New Insights into the Nephroprotective Potential of Lercanidipine
Abstract
:1. Introduction
2. Lercanidipine
2.1. Characterization of the Drug
2.2. Pharmacology of Lercanidipine
2.3. Mechanism of Action
2.4. Indication for Administration
2.5. Absorption
2.6. Adverse Effects
2.7. Contraindications
2.8. Interactions
3. Nephroprotective Effect of Lercanidipine
4. Lercanidipine as Hypertensive Medicament and Its Comparison with Other Antihypertensive Drugs
4.1. Efficacy of Lercanidipine
4.2. Comparison of DHP CCBs and Non-DHP CCBs
4.3. Comparison of Lercanidipine with Other DHP-CCBs
4.4. Comparison of Lercanidipine with Other Antihypertensive Drugs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.-N.; Ma, S.-X.; Chen, Y.-Y.; Chen, L.; Liu, B.-L.; Liu, Q.-Q.; Zhao, Y.-Y. Chronic kidney disease: Biomarker diagnosis to therapeutic targets. Clin. Chim. Acta 2019, 499, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Charles, C.; Ferris, A.H. Chronic Kidney Disease. Prim. Care Clin. Off. Pract. 2020, 47, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef] [PubMed]
- Naber, T.; Purohit, S. Chronic Kidney Disease: Role of Diet for a Reduction in the Severity of the Disease. Nutrients 2021, 13, 3277. [Google Scholar] [CrossRef]
- Ammirati, A.L. Chronic Kidney Disease. Rev. Assoc. Med. Bras. 2020, 66 (Suppl. S1), s3–s9. [Google Scholar] [CrossRef]
- Lucas, G.N.C.; Leitão, A.C.C.; Alencar, R.L.; Xavier, R.M.F.; Daher, E.D.F.; da Silva, G.B., Jr. Pathophysiological aspects of nephropathy caused by non-steroidal anti-inflammatory drugs. J. Bras. Nefrol. 2019, 41, 124–130. [Google Scholar] [CrossRef]
- Baudoux, T.; Jadot, I.; Declèves, A.-E.; Antoine, M.-H.; Colet, J.-M.; Botton, O.; De Prez, E.; Pozdzik, A.; Husson, C.; Caron, N.; et al. Experimental Aristolochic Acid Nephropathy: A Relevant Model to Study AKI-to-CKD Transition. Front. Med. 2022, 9, 822870. [Google Scholar] [CrossRef]
- Ku, E.; Lee, B.J.; Wei, J.; Weir, M.R. Hypertension in CKD: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 120–131. [Google Scholar] [CrossRef]
- Li, X.; Lindholm, B. Cardiovascular Risk Prediction in Chronic Kidney Disease. Am. J. Nephrol. 2022, 53, 730–739. [Google Scholar] [CrossRef]
- Akchurin, O.M. Chronic Kidney Disease and Dietary Measures to Improve Outcomes. Pediatr. Clin. N. Am. 2018, 66, 247–267. [Google Scholar] [CrossRef]
- Ferri, N.; Corsini, A.; Pontremoli, R. Antihypertensive treatment with calcium channel blockers and renal protection: Focus on lercanidipine and lercanidipine/enalapril. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 7482–7492, Erratum in Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 8204. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Robles, N.R.; Seravalle, G.; Fici, F. Lercanidipine in the Management of Hypertension: An Update. J. Pharmacol. Pharmacother. 2017, 8, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Cerbai, E.; Mugelli, A. Lercanidipine and T-type calcium current. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 4025–4031. [Google Scholar] [CrossRef] [PubMed]
- Meredith, P.A. Lercanidipine: A novel lipophilic dihydropyridine calcium antagonist with long duration of action and high vascular selectivity. Expert Opin. Investig. Drugs 1999, 8, 1043–1062. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, S.; Herzig, S. Molecular mechanisms of vasoselectivity of the 1,4-dihydropyridine lercanidipine. Br. J. Pharmacol. 2004, 142, 275–284. [Google Scholar] [CrossRef]
- Guarneri, L.; Angelico, P.; Ibba, M.; Poggesi, E.; Taddei, C.; Leonardi, A.; Testa, R. Pharmacological in vitro studies of the new 1,4-dihydropyridine calcium antagonist lercanidipine. Arzneimittelforschung 1996, 46, 15–24. [Google Scholar]
- Corsini, A.; Bonfatti, M.; Quarato, P.; Accomazzo, M.R.; Raiteri, M.; Sartani, A.; Testa, R.; Nicosia, S.; Paoletti, R.; Fumagalli, R. Effect of the new calcium antagonist lercanidipine and its enantiomers on the migration and proliferation of arterial myocytes. J. Cardiovasc. Pharmacol. 1996, 28, 687–694. [Google Scholar] [CrossRef]
- Sironi, G.; Montagna, E.; Greto, L.; Bianchi, G.; Leonardi, A.; Testa, R. Antihypertensive effects of lercanidipine in experimental hypertensive rats and dogs. Arzneimittelforschung 1996, 46, 145–152. [Google Scholar]
- McClellan, K.J.; Jarvis, B. Lercanidipine: A review of its use in hypertension. Drugs 2000, 60, 1123–1140. [Google Scholar] [CrossRef]
- Bang, L.M.; Chapman, T.M.; Goa, K.L. Lercanidipine: A review of its efficacy in the management of hypertension. Drugs 2003, 63, 2449–2472. [Google Scholar] [CrossRef]
- Barchielli, M.; Dolfini, E.; Farina, P.; Leoni, B.; Targa, G.; Vinaccia, V.; Tajana, A. Clinical Pharmacokinetics of Lercanidipine. J. Cardiovasc. Pharmacol. 1997, 29, S1–S15. [Google Scholar] [CrossRef]
- Burnier, M.; Pruijm, M.; Wuerzner, G. Treatment of essential hypertension with calcium channel blockers: What is the place of lercanidipine? Expert Opin. Drug Metab. Toxicol. 2009, 5, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C. Lercanidipine in hypertension. Vasc. Health Risk Manag. 2005, 1, 173–182. [Google Scholar] [PubMed]
- Klotz, U. Interaction potential of lercanidipine, a new vasoselective dihydropyridine calcium antagonist. Arzneimittelforschung 2002, 52, 155–161. [Google Scholar] [CrossRef]
- Dresser, G.K.; Spence, J.D.; Bailey, D.G. Pharmacokinetic-Pharmacodynamic Consequences and Clinical Relevance of Cytochrome P450 3A4 Inhibition. Clin. Pharmacokinet. 2000, 38, 41–57. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Lin, J.H.; Lu, A.Y.H. Inhibition and induction of cytochrome P450 and the clinical implications. Clin. Pharmacokinet. 1998, 35, 361–390. [Google Scholar] [CrossRef]
- Herbette, L.G.; Vecchiarelli, M.; Sartani, A.; Leonardi, A. Lercanidipine: Short plasma half-life, long duration of action and high cholesterol tolerance. Updated molecular model to rationalize its pharmacokinetic properties. Blood Press Suppl. 1998, 2, 10–17. [Google Scholar] [CrossRef]
- Robles, N.R.; Ocon, J.; Gomez, C.F.; Manjon, M.; Pastor, L.; Herrera, J.; Villatoro, J.; Calls, J.; Torrijos, J.; Rodríguez, V.I.; et al. Lercanidipine in patients with chronic renal failure: The ZAFRA study. Ren Fail. 2005, 27, 73–80. [Google Scholar] [CrossRef]
- Schaab, E.H.; Lanchote, V.L.; Nardotto, G.H.B.; Pereira, M.P.M.; Dantas, M.; Paiva, C.E.; Coelho, E.B. Effect of Lercanidipine on the Pharmacokinetics-Pharmacodynamics of Carvedilol Enantiomers in Patients with Chronic Kidney Disease. J. Clin. Pharmacol. 2019, 60, 75–85. [Google Scholar] [CrossRef]
- Leonardi, A.; Poggesi, E.; Taddei, C.; Guarneri, L.; Angelico, P.; Accomazzo, M.R.; Nicosia, S.; Testa, R. In Vitro Calcium Antagonist Activity of Lercanidipine and Its Enantiomers. J. Cardiovasc. Pharmacol. 1997, 29, S10–S18. [Google Scholar] [CrossRef]
- Shah, K.; Seeley, S.; Schulz, C.; Fisher, J.; Rao, S.G. Calcium Channels in the Heart: Disease States and Drugs. Cells 2022, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Striessnig, J.; Ortner, N.; Pinggera, A. Pharmacology of L-type Calcium Channels: Novel Drugs for Old Targets? Curr. Mol. Pharmacol. 2015, 8, 110–122. [Google Scholar] [CrossRef]
- Moosmang, S.; Schulla, V.; Welling, A.; Feil, R.; Feil, S.; Wegener, J.W.; Hofmann, F.; Klugbauer, N. Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. EMBO J. 2003, 22, 6027–6034. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Berra-Romani, R.; Sinnegger-Brauns, M.J.; Striessnig, J.; Blaustein, M.P.; Matteson, D.R. Role of Cav1.2 L-type Ca2+ channels in vascular tone: Effects of nifedipine and Mg2+. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H415–H425. [Google Scholar] [CrossRef] [PubMed]
- Sinnegger-Brauns, M.J.; Hetzenauer, A.; Huber, I.G.; Renström, E.; Wietzorrek, G.; Berjukov, S.; Cavalli, M.; Walter, D.; Koschak, A.; Waldschütz, R.; et al. Isoform-specific regulation of mood behavior and pancreatic β cell and cardiovascular function by L-type Ca2+ channels. J. Clin. Investig. 2004, 113, 1430–1439. [Google Scholar] [CrossRef]
- Barbagallo, M.; Sangiorgi, G.B. Efficacy and tolerability of lercanidipine in monotherapy in elderly patients with isolated systolic hypertension. Aging Clin. Exp. Res. 2000, 12, 375–379. [Google Scholar] [CrossRef]
- Fogari, R.; Mugellini, A.; Zoppi, A.; Corradi, L.; Rinaldi, A.; Derosa, G.; Preti, P. Differential effects of lercanidipine and nifedipine GITS on plasma norepinephrine in chronic treatment of hypertension. Am. J. Hypertens. 2003, 16, 596–599. [Google Scholar] [CrossRef]
- Cavallini, A.; Terzi, G. Effects of antihypertensive therapy with lercanidipine and verapamil on cardiac electrical activity in patients with hypertension: A randomized, double-blind pilot study. Curr. Ther. Res. 2000, 61, 477–487. [Google Scholar] [CrossRef]
- Hayashi, K.; Homma, K.; Wakino, S.; Tokuyama, H.; Sugano, N.; Saruta, T.; Itoh, H. T-Type Ca channel blockade as a determinant of kidney protection. Keio J. Med. 2010, 59, 84–95. [Google Scholar] [CrossRef]
- Sabbatini, M.; Leonardi, A.; Testa, R.; Vitaioli, L.; Amenta, F. Effect of calcium antagonists on glomerular arterioles in spontaneously hypertensive rats. Hypertension 2000, 35, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Soma, M.R.; Natali, M.; Donetti, E.; Baetta, R.; Farina, P.; Leonardi, A.; Comparato, C.; Barberi, L.; Catapano, A.L. Effect of lercanidipine and its (R)-enantiomer on atherosclerotic lesions induced in hypercholesterolemic rabbits. Br. J. Pharmacol. 1998, 125, 1471–1476. [Google Scholar] [CrossRef] [PubMed]
- Fogari, R.; Mugellini, A.; Corradi, L. Efficacy of lercanidipine vs losartan on left ventricular hypertrophy in hypertensive type 2 diabetic patients. J. Hypertens. 2000, 18 (Suppl. S2), S65. [Google Scholar] [CrossRef]
- Sànchez, A.; Sayans, R.; Alvarez, J.L. Left ventricular hypertrophy regression after a short antihypertensive treatment with lercanidipine vs. enalapril. In Proceedings of the 4th European Meeting on Calcium Antagonists, Amsterdam, The Netherlands, 27–29 October 1999. [Google Scholar]
- Funato, H.; Watanabe, M.; Uemura, A. Therapeutic effects of a calcium antagonist, lacidipine, on stroke-prone spontaneously hypertensive rats with cerebrovascular lesions. Jpn. J. Pharmacol. 1999, 80, 199–208. [Google Scholar] [CrossRef]
- Cherubini, A.; Fabris, F.; Ferrari, E.; Cucinotta, D.; Antonelli Incalzi, R.; Senin, U. Comparative effects of lercanidipine, lacidipine, and nifedipine gastrointestinal therapeutic system on blood pressure and heart rate in elderly hypertensive patients: The ELderly and LErcanidipine (ELLE) study. Arch. Gerontol. Geriatr. 2003, 37, 203–212. [Google Scholar] [CrossRef]
- Romito, R.; Pansini, M.I.; Perticone, F.; Antonelli, G.; Pitzalis, M.; Rizzon, P. Comparative effect of lercanidipine, felodipine, and nifedipine GITS on blood pressure and heart rate in patients with mild to moderate arterial hypertension: The Lercanidipine in Adults (LEAD) Study. J. Clin. Hypertens. 2003, 5, 249–253. [Google Scholar] [CrossRef]
- Leonetti, G.; Magnani, B.; Pessina, A.C.; Rappelli, A.; Trimarco, B.; Zanchetti, A.; COHORT Study Group. Tolerability of long-term treatment with lercanidipine versus amlodipine and lacidipine in elderly hypertensives. Am. J. Hypertens. 2002, 15, 932–940. [Google Scholar] [CrossRef]
- Barrios, V.; Navarro, A.; Esteras, A.; Luque, M.; Romero, J.; Tamargo, J.; Prieto, L.; Carrasco, J.L.; Herranz, I.; Investigators of ELYPSE Study (Eficacia de Lercanidipino y su Perfil de Seguridad); et al. Antihypertensive efficacy and tolerability of lercanidipine in daily clinical practice. The ELYPSE Study. Blood Press 2002, 11, 95–100. [Google Scholar] [CrossRef]
- Burnier, M.; Gasser, E.U. Efficacy and tolerability of lercanidipine in patients with hypertension: Results of a Phase IV study in general practice. Expert Opin. Pharmacother. 2007, 8, 2215–2223. [Google Scholar] [CrossRef]
- Barrios, V.; Escobar, C.; De La Figuera, M.; Llisterri, J.L.; Honorato, J.; Segura, J.; Calderón, A. Tolerability of high doses of lercanidipine versus high doses of other dihydropyridines in daily clinical practice: The TOLERANCE Study. Cardiovasc. Drug Rev. 2008, 26, 2–9. [Google Scholar] [CrossRef]
- Barrios, V.; Escobar, C.; Navarro, A.; Barrios, L.; Navarro-Cid, J.; Calderón, A.; LAURA Investigators. Lercanidipine is an effective and well tolerated antihypertensive drug regardless the cardiovascular risk profile: The LAURA Study. Int. J. Clin. Pract. 2006, 60, 1364–1370, Erratum in Int. J. Clin. Pract. 2007, 61, 712. [Google Scholar] [CrossRef] [PubMed]
- Ninci, M.A.; Magliocca, R.; Malliani, A. Efficacy and Tolerability of Lercanidipine in Elderly Patients with Mild to Moderate Hypertension in a Placebo-Controlled, Double-Blind Study. J. Cardiovasc. Pharmacol. 1997, 29, S40–S44. [Google Scholar] [CrossRef]
- Circo, A. Active Dose Findings for Lercanidipine in a Double-Blind, Placebo-Controlled Design in Patients with Mild to Moderate Hypertension. J. Cardiovasc. Pharmacol. 1997, 29, S21–S25. [Google Scholar] [CrossRef]
- Omboni, S.; Zanchetti, A.; Multicenter Study Investigators. Antihypertensive efficacy of lercanidipine at 2.5, 5 and 10 mg in mild to moderate essential hypertensives assessed by clinic and ambulatory blood pressure measurements. J. Hypertens. 1998, 16, 1831–1838. [Google Scholar] [CrossRef] [PubMed]
- Rimoldi, E.; Lumina, C.; Sega, R.; Libretti, A. Efficacy and tolerability of lercanidipine once a day versus placebo in mild to moderate arterial hypertension. Acta Ther. 1994, 20, 23–31. [Google Scholar]
- Paterna, S.; Licata, A.; Arnone, S.; Cottone, C.; Corrao, S.; Licata, G. Lercanidipine in Two Different Dosage Regimens as a Sole Treatment for Severe Essential Hypertension. J. Cardiovasc. Pharmacol. 1997, 29, S50–S53. [Google Scholar] [CrossRef]
- Silva, A. A Multicenter Randomized, Double-Blind Trial of the Efficacy and Safety of Lercanidipine in Patients with Mild to Moderate Essential Hypertension, Uncontrolled on Hydrochlorothiazide; Clinical Study Report No. REC 15/2375−CLP2-0003; Recordati: Milan, Italy, 2000; p. 200. [Google Scholar]
- Mancia, G.; Tsioufis, K. Current perspective on the use of calcium channel blockers to treat hypertensive patients: The role of lercanidipine. Future Cardiol. 2019, 15, 259–266. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 2018, 36, 2284–2309, Erratum in J. Hypertens. 2019, 37, 456. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Gerocarni, B.; Rosticci, M.; Borghi, C. Blood pressure and metabolic effect of a combination of lercanidipine with different antihypertensive drugs in clinical practice. Clin. Exp. Hypertens. 2011, 34, 113–117. [Google Scholar] [CrossRef]
- Jabor, V.A.P.; Coelho, E.B.; Lanchote, V.L. Enantioselective pharmacokinetics of lercanidipine in healthy volunteers. J. Chromatogr. B 2004, 813, 343–346. [Google Scholar] [CrossRef]
- Antza, C.; Stella, S.; Vasilios, K. Combination therapy with lercanidipine and enalapril in the management of the hypertensive patient: An update of the evidence. Vasc. Health Risk Manag. 2016, 12, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Parmar, N.; Singla, N.; Amin, S.; Kohli, K. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf. B Biointerfaces 2011, 86, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Chonkar, A.D.; Rao, J.V.; Managuli, R.S.; Mutalik, S.; Dengale, S.; Jain, P.; Udupa, N. Development of fast dissolving oral films containing lercanidipine HCl nanoparticles in semicrystalline polymeric matrix for enhanced dissolution and ex vivo permeation. Eur. J. Pharm. Biopharm. 2016, 103, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.S.; Choo, G.H.; Baek, I.H.; Kim, J.S.; Cho, W.; Jung, Y.S.; Jin, S.E.; Hwang, S.J.; Kim, M.S. Dissolution and bioavailability of lercanidipine–hydroxypropylmethyl cellulose nanoparticles with surfactant. Int. J. Biol. Macromol. 2015, 72, 218–222. [Google Scholar] [CrossRef]
- Meier, P.; Burnier, M. La lercanidipine, un inhibiteur calcique de troisième génération. Quels avantages? Rev. Méd. Suisse 2006, 78, 2047. [Google Scholar]
- Hollenberg, N.K. P-73: Observations on the safety of lercanidipine: Adverse event data from placebo-controlled trials. Am. J. Hypertens. 2002, 15, 58A–59A. [Google Scholar] [CrossRef]
- Sinh, C.T.; Van Minh, H.; Van Huy, T. Effects of lercanidipine versus amlodipine in hypertensive patients with cerebral ischemic stroke. Curr. Med. Res. Opin. 2014, 31, 163–170. [Google Scholar] [CrossRef]
- Rajesh, R. Formulation Development and Invitro Evaluation of Mouth Dissolving Tablets of Lercanidipine Hydrochloride by Direct Compression Method: An Approach to Improving Oral Bioavailibility; JKK Nattraja College of Pharmacy: Namakkal, India, 2018. [Google Scholar]
- Tecen-Yucel, K.; Bayraktar-Ekincioglu, A.; Yıldırım, T.; Demirkan, K.; Erdem, Y. Evaluation of drug interaction between cyclosporine and lercanidipine: A descriptive study. Eur. J. Hosp. Pharm. 2023; in press. [Google Scholar] [CrossRef]
- Basheer, L.; Zohar, K. Interactions between CYP3A4 and dietary polyphenols. Oxidative Med. Cell. Longev. 2015, 2015, 854015. [Google Scholar] [CrossRef]
- Pruijm, M.T.; Marc, P.M.; Michel, B. Patient adherence and the choice of antihypertensive drugs: Focus on lercanidipine. Vasc. Health Risk Manag. 2008, 4, 1159–1166. [Google Scholar]
- Matsuda, S.; Koyasu, S. Mechanisms of action of cyclosporine. Immunopharmacology 2000, 47, 119–125. [Google Scholar] [CrossRef]
- Patocka, J. Cyclosporine A: Chemistry and Toxicity—A Review. Curr. Med. Chem. 2021, 28, 3925–3934. [Google Scholar] [CrossRef] [PubMed]
- Oosterhaven, J.A.F.; Schuttelaar, M.L.A. Study protocol: Efficacy of oral alitretinoin versus oral cyclosporine A in patients with severe recurrent vesicular hand eczema (ALICsA): A randomised prospective open-label trial with blinded outcome assessment. BMJ Open 2018, 8, e020192. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.B.; Martin, J.E.; Schroeder, T.J.; First, M.R. The evaluation of the safety and tolerability of two formulations of cyclosporine: Neoral and sandimmune. A meta-analysis. Transplantation 1999, 67, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Menne, J.; Haller, H. Fixed-dose lercanidipine/enalapril for hypertension. Drugs Today 2008, 44, 261–270. [Google Scholar] [CrossRef]
- Napp Pharmaceuticals Ltd. Zanidip Tablets: SPC from the eMC. Available online: https://www.medicines.org.uk/emc/product/191/smpc#gref (accessed on 14 August 2023).
- Rendic, S. Summary of information on human CYP enzymes: Human P450 metabolism data. Drug Metab. Rev. 2002, 34, 83–448. [Google Scholar] [CrossRef]
- Prueksaritanont, T.; Ma, B.; Yu, N. The human hepatic metabolism of simvastatin hydroxy acid is mediated primarily by CYP3A, and not CYP2D6. Br. J. Clin. Pharmacol. 2003, 56, 120–124. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, Y.-T.; Yu, L.-S.; Zeng, S.; Huang, Y.-W.; Xu, H.-M. Pharmacokinetic drug–drug interactions between 1,4-dihydropyridine calcium channel blockers and statins: Factors determining interaction strength and relevant clinical risk management. Ther. Clin. Risk Manag. 2013, 10, 17–26. [Google Scholar] [CrossRef]
- Siwek, M.; Woroń, J.; Gorostowicz, A.; Wordliczek, J. Adverse effects of interactions between antipsychotics and medications used in the treatment of cardiovascular disorders. Pharmacol. Rep. 2020, 72, 350–359. [Google Scholar] [CrossRef]
- Woroń, J.; Siwek, M.; Gorostowicz, A. Adverse effects of interactions between antidepressants and medications used in treatment of cardiovascular disorders. Psychiatr. Polska 2019, 53, 977–995. [Google Scholar] [CrossRef]
- Martinez, M.L.; Lopes, L.F.; Coelho, E.B.; Nobre, F.; Rocha, J.B.T.; Gerlach, R.F.; Tanus-Santos, J.E. Lercanidipine reduces matrix metalloproteinase-9 activity in patients with hypertension. J. Cardiovasc. Pharmacol. 2006, 47, 117–122. [Google Scholar] [CrossRef]
- Robles, N.R.; Fici, F.; Grassi, G. Dihydropyridine calcium channel blockers and renal disease. Hypertens. Res. 2016, 40, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.L.; Rizzi, E.; Castro, M.M.; Fernandes, K.; Bendhack, L.M.; Gerlach, R.F.; Tanus-Santos, J.E. Lercanidipine decreases vascular matrix metalloproteinase-2 activity and protects against vascular dysfunction in diabetic rats. Eur. J. Pharmacol. 2008, 599, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Robles, N.R. Calcium antagonists and renal failure progression. Ren. Fail. 2008, 30, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Sabbatini, M.; Leonardi, A.; Testa, R.; Tomassoni, D.; Vitaioli, L.; Amenta, F. Effects of dihydropyridine-type Ca2+ antagonists on the renal arterial tree in spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 2002, 39, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Sabbatini, M.; Vitaioli, L.; Baldoni, E.; Amenta, F. Nephroprotective effect of treatment with calcium channel blockers in spontaneously hypertensive rats. J. Pharmacol. Exp. Ther. 2000, 294, 948–954. [Google Scholar]
- Hansen, P.B.; Jensen, B.L.; Andreasen, D.; Skøtt, O. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels. Circ. Res. 2001, 89, 630–638. [Google Scholar] [CrossRef]
- Hayashi, K.; Ozawa, Y.; Fujiwara, K.; Wakino, S.; Kumagai, H.; Saruta, T. Role of actions of calcium antagonists on efferent arterioles—With special references to glomerular hypertension. Am. J. Nephrol. 2003, 23, 229–244. [Google Scholar] [CrossRef]
- Homma, K.; Hayashi, K.; Yamaguchi, S.; Fujishima, S.; Hori, S.; Itoh, H. Renal microcirculation and calcium channel subtypes. Curr. Hypertens. Rev. 2014, 9, 182–186. [Google Scholar] [CrossRef]
- Ando, K. L-/N-type calcium channel blockers and proteinuria. Curr. Hypertens. Rev. 2014, 9, 210–218. [Google Scholar] [CrossRef]
- Karam, H.; Clozel, J.-P.; Bruneval, P.; Gonzalez, M.-F.; Ménard, J. Contrasting effects of selective T- and L-type calcium channel blockade on glomerular damage in DOCA hypertensive rats. Hypertension 1999, 34 Pt 1, 673–678. [Google Scholar] [CrossRef]
- Baylis, C.; Qiu, C.; Engels, K. Comparison of L-type and mixed L- and T-type calcium channel blockers on kidney injury caused by deoxycorticosterone-salt hypertension in rats. Am. J. Kidney Dis. 2001, 38, 1292–1297. [Google Scholar] [CrossRef] [PubMed]
- Omae, K.; Ogawa, T.; Nitta, K. Influence of T-calcium channel blocker treatment on deterioration of renal function in chronic kidney disease. Heart Vessel 2009, 24, 301–307, Erratum in Heart Vessels 2009, 24, 391. [Google Scholar] [CrossRef] [PubMed]
- Burnier, M. Renal protection with calcium antagonists: The role of lercanidipine. Curr. Med. Res. Opin. 2013, 29, 1727–1735. [Google Scholar] [CrossRef]
- Wu, J.-R.; Liou, S.-F.; Lin, S.-W.; Chai, C.-Y.; Dai, Z.-K.; Liang, J.-C.; Chen, I.-J.; Yeh, J.-L. Lercanidipine inhibits vascular smooth muscle cell proliferation and neointimal formation via reducing intracellular reactive oxygen species and inactivating Ras-ERK1/2 signaling. Pharmacol. Res. 2009, 59, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Menne, J.; Park, J.; Agrawal, R.; Lindschau, C.; Kielstein, J.T.; Kirsch, T.; Marx, A.; Midler, D.; Bahlmann, F.H.; Meier, M.; et al. Cellular and molecular mechanisms of tissue protection by lipophilic calcium channel blockers. FASEB J. 2006, 20, 994–996. [Google Scholar] [CrossRef]
- Rosenthal, T.; Rosenmann, E.; Tomassoni, D.; Amenta, F. Effect of Lercanidipine on Kidney Microanatomy in Cohen-Rosenthal Diabetic Hypertensive Rats. J. Cardiovasc. Pharmacol. Ther. 2007, 12, 145–152. [Google Scholar] [CrossRef]
- Incandela, L.; Belcaro, G.; Cesarone, M.R.; De Sanctis, M.T.; Griffin, M.; Cacchio, M.; Nicolaides, A.N.; Bucci, M.; Barsotti, A.; Martines, G.; et al. Oxygen-free radical decrease in hypertensive patients treated with lercanidipine. Int. Angiol. 2001, 20, 136–140. [Google Scholar]
- Rachmani, R.; Levi, Z.; Zadok, B.-S.; Ravid, M. Losartan and lercanidipine attenuate low-density lipoprotein oxidation in patients with hypertension and type 2 diabetes mellitus: A randomized, prospective crossover study. Clin. Pharmacol. Ther. 2002, 72, 302–307. [Google Scholar] [CrossRef]
- Taddei, S.; Virdis, A.; Ghiadoni, L.; Versari, D.; Salvetti, G.; Magagna, A.; Salvetti, A. Calcium antagonist treatment by lercanidipine prevents hyperpolarization in essential hypertension. Hypertension 2003, 41, 950–955. [Google Scholar] [CrossRef]
- Epstein, M. Calcium antagonists and renal protection: Emerging perspectives. J. Hypertens. Suppl. 1998, 16, S17–S25. [Google Scholar]
- Lander, H.M. An essential role for free radicals and derived species in signal transduction. FASEB J. 1997, 11, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Canavesi, M.; Baldini, N.; Leonardi, A.; Sironi, G.; Bellosta, S.; Bernini, F. In vitro inhibitory effect of lercanidipine on cholesterol accumulation and matrix metalloproteinases secretion by macrophages. J. Cardiovasc. Pharmacol. 2004, 44, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Shultz, P.J.; Raij, L. Inhibition of human mesangial cell proliferation by calcium channel blockers. Hypertension 1990, 15 (Suppl. S2), I76–I80. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J.R.; Karnovsky, M.J. Focal and segmental glomerulosclerosis: Analogies to atherosclerosis. Kidney Int. 1988, 33, 917–924. [Google Scholar] [CrossRef]
- Raij, L.; Keane, W.F. Glomerular mesangium: Its function and relationship to angiotensin II. Am. J. Med. 1985, 79, 24–30. [Google Scholar] [CrossRef]
- Sweeney, C.; Shultz, P.; Raij, L. Interactions of the endothelium and mesangium in glomerular injury. J. Am. Soc. Nephrol. 1990, 3 (Suppl. S1), S13–S20. [Google Scholar]
- Orth, S.R.; Nobiling, R.; Bönisch, S.; Ritz, E. Inhibitory effect of calcium channel blockers on human mesangial cell growth: Evidence for actions independent of L-type Ca2+ channels. Kidney Int. 1996, 49, 868–879. [Google Scholar] [CrossRef]
- Sugiura, T.; Imai, E.; Moriyama, T.; Horio, M.; Hori, M. Calcium channel blockers inhibit proliferation and matrix production in rat mesangial cells: Possible mechanism of suppression of AP-1 and CREB activities. Nephron 2000, 85, 71–80. [Google Scholar] [CrossRef]
- Ono, T.; Liu, N.; Kusano, H.; Nogaki, F.; Makino, T.; Muso, E.; Sasayama, S. Broad antiproliferative effects of benidipine on cultured human mesangial cells in cell cycle phases. Am. J. Nephrol. 2002, 22, 581–586. [Google Scholar] [CrossRef]
- Roth, M.; Keul, R.; Emmons, L.R.; Hörl, W.H.; Block, L.H. Manidipine regulates the transcription of cytokine genes. Proc. Natl. Acad. Sci. USA 1992, 89, 4071–4075. [Google Scholar] [CrossRef] [PubMed]
- Ruilope, L.M.; Campo, C.; Rodriguez-Artalejo, F.; Lahera, V.; Garcia-Robles, R.; Rodicio, J.L. Blood pressure and renal function: Therapeutic implications. J. Hypertens. 1996, 14, 1259–1263. [Google Scholar] [CrossRef]
- Hempel, A.; Lindschau, C.; Maasch, C.; Mahn, M.; Bychkov, R.; Noll, T.; Luft, F.C.; Haller, H. Calcium antagonists ameliorate ischemia-induced endothelial cell permeability by inhibiting protein kinase C. Circulation 1999, 99, 2523–2529. [Google Scholar] [CrossRef] [PubMed]
- Dayoub, H.; Achan, V.; Adimoolam, S.; Jacobi, J.; Stuehlinger, M.C.; Wang, B.-Y.; Tsao, P.S.; Kimoto, M.; Vallance, P.; Patterson, A.J.; et al. Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: Genetic and physiological evidence. Circulation 2003, 108, 3042–3047. [Google Scholar] [CrossRef]
- Leiper, J.; Murray-Rust, J.; McDonald, N.; Vallance, P. S-nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: Further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase. Proc. Natl. Acad. Sci. USA 2002, 99, 13527–13532. [Google Scholar] [CrossRef] [PubMed]
- Menne, J.; Park, J.-K.; Boehne, M.; Elger, M.; Lindschau, C.; Kirsch, T.; Meier, M.; Gueler, F.; Fiebeler, A.; Bahlmann, F.H.; et al. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-α—Deficient diabetic mice. Diabetes 2004, 53, 2101–2109. [Google Scholar] [CrossRef]
- Farah, R.; Khamisy-Farah, R.; Shurtz-Swirski, R. Calcium channel blocker effect on insulin resistance and inflammatory markers in essential hypertension patients. Int. Angiol. 2013, 32, 85–93. [Google Scholar] [PubMed]
- Cominacini, L.; Pasini, A.F.; Pastorino, A.M.; Garbin, U.; Davoli, A.; Rigoni, A.; Campagnola, M.; Tosetti, M.L.; Rossato, P.; Gaviraghi, G. Comparative effects of different dihydropyridines on the expression of adhesion molecules induced by TNF-α on endothelial cells. J. Hypertens. 1999, 17, 1837–1841. [Google Scholar] [CrossRef] [PubMed]
- Nap, A.; Mathy, M.-J.; Balt, J.C.; Pfaffendorf, M.; van Zwieten, P.A. The evaluation of the N-type channel blocking properties of cilnidipine and other voltage-dependent calcium antagonists. Fundam. Clin. Pharmacol. 2004, 18, 309–319. [Google Scholar] [CrossRef]
- Grassi, G.; Seravalle, G.; Turri, C.; Bolla, G.; Mancia, G. Short-versus long-term effects of different dihydropyridines on sympathetic and baroreflex function in hypertension. Hypertension 2003, 41, 558–562. [Google Scholar] [CrossRef]
- Irzmański, R.; Serwa-Stepień, E.; Barylski, M.; Banach, M.; Kowalski, J.; Pawlicki, L. Endothelial dysfunction in hypertension. The role of natriuretic peptides and endothelin. Kardiol Pol. 2005, 4 (Suppl. S2), S457–S461. (In Polish) [Google Scholar]
- Grassi, G.; Mark, A.; Esler, M. The sympathetic nervous system alterations in human hypertension. Circ. Res. 2015, 116, 976–990. [Google Scholar] [CrossRef]
- Barrios, V.; Escobar, C.; De La Figuera, M.; Honorato, J.; Llisterri, J.L.; Segura, J.; Calderón, A. High doses of lercanidipine are better tolerated than other dihydropyridines in hypertensive patients with metabolic syndrome: Results from the TOLERANCE study. Int. J. Clin. Pract. 2008, 62, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Viviani, G.L. Lercanidipine in type II diabetic patients with mild to moderate arterial hypertension. J. Cardiovasc. Pharmacol. 2002, 40, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Acanfora, D.; Trojano, L.; Gheorghiade, M.; Picone, C.; Papa, A.; Furgi, G.; Giuliano, F.; Maestri, R.; Rengo, F. A randomized, double-blind comparison of 10 and 20 mg lercanidipine in patients with stable effort angina: Effects on myocardial ischemia and heart rate variability. Am. J. Ther. 2002, 9, 444–453. [Google Scholar] [CrossRef]
- Tarif, N.; Bakris, G.L. Preservation of renal function: The spectrum of effects by calcium-channel blockers. Nephrol. Dial. Transplant. 1997, 12, 2244–2250. [Google Scholar] [CrossRef]
- Bakris, G.L.; Weir, M.R.; Secic, M.; Campbell, B.; Weis-McNulty, A. Differential effects of calcium antagonist subclasses on markers of nephropathy progression. Kidney Int. 2004, 65, 1991–2002. [Google Scholar] [CrossRef]
- Salvetti, A.; Mattei, P.; Sudano, I. Renal protection and antihypertensive: Current status drugs. Drugs 1999, 57, 665–693. [Google Scholar] [CrossRef]
- Makarounas-Kirchmann, K.; Glover-Koudounas, S.; Ferrari, P. Results of a meta-analysis comparing the tolerability of lercanidipine and other dihydropyridine calcium channel blockers. Clin. Ther. 2009, 31, 1652–1663, Erratum in Clin. Ther. 2010, 32, 401–402. [Google Scholar] [CrossRef]
- Makani, H.; Bangalore, S.; Romero, J.; Htyte, N.; Berrios, R.S.; Makwana, H.; Messerli, F.H. Peripheral edema associated with calcium channel blockers: Incidence and withdrawal rate—A meta-analysis of randomized trials. J. Hypertens. 2011, 29, 1270–1280. [Google Scholar] [CrossRef]
- Cheng, K.-H.; Yang, Y.-H.; Lee, C.-W.; Lai, W.-T. Long-term outcomes of lercanidipine versus other calcium channel blockers in newly diagnosed hypertension: A nationwide cohort study. Curr. Med. Res. Opin. 2017, 33, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, P.M.; Howard, S.C.; Dolan, E.; O′Brien, E.; Dobson, J.E.; Dahlöf, B.; Poulter, N.R.; Sever, P.S.; ASCOT-BPLA and MRC Trial Investigators. Effects of β blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010, 9, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.J.; Rothwell, P.M. Effect of dose and combination of antihypertensives on interindividual blood pressure variability: A systematic review. Stroke 2011, 42, 2860–2865. [Google Scholar] [CrossRef]
- Derosa, G.; Bonaventura, A.; Romano, D.; Bianchi, L.; Fogari, E.; D’Angelo, A.; Maffioli, P. Effects of enalapril/lercanidipine combination on some emerging biomarkers in cardiovascular risk stratification in hypertensive patients. J. Clin. Pharm. Ther. 2014, 39, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Dykewicz, M.S. Cough and angioedema from angiotensin-converting enzyme inhibitors: New insights into mechanisms and management. Curr. Opin. Allergy Clin. Immunol. 2004, 4, 267–270. [Google Scholar] [CrossRef]
- Mancia, G.; Coca, A.; Chazova, I.; Girerd, X.; Haller, H.; Pauletto, P.; Pupek-Musialik, D.; Svyshchenko, Y.; FELT investigators. Effects on office and home blood pressure of the lercanidipine-enalapril combination in patients with Stage 2 hypertension: A European randomized, controlled clinical trial. J. Hypertens. 2014, 32, 1700–1707, Erratum in J. Hypertens. 2014, 32, 2106. [Google Scholar] [CrossRef]
- Mancia, G.; Omboni, S.; Chazova, I.; Coca, A.; Girerd, X.; Haller, H.; Parati, G.; Pauletto, P.; Pupek-Musialik, D.; Svyshchenko, Y.; et al. Effects of the lercanidipine–enalapril combination vs. the corresponding monotherapies on home blood pressure in hypertension: Evidence from a large database. J. Hypertens. 2016, 34, 139–148. [Google Scholar] [CrossRef]
- Puig, J.G.; Calvo, C.; Luurila, O.; Luurila, H.; Sulosaari, S.; Strandberg, A.; Ghezzi, C. Lercanidipine, enalapril and their combination in the treatment of elderly hypertensive patients: Placebo-controlled, randomized, crossover study with four ABPM. J. Hum. Hypertens. 2007, 21, 917–924. [Google Scholar] [CrossRef]
- Yang, Z. Efficacy and safety evaluation of perindopril–lercanidipine combined therapy in patients with mild essential hypertension. Curr. Med. Res. Opin. 2014, 31, 183–186. [Google Scholar] [CrossRef]
- Mirabito Colafella, K.M.; Uijl, E.; Danser, J. Interference with the renin-angiotensin system (RAS): Classical inhibitors and novel approaches. In Reference Module in Biomedical Sciences: Encyclopedia of Endocrine Diseases, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- James, I.G.V.; Jones, A.; Davies, P. A randomised, double-blind, double-dummy comparison of the efficacy and tolerability of lercanidipine tablets and losartan tablets in patients with mild to moderate essential hypertension. J. Hum. Hypertens. 2002, 16, 605–610. [Google Scholar] [CrossRef]
- Na, S.-H.; Lee, H.-Y.; Baek, S.H.; Jeon, H.-K.; Kang, J.-H.; Kim, Y.-N.; Park, C.-G.; Ryu, J.-K.; Rhee, M.-Y.; Kim, M.-H.; et al. Evaluation of the Efficacy and Safety of the Lercanidipine/Valsartan Combination in Korean Patients with Essential Hypertension Not Adequately Controlled with Lercanidipine Monotherapy: A Randomized, Multicenter, Parallel Design, Phase III Clinical Trial. Clin. Ther. 2015, 37, 1726–1739. [Google Scholar] [CrossRef] [PubMed]
- Bronsert, M.R.; Henderson, W.G.; Valuck, R.; Hosokawa, P.; Hammermeister, K. Comparative effectiveness of antihypertensive therapeutic classes and treatment strategies in the initiation of therapy in primary care patients: A Distributed Ambulatory Research In Therapeutics Network (DARTNet) study. J. Am. Board Fam. Med. 2013, 26, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C.; Santi, F. Fixed combination of lercanidipine and enalapril in the management of hypertension: Focus on patient preference and adherence. Patient Prefer. Adherence 2012, 6, 449–455, Erratum in Patient Prefer. Adherence 2013, 7, 801. [Google Scholar] [CrossRef]
- Ferri, C.; Croce, G.; Desideri, G. Role of combination therapy in the treatment of hypertension: Focus on valsartan plus amlodipine. Adv. Ther. 2008, 25, 300–320. [Google Scholar] [CrossRef] [PubMed]
- Philipp, T.; Smith, T.R.; Glazer, R.; Wernsing, M.; Yen, J.; Jin, J.; Schneider, H.; Pospiech, R. Two multicenter, 8-week, randomized, double-blind, placebo-controlled, parallel-group studies evaluating the efficacy and tolerability of amlodipine and valsartan in combination and as monotherapy in adult patients with mild to moderate essential hypertension. Clin. Ther. 2007, 29, 563–580. [Google Scholar] [CrossRef]
- Ghiadoni, L.; Bruno, R.M.; Cartoni, G.; Stea, F.; Magagna, A.; Virdis, A.; Grassi, D.; Ferri, C.; Taddei, S. Combination therapy with lercanidipine and enalapril reduced central blood pressure augmentation in hypertensive patients with metabolic syndrome. Vasc. Pharmacol. 2017, 92, 16–21. [Google Scholar] [CrossRef]
- Tsioufis, C.; Dimitriadis, K.; Mantzouranis, E.; Mani, I.; Tousoulis, D. Differential effects of lercanidipine/enalapril versus amlodipine/enalapril and hydrochlorothiazide/enalapril on target organ damage and sympathetic activation in non-obese essential hypertensive subjects. Curr. Med. Res. Opin. 2016, 32, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Robles, N.R.; Calvo, C.; Sobrino, J.; Espinel, E.; Esteban, R.; Mateos, L.; Macias, J.F. Lercanidipine valuable effect on urine protein losses: The RED LEVEL study. Curr. Med. Res. Opin. 2016, 32, 29–34. [Google Scholar] [CrossRef]
- Fici, F.; Bakir, E.A.; Yüce, E.I.; Kanuncu, S.; Makel, W.; Tarim, B.A.; Robles, N.R. PAIT-Survey Follow-Up: Changes in Albuminuria in Hypertensive Diabetic Patients with Mild-Moderate Chronic Kidney Disease. High Blood Press. Cardiovasc. Prev. 2020, 27, 43–49, Erratum in High Blood Press. Cardiovasc. Prev. 2021, 28, 83. [Google Scholar] [CrossRef]
- Olszewski, J.; Kozon, K.; Patyra, A. Flozins in heart failure—A new reimbursement indication. Prospect. Pharm. Sci. 2022, 20, 19–25. [Google Scholar] [CrossRef]
- Bodnar, P.; Mazurkiewicz, M.; Chwalba, T.; Romuk, E.; Ciszek-Chwalba, A.; Jacheć, W.; Wojciechowska, C. The Impact of Pharmacotherapy for Heart Failure on Oxidative Stress—Role of New Drugs, Flozins. Biomedicines 2023, 11, 2236. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.; Heerspink, H.J. A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors. Cell Metab. 2021, 33, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, M.; Rokicka, D.; Strojek, K. Flozins—In the light of the latest recommendations. Endokrynol. Polska 2021, 72, 589–591. [Google Scholar] [CrossRef] [PubMed]
- Scholtes, R.A.; van Baar, M.J.B.; Kok, M.D.; Bjornstad, P.; Cherney, D.Z.I.; Joles, J.A.; van Raalte, D.H. Renal haemodynamic and protective effects of renoactive drugs in type 2 diabetes: Interaction with SGLT2 inhibitors. Nephrology 2020, 26, 377–390. [Google Scholar] [CrossRef] [PubMed]
- van Baar, M.J.; Scholtes, R.A.; van Raalte, D.H. SGLT2 inhibitors’ interaction with other renoactive drugs in type 2 diabetes patients: Still a lot to learn. Kidney Int. 2019, 96, 283–286. [Google Scholar] [CrossRef] [PubMed]
Category Based on GFR | Category | GFR (mL/min/1.73 m2) |
G1 | ≥90 | |
G2 | 89–60 | |
G3a | 59–45 | |
G3b | 44–30 | |
G4 | 29–15 | |
G5 | <15 |
Category Based on Albuminuria | Category | AER | ACR |
A1 | <30 mg/day | <3 mg/mmol <30 mg/g | |
A2 | 30–300 mg/day | 3–30 mg/mmol 30–300 mg/g | |
A3 | >300 mg/day | >30 mg/mmol >300 mg/g |
Mechanisms of Kidney Protection | Exerted Influence |
---|---|
Affecting both L-type and T-type calcium channels | Reduction in BP while maintaining constant intraglomerular pressure |
Suppression of cell proliferation in renal arterioles | Prevention of thickening of the vascular middle membrane and vascular neointima, prevention of lumen narrowing |
Reduction in tissue inflammation and tubulointerstitial fibrosis | Decrease in albuminuria, preservation of renal function |
Inhibition of free radicals producing enzymes | Exerting antioxidant effects |
Decrease in oxidative stress markers | |
Increase in NO bioavailability in blood vessels and glomeruli | Reduction in monocyte infiltration, extracellular matrix formation and fibrosis in renal vessels |
Inhibition of cholesterol accumulation | Anti-atherosclerotic effect |
Inhibition of AP-1 and the cell cycle transition from G1 to S phase of mesangial cells | Inhibition of mesangial cell proliferation |
Modulation of transcription of IL-1β and granulocyte/monocyte colony stimulating factor genes in mesangial cells | |
Reduction in PKC activity | Decrease in permeability of albumin by glomerular endothelial cells |
Decrease in expression of intracellular adhesion molecules | Reduction in blood vessel and tissue damage |
Increase in fibronectin expression | Restoration of damaged tissue |
Renal endothelin inhibition | Decrease in the impact on norepinephrine activity |
Reduction in norepinephrine secretion | Reduction in neurally induced vasoconstriction and prevention of further endothelial dysfunction |
Study | Type of Study | Duration | Patients (n) | Hypertensive Patient Category | Treatment | Remarks |
---|---|---|---|---|---|---|
Cherubini et al., 2003 [46] | Multicenter, double-blind, randomized, parallel group study | 24 weeks | 324 (aged 65 years or above) | Mild-to-moderate essential systolic and diastolic hypertension | Lercanidipine 5 mg vs. lacidipine 2 mg vs. nifedipine 30 mg | The mean BP difference was greater in the lercanidipine group compared to the lacidipine group and nifedipine group, respectively. The ADR rate was the lowest in the lercanidipine group. |
Barrios et al., 2008 [51] | Observational, transversal, multicentre study | 3.6 months | 650 (aged ≥18 years) | Essential hypertension | Lercanidipine 20 mg vs. amlodipine10 mg vs. nifedipine GITS 60 mg | BP control was comparable between the groups. Adverse effects related to vasodilation were significantly more frequent in the amlodipine/nifedipine group compared to the lercanidipine group). |
Leonetti et al., 2002 [48] | Multicenter, double-blind, parallel study | 12 months | 828 (aged ≥60 years) | Essential hypertension | Lercanidipine 10 mg vs. amlodipine 5 mg vs. lacidipine 2 mg | BP control was comparable between the groups. Edema-related adverse symptoms (such as lower limb swelling and heaviness) occurred more frequently with amlodipine compared to lercanidipine and lacidipine. |
Cheng et al., 2017 [136] | Observational, retrospective cohort study | 6 years | 144,630 (aged 18 to 65 years) | Essential hypertension | Continuous therapy with lercanidipine vs. nifedipine vs. amlodipine vs. felodipine (the dosage was not mentioned in the study) | No difference in any endpoint was found between lercanidipine and other groups. Lercanidipine was shown to be significantly more successful vs. nifedipine in reducing the incidence of stroke. |
Derosa et al., 2014 [139] | Multicenter, randomized, double-blind, clinical study | 24 months | 345 (aged <65 years) | Essential hypertension | Enalapril 20 mg vs. lercanidipine 10 mg vs. enalapril/lercanidipine 20/10 mg | Reduction in BP was greater in the enalapril/lercanidIpine group compared to the other groups. Lercanidipine improved lipoprotein(a) levels, while the combination of enalapril/lercanidipine improved it more than single therapies. Other biomarkers of cardiovascular risk were improved by all three therapies, but the greatest effect was observed in the enalapril/lercanidipine group. |
Mancia et al., 2014 [141] | Randomized, double-blind, placebo-controlled, parallel group study | 12 weeks | 1039 (aged 18 to 75 years) | Moderate hypertension | Lercanidipine 10 or 20 mg vs. enalapril 10 or 20 mg vs. enalapril/lercanidipine 10/10 mg or 20/10 mg or 10/20 mg or 20/20 mg | DBP and SBP were reduced more significantly in the enalapril/lercanidipine 20/20 mg group compared to other combinations and monotherapy. |
Mancia et al., 2016 [142] | Multicenter, randomized, double blind, parallel group study | 12 weeks | 854 (aged 18 to 75 years) | Grade 1 or 2 essential hypertension | Lercanidipine 10 or 20 mg vs. enalapril 10 or 20 mg vs. lercanidipine/enalapril 10/10 mg or 20/10 mg or 10/20 mg or 20/20 mg | Reduction in BP was more significant in the enalapril/lercanidipine combination compared to the other groups. |
Puig et al., 2007 [143] | Randomized, double-blind, placebo-controlled, four-way crossover study | 18 weeks | 75 (aged 60 to 85 years) | Essential hypertension | Lercanidipine 10 mg vs. enalapril 20 mg vs. lercanidipine/enalapril 10/20 mg | Reduction in BP was significantly more effective in the enalapril/lercanidipine group compared to the other groups. |
Yang et al., 2014 [144] | Monocentric, randomized, controlled study | 12 weeks | 180 (aged 18 to 70 years) | Mild essential hypertension | Perindopril/lercanidipine 2/5 mg vs. lercanidipine 10 mg vs. perindopril 4 mg | The normalization rate of BP was the highest in the perindopril/lercanidipine group compared to the other groups. The ADR rate was the lowest in the perindopril/lercanidipine group. |
James et al., 2002 [146] | Randomized, double-blind, double- dummy, parallel group study | 18–20 weeks | 562 (aged 18–75 years) | Mild to moderate essential hypertension | Lercanidipine 10 mg vs. losartan 50 mg | The normalization rate of BP was higher in the lercanidipine group compared to the losartan group. Lercanidipine had a better dose response than losartan. The ADR rate was lower in the lercanidipine group compared to the losartan group. |
Na et al., 2015 [147] | Randomized, double-blind, multi- center, parallel group, Phase III clinical trial | 20 weeks | 772 (aged 20 to 75 years) | Essential hypertension | Lercanidipine 10 mg vs. lercanidipine/valsartan 10/80 mg vs. lercanidipine/valsartan 10/160 mg | Combination therapy was more effective in treating hypertension compared to lercanidipine alone. |
Ghiadoni et al., 2015 [152] | Prospective, randomized, open, with blinded end-points (PROBE), parallel-group study | 28 weeks | 118 | Essential hypertension | Enalapril/lercanidipine 20/10 mg (up-titrated to 20/20 mg) vs. enalapril/hydrochlorothiazide 20/12,5 mg (up-titrated to 20/25 mg) | The combination therapy of enalapril/lercanidipine reduced the central augmentation index more significantly compared to the other group. Reduction in BP and arterial stiffness was similar among the groups. |
Tsioufis et al., 2016 [153] | Randomized, blinded-endpoint trial | 3 months | 56 | Grade 2 essential hypertension | Enalapril/lercanidipine 20/10 mg vs. enalapril/amlodipine 20/5 mg vs. enalapril/hydrochlorothiazide 20/12,5 mg | The combination of lercanidipine and enalapril improved the hypertension-related target organ damage the most significantly among all the groups. A significant decrease in the renal arterial restrictive index and the urinary albumin-to-creatinine ratio was noted in the enalapril/lercanidipine group. |
Robles et al.,2016 [154] | Prospective, multi-center, randomized, blinded-endpoint (PROBE) trial | 1 year | 35 (aged 18–75 years) | Essential hypertension, albuminuria | Enalapril/lercanidipine 20/10 mg vs. enalapril/amlodipine 20/5 mg | Both combination treatments determined a similar reduction in BP. Combination therapy of enalapril/lercanidipine significantly reduced albuminuria. |
Fici et al., 2020 [155] | Observational cross-sectional study | 6 months | 668 | Essential hypertension, diabetes type I or II | Amlodipine/valsartan 5/160 mg vs. amlodipine/perindopril 10/5 mg vs. lercanidipine/enalapril 10/20 mg vs. verapamil/trandolapril 120/2 mg vs. nitrendipine/enalapril 10/20 mg vs. felodipine/ramipril 2.5/2.5 mg | The rate of reduction in albuminuria was the highest in the lercanidipine/enalapril group. There was no difference in the rate of BP reduction between the groups. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajdys, J.; Fularski, P.; Leszto, K.; Majchrowicz, G.; Stabrawa, M.; Młynarska, E.; Rysz, J.; Franczyk, B. New Insights into the Nephroprotective Potential of Lercanidipine. Int. J. Mol. Sci. 2023, 24, 14048. https://doi.org/10.3390/ijms241814048
Hajdys J, Fularski P, Leszto K, Majchrowicz G, Stabrawa M, Młynarska E, Rysz J, Franczyk B. New Insights into the Nephroprotective Potential of Lercanidipine. International Journal of Molecular Sciences. 2023; 24(18):14048. https://doi.org/10.3390/ijms241814048
Chicago/Turabian StyleHajdys, Joanna, Piotr Fularski, Klaudia Leszto, Gabriela Majchrowicz, Magdalena Stabrawa, Ewelina Młynarska, Jacek Rysz, and Beata Franczyk. 2023. "New Insights into the Nephroprotective Potential of Lercanidipine" International Journal of Molecular Sciences 24, no. 18: 14048. https://doi.org/10.3390/ijms241814048
APA StyleHajdys, J., Fularski, P., Leszto, K., Majchrowicz, G., Stabrawa, M., Młynarska, E., Rysz, J., & Franczyk, B. (2023). New Insights into the Nephroprotective Potential of Lercanidipine. International Journal of Molecular Sciences, 24(18), 14048. https://doi.org/10.3390/ijms241814048