoparathyroidism. J. Clin. Investig. 1971, 50, 2689–2702. [Google Scholar] [CrossRef] [PubMed]
- Morel, F. Regulation of Kidney Functions by Hormones: A New Approach. Recent Prog. Horm. Res. 1983, 39, 271–304. [Google Scholar] [CrossRef] [PubMed]
- Yallampalli, C.; Chauhan, M.; Thota, C.S.; Kondapaka, S.; Wimalawansa, S.J. Calcitonin gene-related peptide in pregnancy and its emerging receptor heterogeneity. Trends Endocrinol. Metab. 2002, 13, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.N.; Warfvinge, K.; Haanes, K.A.; Edvinsson, L. Hormonal influences in migraine—Interactions of oestrogen, oxytocin and CGRP. Nat. Rev. Neurol. 2021, 17, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Ajona, D.; Villar-Martínez, M.D.; Goadsby, P.J. New Generation Gepants: Migraine Acute and Preventive Medications. J. Clin. Med. 2022, 11, 1656. [Google Scholar] [CrossRef] [PubMed]
- Favoni, V.; European Headache Federation School of Advanced Studies (EHF-SAS); Giani, L.; Al-Hassany, L.; Asioli, G.M.; Butera, C.; de Boer, I.; Guglielmetti, M.; Koniari, C.; Mavridis, T.; et al. CGRP and migraine from a cardiovascular point of view: What do we expect from blocking CGRP? J. Headache Pain 2019, 20, 27. [Google Scholar] [CrossRef] [PubMed]
- Vernieri, F.; Brunelli, N.; Marcosano, M.; Aurilia, C.; Egeo, G.; Lovati, C.; Favoni, V.; Perrotta, A.; Maestrini, I.; Rao, R.; et al. Maintenance of response and predictive factors of 1-year GalcanezumAb treatment in real-life migraine patients in Italy: The multicenter prospective cohort GARLIT study. Eur. J. Neurol. 2022, 30, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Vernieri, F.; Brunelli, N.; Guerzoni, S.; Iannone, L.F.; Baraldi, C.; Rao, R.; di Cola, F.S.; Ornello, R.; Cevoli, S.; Lovati, C.; et al. Retreating migraine patients in the second year with monoclonal antibodies anti-CGRP pathway: The multicenter prospective cohort RE-DO study. J. Neurol. 2023. [Google Scholar] [CrossRef]
- Depre, C.; Antalik, L.; Starling, A.; Koren, M.; Eisele, O.; Lenz, R.A.; Mikol, D.D. A Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Effect of Erenumab on Exercise Time During a Treadmill Test in Patients with Stable Angina. Headache J. Head Face Pain 2018, 58, 715–723. [Google Scholar] [CrossRef]
- Altamura, C.; Corbelli, I.; de Tommaso, M.; Di Lorenzo, C.; Di Lorenzo, G.; Di Renzo, A.; Filippi, M.; Jannini, T.B.; Messina, R.; Parisi, P.; et al. Pathophysiological Bases of Comorbidity in Migraine. Front. Hum. Neurosci. 2021, 15, 640574. [Google Scholar] [CrossRef]
- McComb, M.; Blair, R.H.; Lysy, M.; Ramanathan, M. Machine learning-guided, big data-enabled, biomarker-based systems pharmacology: Modeling the stochasticity of natural history and disease progression. J. Pharmacokinet. Pharmacodyn. 2021, 49, 65–79. [Google Scholar] [CrossRef]
District | Function | Antagonists’ Effect |
---|---|---|
Arterial pressure | Vasodilatation in response to hypertensive stimuli (e.g., angiotensin II, postural changes) [34]. Protection against hypertension development [41]. | No significant effect on pressure [39,40]. |
Heart | Chronotropic and inotropic positive response [37,38]. Anti-inflammatory, anti-apoptotic effects [47,48,49]. Coronary vasodilatation [44]. | No significant increase in myocardial infarction incidence [56] |
Vessel | Reduction in endothelial inflammation and vascular remodeling [58,59,60,62]. | Not known |
Skin | Induces flushing [64]. Increases edema formation [64,66] and stimulates tissue reparation in response to contusion and wound [69]. Reduction in inflammation in atopic dermatitis [67]. | Not known |
Lung | Activates Th9 response [1,73]. Reduces Th2 and eosinophilic response [75]. Induces bronchodilatation [73]. Induces bronchial edema [1,73]. Protection from pulmonary hypertension through suppression of endothelin-1 and angiotensin II [77]. | Not known. Under study anti-CGRP drugs for COVID-19 [75]. |
Gastrointestinal tract | Inhibition of gastric acid secretion, gastric, and intestinal motility [80,81]. Reduce inflammation and apoptosis in ischemic and alcohol-mediated stomach lesions [80,82]. | Can cause nausea, constipation, or diarrhea and vomiting [86,87]. Seems to reduce GLP-1 CGRP-induced secretion [88]. |
Metabolism | Reduce insulin release after meal [90]. Contributes to weight gain [92]. Reduces appetite [92]. | Reduction in diet-induced obesity incidence [92]. |
Joint | Induces cytokine production in rheumatoid arthritis and osteoarthritis [95,97]. | Inhibits cell proliferation and production of pro-inflammatory cytokines [98]. Reduces hypersensitivity of joint nerves [99]. |
Kidney | Vasodilatation and increase in renal blood flow and glomerular filtration [105,106]. Increasing excretion of electrolytes [107,108]. Increase renin release [104]. | Not known |
Pregnancy | Regulation of uteroplacental blood flow [109]. Relaxation of uterus. Interaction with oxytocin [110]. | Not known |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonura, A.; Brunelli, N.; Marcosano, M.; Iaccarino, G.; Fofi, L.; Vernieri, F.; Altamura, C. Calcitonin Gene-Related Peptide Systemic Effects: Embracing the Complexity of Its Biological Roles—A Narrative Review. Int. J. Mol. Sci. 2023, 24, 13979. https://doi.org/10.3390/ijms241813979
Bonura A, Brunelli N, Marcosano M, Iaccarino G, Fofi L, Vernieri F, Altamura C. Calcitonin Gene-Related Peptide Systemic Effects: Embracing the Complexity of Its Biological Roles—A Narrative Review. International Journal of Molecular Sciences. 2023; 24(18):13979. https://doi.org/10.3390/ijms241813979
Chicago/Turabian StyleBonura, Adriano, Nicoletta Brunelli, Marilena Marcosano, Gianmarco Iaccarino, Luisa Fofi, Fabrizio Vernieri, and Claudia Altamura. 2023. "Calcitonin Gene-Related Peptide Systemic Effects: Embracing the Complexity of Its Biological Roles—A Narrative Review" International Journal of Molecular Sciences 24, no. 18: 13979. https://doi.org/10.3390/ijms241813979
APA StyleBonura, A., Brunelli, N., Marcosano, M., Iaccarino, G., Fofi, L., Vernieri, F., & Altamura, C. (2023). Calcitonin Gene-Related Peptide Systemic Effects: Embracing the Complexity of Its Biological Roles—A Narrative Review. International Journal of Molecular Sciences, 24(18), 13979. https://doi.org/10.3390/ijms241813979