Selection of Multi-Drug Targets against Drug-Resistant Mycobacterium tuberculosis XDR1219 Using the Hyperbolic Mapping of the Protein Interaction Network
Abstract
:1. Introduction
2. Results
2.1. Network Embedding on the Hyperbolic Disc
2.2. Protein Clustering in the Angular Similarity
2.3. Hyperbolic Distance and Drug–Target Interactions
Drug Targets and Their Interactors in H2
2.4. Hyperbolically Close DTs
Common Interactors between DTs
2.5. DTs Geometrically Close with ds > 2
3. Discussion
4. Materials and Methods
4.1. Dataset Construction
4.2. Prediction of the MTB Protein–Protein Interaction Network (mtbPIN)
4.3. Mapping of the mtbPIN in Hyperbolic Space
4.4. Protein Clustering in the Angular Similarity Dimension
4.5. Gene Ontology Functional Enrichment Analysis
4.6. Computation of Hyperbolic Distances
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuang, W.; Zhang, H.; Wang, X.; Yang, P. Overcoming Mycobacterium tuberculosis through Small Molecule Inhibitors to Break down Cell Wall Synthesis. Acta Pharm. Sin. B 2022, 12, 3201–3214. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Tuberculosis Report 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Jeong, Y.; Min, J. Impact of COVID-19 Pandemic on Tuberculosis Preventive Services and Their Post-Pandemic Recovery Strategies: A Rapid Review of Literature. J. Korean Med. Sci. 2023, 38, e43. [Google Scholar] [CrossRef] [PubMed]
- WHO World Health Organization. Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Fernandes, G.F.S.; Thompson, A.M.; Castagnolo, D.; Denny, W.A.; dos Santos, J.L. Tuberculosis Drug Discovery: Challenges and New Horizons. J. Med. Chem. 2022, 65, 7489–7531. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sharma, D.; Kalia, N.P. Editorial: Approaches to Address Resistance, Drug Discovery, and Vaccine Development in Mycobacterium tuberculosis: Challenges and Opportunities. Front. Microbiol. 2022, 13, 871464. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, R.L.; Zhu, D.X.; Harrison, G.A.; Mayer Bridwell, A.E.; Prusa, J.; Chavez, S.M.; Stallings, C.L. Perspectives and Advances in the Understanding of Tuberculosis. Annu. Rev. Pathol. Mech. Dis. 2021, 16, 377–408. [Google Scholar] [CrossRef] [PubMed]
- Dartois, V.A.; Rubin, E.J. Anti-Tuberculosis Treatment Strategies and Drug Development: Challenges and Priorities. Nat. Rev. Microbiol. 2022, 20, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Silver, L.L. Challenges of Antibacterial Discovery. Clin. Microbiol. Rev. 2011, 24, 71–109. [Google Scholar] [CrossRef] [PubMed]
- Mattar, C.; Edwards, S.; Baraldi, E.; Hood, J. An Overview of the Global Antimicrobial Resistance Research and Development Hub and the Current Landscape. Curr. Opin. Microbiol. 2020, 57, 56–61. [Google Scholar] [CrossRef]
- Richards, A.L.; Eckhardt, M.; Krogan, N.J. Mass Spectrometry-based Protein–Protein Interaction Networks for the Study of Human Diseases. Mol. Syst. Biol. 2021, 17, e8792. [Google Scholar] [CrossRef]
- Leiserson, M.D.M.; Vandin, F.; Wu, H.-T.; Dobson, J.R.; Eldridge, J.V.; Thomas, J.L.; Papoutsaki, A.; Kim, Y.; Niu, B.; McLellan, M.; et al. Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes. Nat. Genet. 2015, 47, 106–114. [Google Scholar] [CrossRef]
- Jäger, S.; Gulbahce, N.; Cimermancic, P.; Kane, J.; He, N.; Chou, S.; D’Orso, I.; Fernandes, J.; Jang, G.; Frankel, A.D.; et al. Purification and Characterization of HIV–Human Protein Complexes. Methods 2011, 53, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhou, Q.; He, J.; Jiang, Z.; Peng, C.; Tong, R.; Shi, J. Recent Advances in the Development of Protein–Protein Interactions Modulators: Mechanisms and Clinical Trials. Signal Transduct. Target. Ther. 2020, 5, 213. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, A.R.; Gsponer, J.; Foster, L.J. A High-Throughput Approach for Measuring Temporal Changes in the Interactome. Nat. Methods 2012, 9, 907–909. [Google Scholar] [CrossRef]
- Kovács, B.; Balogh, S.G.; Palla, G. Generalised Popularity-Similarity Optimisation Model for Growing Hyperbolic Networks beyond Two Dimensions. Sci. Rep. 2022, 12, 968. [Google Scholar] [CrossRef] [PubMed]
- Alanis-Lobato, G.; Mier, P.; Andrade-Navarro, M. The Latent Geometry of the Human Protein Interaction Network. Bioinformatics 2018, 34, 2826–2834. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, F.; Kitsak, M.; Serrano, M.Á.; Boguñá, M.; Krioukov, D. Popularity versus Similarity in Growing Networks. Nature 2012, 489, 537–540. [Google Scholar] [CrossRef]
- Krioukov, D.; Papadopoulos, F.; Kitsak, M.; Vahdat, A.; Boguñá, M. Hyperbolic Geometry of Complex Networks. Phys. Rev. E 2010, 82, 036106. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, F.; Psomas, C.; Krioukov, D. Network Mapping by Replaying Hyperbolic Growth. IEEE/ACM Trans. Netw. 2015, 23, 198–211. [Google Scholar] [CrossRef]
- Kovács, B.; Palla, G. Optimisation of the Coalescent Hyperbolic Embedding of Complex Networks. Sci. Rep. 2021, 11, 8350. [Google Scholar] [CrossRef]
- Muscoloni, A.; Thomas, J.M.; Ciucci, S.; Bianconi, G.; Cannistraci, C.V. Machine Learning Meets Complex Networks via Coalescent Embedding in the Hyperbolic Space. Nat. Commun. 2017, 8, 1615. [Google Scholar] [CrossRef]
- Vagiona, A.-C.; Mier, P.; Petrakis, S.; Andrade-Navarro, M.A. Analysis of Huntington’s Disease Modifiers Using the Hyperbolic Mapping of the Protein Interaction Network. Int. J. Mol. Sci. 2022, 23, 5853. [Google Scholar] [CrossRef] [PubMed]
- Zahra, N.U.A.; Jamil, F.; Uddin, R. Protein Integrated Network Analysis to Reveal Potential Drug Targets Against Extended Drug-Resistant Mycobacterium tuberculosis XDR1219. Mol. Biotechnol. 2021, 63, 1252–1267. [Google Scholar] [CrossRef] [PubMed]
- Alanis-Lobato, G.; Mier, P.; Andrade-Navarro, M.A. Efficient Embedding of Complex Networks to Hyperbolic Space via Their Laplacian. Sci. Rep. 2016, 6, 30108. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, F.; Aldecoa, R.; Krioukov, D. Network Geometry Inference Using Common Neighbors. Phys. Rev. E 2015, 92, 022807. [Google Scholar] [CrossRef] [PubMed]
- Monama, M.Z.; Olotu, F.; Tastan Bishop, Ö. Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants. Int. J. Mol. Sci. 2023, 24, 3313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, Y.; Gao, Y.; Wu, L.; Gao, R.; Zhang, Q.; Wang, Y.; Wu, C.; Wu, F.; Gurcha, S.S.; et al. Structures of Cell Wall Arabinosyltransferases with the Anti-Tuberculosis Drug Ethambutol. Science 2020, 368, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Xiao, T.; Liu, H.; Zhao, X.; Liu, Z.; Li, Y.; Zeng, H.; Zhao, L.; Wan, K. Mutations within EmbCAB Are Associated with Variable Level of Ethambutol Resistance in Mycobacterium tuberculosis Isolates from China. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Khoshnood, S.; Taki, E.; Sadeghifard, N.; Kaviar, V.H.; Haddadi, M.H.; Farshadzadeh, Z.; Kouhsari, E.; Goudarzi, M.; Heidary, M. Mechanism of Action, Resistance, Synergism, and Clinical Implications of Delamanid Against Multidrug-Resistant Mycobacterium tuberculosis. Front. Microbiol. 2021, 12, 717045. [Google Scholar] [CrossRef]
- Rehman, A.U.; Ali, S.; Rafiq, H.; Rasheed, S.; Nouroz, F.; Wadood, A. Computational Insight into the Binding Mechanism of Pyrazinoic Acid to RpsA Protein. Curr. Chin. Sci. 2021, 1, 207–215. [Google Scholar] [CrossRef]
- Yang, W.; Hu, F. Research Updates of Plasmid-Mediated Aminoglycoside Resistance 16S RRNA Methyltransferase. Antibiotics 2022, 11, 906. [Google Scholar] [CrossRef]
- Kadura, S.; King, N.; Nakhoul, M.; Zhu, H.; Theron, G.; Köser, C.U.; Farhat, M. Systematic Review of Mutations Associated with Resistance to the New and Repurposed Mycobacterium tuberculosis Drugs Bedaquiline, Clofazimine, Linezolid, Delamanid and Pretomanid. J. Antimicrob. Chemother. 2020, 75, 2031–2043. [Google Scholar] [CrossRef]
- Gray, D.A.; Wenzel, M. Multitarget Approaches against Multi-Resistant Superbugs. ACS Infect. Dis. 2020, 6, 1346–1365. [Google Scholar] [CrossRef] [PubMed]
- Dillon, N.A.; Peterson, N.D.; Feaga, H.A.; Keiler, K.C.; Baughn, A.D. Anti-Tubercular Activity of Pyrazinamide Is Independent of Trans-Translation and RpsA. Sci. Rep. 2017, 7, 6135. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, X.; Perez, L.M.; Shi, W.; Zhang, Y.; Sacchettini, J.C. The Molecular Basis of Pyrazinamide Activity on Mycobacterium tuberculosis PanD. Nat. Commun. 2020, 11, 339. [Google Scholar] [CrossRef]
- Yu, X.; Huo, F.; Wang, F.; Wen, S.; Jiang, G.; Xue, Y.; Dong, L.; Zhao, L.; Zhu, R.; Huang, H. In Vitro Antimicrobial Activity Comparison of Linezolid, Tedizolid, Sutezolid and Delpazolid Against Slowly Growing Mycobacteria Isolated in Beijing, China. Infect. Drug Resist. 2021, 14, 4689–4697. [Google Scholar] [CrossRef] [PubMed]
- Gopal, P.; Grüber, G.; Dartois, V.; Dick, T. Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide. Trends Pharmacol. Sci. 2019, 40, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Mudde, S.E.; Upton, A.M.; Lenaerts, A.; Bax, H.I.; De Steenwinkel, J.E.M. Delamanid or Pretomanid? A Solomonic Judgement! J. Antimicrob. Chemother. 2022, 77, 880–902. [Google Scholar] [CrossRef]
- Singh, B.; Cocker, D.; Ryan, H.; Sloan, D.J. Linezolid for Drug-Resistant Pulmonary Tuberculosis. Cochrane Database Syst. Rev. 2019, 3, 1–81. [Google Scholar] [CrossRef]
- Chesov, E.; Chesov, D.; Maurer, F.P.; Andres, S.; Utpatel, C.; Barilar, I.; Donica, A.; Reimann, M.; Niemann, S.; Lange, C.; et al. Emergence of Bedaquiline Resistance in a High Tuberculosis Burden Country. Eur. Respir. J. 2022, 59, 2100621. [Google Scholar] [CrossRef]
- Miryala, S.K.; Anbarasu, A.; Ramaiah, S. Impact of Bedaquiline and Capreomycin on the Gene Expression Patterns of Multidrug-resistant Mycobacterium tuberculosis H37Rv Strain and Understanding the Molecular Mechanism of Antibiotic Resistance. J. Cell Biochem. 2019, 120, 14499–14509. [Google Scholar] [CrossRef]
- Bhargavi, G.; Singh, A.K.; Deenadayalan, A.; Ponnuraja, C.; Patil, S.A.; Palaniyandi, K. Role of a Putative Alkylhydroperoxidase Rv2159c in the Oxidative Stress Response and Virulence of Mycobacterium tuberculosis. Pathogens 2022, 11, 684. [Google Scholar] [CrossRef]
- Fay, A.; Philip, J.; Saha, P.; Hendrickson, R.C.; Glickman, M.S.; Burns-Huang, K. The DnaK Chaperone System Buffers the Fitness Cost of Antibiotic Resistance Mutations in Mycobacteria. mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, D.A.; Finin, P.M.; Rahman, M.A.; Cumming, B.M.; Russell, S.L.; Jonnala, S.R.; Adamson, J.H.; Steyn, A.J.C. Turning the Respiratory Flexibility of Mycobacterium tuberculosis against Itself. Nat. Commun. 2016, 7, 12393. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Shukla, P.; Bhaskar, A.; Anand, K.; Baloni, P.; Jha, R.K.; Mohan, A.; Rajmani, R.S.; Nagaraja, V.; Chandra, N.; et al. Efficacy of β-Lactam/β-Lactamase Inhibitor Combination Is Linked to WhiB4-Mediated Changes in Redox Physiology of Mycobacterium tuberculosis. eLife 2017, 6, e25624. [Google Scholar] [CrossRef]
- Niranjan, V.; Uttarkar, A.; Murali, K.; Niranjan, S.; Gopal, J.; Kumar, J. Mycobacterium Time-Series Genome Analysis Identifies AAC2′ as a Potential Drug Target with Naloxone Showing Potential Bait Drug Synergism. Molecules 2022, 27, 6150. [Google Scholar] [CrossRef]
- Bazet Lyonnet, B.; Diacovich, L.; Gago, G.; Spina, L.; Bardou, F.; Lemassu, A.; Quémard, A.; Gramajo, H. Functional Reconstitution of the Mycobacterium tuberculosis Long-chain Acyl-CoA Carboxylase from Multiple Acyl-CoA Subunits. Fed. Eur. Biochem. Soc. J. 2017, 284, 1110–1125. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, L.A.; Shears, R.K.; Fingleton, C.; Alvarez, L.; Waters, E.M.; Clarke, J.; Bricio-Moreno, L.; Campbell, C.; Yadav, A.K.; Razvi, F.; et al. Impaired Alanine Transport or Exposure to D-Cycloserine Increases the Susceptibility of MRSA to β-Lactam Antibiotics. J. Infect. Dis. 2020, 221, 1000–1016. [Google Scholar] [CrossRef]
- Zhao, W.; Zheng, M.; Wang, B.; Mu, X.; Li, P.; Fu, L.; Liu, S.; Guo, Z. Interactions of Linezolid and Second-Line Anti-Tuberculosis Agents against Multidrug-Resistant Mycobacterium tuberculosis in Vitro and in Vivo. Int. J. Infect. Dis. 2016, 52, 23–28. [Google Scholar] [CrossRef]
- Kim, S.; Louie, A.; Drusano, G.L.; Almoslem, M.; Kim, S.; Myrick, J.; Nole, J.; Duncanson, B.; Peloquin, C.A.; Scanga, C.A.; et al. Evaluating the Effect of Clofazimine against Mycobacterium tuberculosis given Alone or in Combination with Pretomanid, Bedaquiline or Linezolid. Int. J. Antimicrob. Agents 2022, 59, 106509. [Google Scholar] [CrossRef]
- Le, N.-H.; Locard-Paulet, M.; Stella, A.; Tomas, N.; Molle, V.; Burlet-Schiltz, O.; Daffé, M.; Marrakchi, H. The Protein Kinase PknB Negatively Regulates Biosynthesis and Trafficking of Mycolic Acids in Mycobacteria. J. Lipid Res. 2020, 61, 1180–1191. [Google Scholar] [CrossRef]
- Sun, M.; Ge, S.; Li, Z. The Role of Phosphorylation and Acylation in the Regulation of Drug Resistance in Mycobacterium tuberculosis. Biomedicines 2022, 10, 2592. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, F.; Moghim, S.; Farzaneh, S.; Fazeli, H.; Salehi, M.; Nasr Esfahani, B. Significance of the Coexistence of Non-Codon 315 KatG, InhA, and OxyR-AhpC Intergenic Gene Mutations among Isoniazid-Resistant and Multidrug-Resistant Isolates of Mycobacterium tuberculosis: A Report of Novel Mutations. Pathog. Glob. Health 2022, 116, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Isakova, J.; Sovkhozova, N.; Vinnikov, D.; Goncharova, Z.; Talaibekova, E.; Aldasheva, N.; Aldashev, A. Mutations of RpoB, KatG, InhA and Ahp Genes in Rifampicin and Isoniazid-Resistant Mycobacterium tuberculosis in Kyrgyz Republic. BMC Microbiol. 2018, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, J.; Lu, Y.; Xiao, T.; Liu, H.; Lin, S.; Xu, D.; Li, G.; Zhao, X.; Liu, Z.; et al. RpoB Mutations and Effects on Rifampin Resistance in Mycobacterium tuberculosis. Infect. Drug Resist. 2021, 14, 4119–4128. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, S.; Muniyan, R. Latent Tuberculosis: Interaction of Virulence Factors in Mycobacterium tuberculosis. Mol. Biol. Rep. 2021, 48, 6181–6196. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D. Antibiotic Resistance and Its Cost: Is It Possible to Reverse Resistance? Nat. Rev. Microbiol. 2010, 8, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I. The Biological Cost of Mutational Antibiotic Resistance: Any Practical Conclusions? Curr. Opin. Microbiol. 2006, 9, 461–465. [Google Scholar] [CrossRef]
- Hughes, D.; Brandis, G. Rifampicin Resistance: Fitness Costs and the Significance of Compensatory Evolution. Antibiotics 2013, 2, 206–216. [Google Scholar] [CrossRef]
- Cowen, L.E.; Lindquist, S. Hsp90 Potentiates the Rapid Evolution of New Traits: Drug Resistance in Diverse Fungi. Science 2005, 309, 2185–2189. [Google Scholar] [CrossRef]
- Lukacisinova, M. and F.B. and B.T. Highly Parallel Lab Evolution Reveals That Epistasis Can Curb the Evolution of Antibiotic Resistance. Nat. Commun. 2020, 11, 3105. [Google Scholar] [CrossRef]
- Aguilar-Rodríguez, J.; Sabater-Muñoz, B.; Montagud-Martínez, R.; Berlanga, V.; Alvarez-Ponce, D.; Wagner, A.; Fares, M.A. The Molecular Chaperone DnaK Is a Source of Mutational Robustness. Genome Biol. Evol. 2016, 8, 2979–2991. [Google Scholar] [CrossRef]
- Whitesell, L.; Lindquist, S.L. HSP90 and the Chaperoning of Cancer. Nat. Rev. Cancer 2005, 5, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Maisnier-Patin, S.; Roth, J.R.; Fredriksson, Å.; Nyström, T.; Berg, O.G.; Andersson, D.I. Genomic Buffering Mitigates the Effects of Deleterious Mutations in Bacteria. Nat. Genet. 2005, 37, 1376–1379. [Google Scholar] [CrossRef]
- Sala, C.; Haouz, A.; Saul, F.A.; Miras, I.; Rosenkrands, I.; Alzari, P.M.; Cole, S.T. Genome-Wide Regulon and Crystal Structure of BlaI (Rv1846c) from Mycobacterium tuberculosis. Mol. Microbiol. 2009, 71, 1102–1116. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.; Gong, W.; Wu, X. Advances in Key Drug Target Identification and New Drug Development for Tuberculosis. Biomed. Res. Int. 2022, 2022, 5099312. [Google Scholar] [CrossRef]
- Ezquerra-Aznárez, J.M.; Degiacomi, G.; Gašparovič, H.; Stelitano, G.; Sammartino, J.C.; Korduláková, J.; Governa, P.; Manetti, F.; Pasca, M.R.; Chiarelli, L.R.; et al. The Veterinary Anti-Parasitic Selamectin Is a Novel Inhibitor of the Mycobacterium tuberculosis DprE1 Enzyme. Int. J. Mol. Sci. 2022, 23, 771. [Google Scholar] [CrossRef] [PubMed]
- Hosfelt, J.; Richards, A.; Zheng, M.; Adura, C.; Nelson, B.; Yang, A.; Fay, A.; Resager, W.; Ueberheide, B.; Glickman, J.F.; et al. An Allosteric Inhibitor of Bacterial Hsp70 Chaperone Potentiates Antibiotics and Mitigates Resistance. Cell Chem. Biol. 2022, 29, 854–869.e9. [Google Scholar] [CrossRef]
- Gestwicki, J.E. Multi-Protein Complexes as Drug Targets. Cell Chem. Biol. 2022, 29, 713–715. [Google Scholar] [CrossRef]
- Pruitt, K.D. NCBI Reference Sequence (RefSeq): A Curated Non-Redundant Sequence Database of Genomes, Transcripts and Proteins. Nucleic Acids Res. 2004, 33, D501–D504. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING Database in 2021: Customizable Protein–Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, S.; Li, F.; Zhou, Y.; Zhang, Y.; Wang, Z.; Zhang, R.; Zhu, J.; Ren, Y.; Tan, Y.; et al. Therapeutic Target Database 2020: Enriched Resource for Facilitating Research and Early Development of Targeted Therapeutics. Nucleic Acids Res. 2019, 48, D1031–D1041. [Google Scholar] [CrossRef] [PubMed]
- Hekmati, Z.; Aalami, A.; Zahiri, J. Using Ortholog Information from Multiple Species to Predict Barley Protein-Protein Interaction Network. Plant Gene 2022, 30, 100355. [Google Scholar] [CrossRef]
- Alanis-Lobato, G.; Mier, P.; Andrade-Navarro, M.A. Manifold Learning and Maximum Likelihood Estimation for Hyperbolic Network Embedding. Appl. Netw. Sci. 2016, 1, 10. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
DT_a DT_b | dH2 | Pathway of DT_a | Pathway of DT_b | Common Drug |
---|---|---|---|---|
embB/embA | 4.95 | mtu00572: Arabinogalactan biosynthesis—Mycobacterium | mtu00572: Arabinogalactan biosynthesis—Mycobacterium | Ethambutol |
fbiC/fbiB | 9.49 | mtu01100: Metabolic pathways, mtu00680: Methane metabolism, mtu01120: Microbial metabolism in diverse environments | mtu01100: Metabolic pathways, mtu01120: Microbial metabolism in diverse environments, mtu00680: Methane metabolism | Delamanid, Pretomanid |
ddl/alr | 12.38 | mtu00470: D-Amino acid metabolism, mtu00550: Peptidoglycan biosynthesis, mtu01502: Vancomycin resistance, mtu01100: Metabolic pathways | mtu01502: Vancomycin resistance, mtu01100: Metabolic pathways, mtu00470: D-Amino acid metabolism | Cycloserine, Terizidone |
rpoC/rpoB | 14.21 | mtu03020: RNA polymerase | mtu03020: RNA polymerase | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine |
rpoZ/rpoC | 14.63 | mtu03020: RNA polymerase | mtu03020: RNA polymerase | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine |
rpoB/rpoA | 14.65 | mtu03020: RNA polymerase | mtu03020: RNA polymerase | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine |
rplD/rplC | 15.30 | mtu03010: Ribosome | mtu03010: Ribosome | Linezolid, Sutezolid |
rpoC/rpoA | 16.85 | mtu03020: RNA polymerase | mtu03020: RNA polymerase | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine |
rpoZ/rpoB | 18.16 | mtu03020: RNA polymerase | mtu03020: RNA polymerase | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine |
rpoZ/rpoA | 20.68 | mtu03020: RNA polymerase | mtu03020: RNA polymerase | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine |
folC/ribD | 23.12 | mtu00790: Folate biosynthesis, mtu01240: Biosynthesis of cofactors, mtu01100: Metabolic pathways | mtu01240: Biosynthesis of cofactors, mtu02024: Quorum sensing, mtu00740: Riboflavin metabolism, mtu01100: Metabolic pathways, mtu01110: Biosynthesis of secondary metabolites | Aminosalicylic acid |
glcB/menB | 25.86 | mtu01120: Microbial metabolism in diverse environments, mtu01200: Carbon metabolism, mtu00630: Glyoxylate and dicarboxylate metabolism, mtu01110: Biosynthesis of secondary metabolites, mtu01100: Metabolic pathways, mtu00620: Pyruvate metabolism | mtu01110: Biosynthesis of secondary metabolites, mtu00130: Ubiquinone and other terpenoid-quinone biosynthesis, mtu01240: Biosynthesis of cofactors, mtu01100: Metabolic pathways | Coenzyme A |
fbiB/fbiA | 25.96 | mtu01100: Metabolic pathways, mtu01120: Microbial metabolism in diverse environments, mtu00680: Methane metabolism | mtu01240: Biosynthesis of cofactors, mtu01120: Microbial metabolism in diverse environments, mtu01100: Metabolic pathways, mtu00680: Methane metabolism | Delamanid, Pretomanid |
fbiC/fbiA | 26.21 | mtu01100: Metabolic pathways, mtu00680: Methane metabolism, mtu01120: Microbial metabolism in diverse environments | mtu01240: Biosynthesis of cofactors, mtu01120: Microbial metabolism in diverse environments, mtu01100: Metabolic pathways, mtu00680: Methane metabolism | Delamanid, Pretomanid |
DT_a DT_b | dH2 | Common Pathway | Common GO Term | Drug_a | Drug_b |
---|---|---|---|---|---|
rpsA/rpsL | 9.89 | mtu03010: Ribosome | 5 gene expression (GO:0010467) | Pyrazinamide | Amikacin, Kanamycin, Ribostamycin, Streptomycin |
rpsL/rplC | 13.80 | mtu03010: Ribosome | 5 gene expression (GO:0010467) | Amikacin, Kanamycin, Ribostamycin, Streptomycin | Linezolid, Sutezolid |
rpsL/rplD | 14.04 | mtu03010: Ribosome | 5 gene expression (GO:0010467) | Amikacin, Kanamycin, Ribostamycin, Streptomycin | Linezolid, Sutezolid |
rpsA/rplD | 14.32 | mtu03010: Ribosome | 5 gene expression (GO:0010467) | Pyrazinamide | Linezolid, Sutezolid |
rpsA/rplC | 14.49 | mtu03010: Ribosome | 5 gene expression (GO:0010467) | Pyrazinamide | Linezolid, Sutezolid |
pbpB/ddl | 17.04 | mtu01501: beta-Lactam resistance, mtu00550: Peptidoglycan biosynthesis | 1 aminoglycan biosynthetic process (GO:0006023) | Amoxicillin, Imipenem, Meropenem | Cycloserine, Terizidone |
DT_a DT_b | dH2 | Pathway of DT_a | Pathway of DT_b | Common Drug |
---|---|---|---|---|
embC/embA | 16.62 | mtu00571: Lipoarabinomannan (LAM) biosynthesis | mtu00572: Arabinogalactan biosynthesis—Mycobacterium | Ethambutol |
embC/embB | 16.63 | mtu00571: Lipoarabinomannan (LAM) biosynthesis | mtu00572: Arabinogalactan biosynthesis—Mycobacterium | Ethambutol |
rpsA/panD | 25.32 | mtu03010: Ribosome | mtu01100: Metabolic pathways, mtu01110: Biosynthesis of secondary metabolites, mtu00410: beta-Alanine metabolism, mtu00770: Pantothenate and CoA biosynthesis, mtu01240: Biosynthesis of cofactors | Pyrazinamide |
thyA/ribD | 25.60 | mtu01232: Nucleotide metabolism, mtu01100: Metabolic pathways, mtu00240: Pyrimidine metabolism, mtu00670: One carbon pool by folate | mtu01240: Biosynthesis of cofactors, mtu02024: Quorum sensing, mtu00740: Riboflavin metabolism, mtu01100: Metabolic pathways, mtu01110: Biosynthesis of secondary metabolites | Aminosalicylic acid |
folC/thyA | 27.73 | mtu00790: Folate biosynthesis, mtu01240: Biosynthesis of cofactors, mtu01100: Metabolic pathways | mtu01232: Nucleotide metabolism, mtu01100: Metabolic pathways, mtu00240: Pyrimidine metabolism, mtu00670: One carbon pool by folate | Aminosalicylic acid |
gmk/citE | 28.53 | mtu01100: Metabolic pathways, mtu01232: Nucleotide metabolism, mtu00230: Purine metabolism | mtu02020: Two-component system | Formic acid |
rmlA/tmk | 28.96 | mtu00541: O-Antigen nucleotide sugar biosynthesis, mtu00521: Streptomycin biosynthesis, mtu00523: Polyketide sugar unit biosynthesis, mtu00525: Acarbose and validamycin biosynthesis, mtu01250: Biosynthesis of nucleotide sugars, mtu01110: Biosynthesis of secondary metabolites, mtu01100: Metabolic pathways | mtu01100: Metabolic pathways, mtu00240: Pyrimidine metabolism, mtu01232: Nucleotide metabolism | Thymidine |
DT_a DT_b | dH2 | Pathway of DT_a | Pathway of DT_b | Drug_a | Drug_b |
---|---|---|---|---|---|
rpoA/rplD | 12.47 | mtu03020: RNA polymerase | mtu03010: Ribosome | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine | Linezolid, Sutezolid |
rpoA/rpsL | 13.97 | mtu03020: RNA polymerase | mtu03010: Ribosome | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine | Amikacin, Kanamycin, Ribostamycin, Streptomycin |
rpoA/rpsA | 14.34 | mtu03020: RNA polymerase | mtu03010: Ribosome | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine | Pyrazinamide |
rpoA/rplC | 14.72 | mtu03020: RNA polymerase | mtu03010: Ribosome | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine | Linezolid, Sutezolid |
rpoB/rplC | 14.93 | mtu03020: RNA polymerase | mtu03010: Ribosome | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine | Linezolid, Sutezolid |
rpoB/rpsL | 15.35 | mtu03020: RNA polymerase | mtu03010: Ribosome | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine | Amikacin, Kanamycin, Ribostamycin, Streptomycin |
rpoB/rplD | 15.73 | mtu03020: RNA polymerase | mtu03010: Ribosome | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine | Linezolid, Sutezolid |
rpoB/rpsA | 15.87 | mtu03020: RNA polymerase | mtu03010: Ribosome | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine | Pyrazinamide |
thyA/katG | 15.94 | mtu01232: Nucleotide metabolism, mtu01100: Metabolic pathways, mtu00240: Pyrimidine metabolism, mtu00670: One carbon pool by folate | mtu00360: Phenylalanine metabolism, mtu00380: Tryptophan metabolism, mtu01110: Biosynthesis of secondary metabolites, mtu00983: Drug metabolism—other enzymes, mtu01100: Metabolic pathways | Aminosalicylic acid | Ethionamide, Isoniazid |
fas/rpoB | 16.23 | mtu01100: Metabolic pathways, mtu00061: Fatty acid biosynthesis, mtu01212: Fatty acid metabolism | mtu03020: RNA polymerase | Pretomanid, Pyrazinamide | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine |
rpoC/rplC | 16.57 | mtu03020: RNA polymerase | mtu03010: Ribosome | Rifabutin, Rifalazil, Rifampicin, Rifamycin, Rifapentine | Linezolid, Sutezolid |
DT_a DT_b | dH2 | ds | Pathway of DT_a | Pathway of DT_b | Drug_a | Drug_b |
---|---|---|---|---|---|---|
atpE/blaC | 18.19 | 3 | mtu01110: Biosynthesis of secondary metabolites, mtu00311: Penicillin and cephalosporin biosynthesis, mtu01501: beta-Lactam resistance | mtu00190: Oxidative phosphorylation, mtu01100: Metabolic pathways | Bedaquiline | Amoxicillin |
aac/fas | 20.29 | 4 | mtu01100: Metabolic pathways, mtu00061: Fatty acid biosynthesis, mtu01212: Fatty acid metabolism | NA | Coenzyme A, Ribostamycin | Pretomanid, Pyrazinamide |
lsr2/rmlC | 25.44 | 5 | mtu00521: Streptomycin biosynthesis, mtu00523: Polyketide sugar unit biosynthesis, mtu00541: O-Antigen nucleotide sugar biosynthesis, mtu01100: Metabolic pathways, mtu01250: Biosynthesis of nucleotide sugars, mtu01110: Biosynthesis of secondary metabolites | NA | Pretomanid | S,S-(2-Hydroxyethyl) Thiocysteine |
fbiA/ponA1 | 27.19 | 6 | NA | mtu01240: Biosynthesis of cofactors, mtu01120: Microbial metabolism in diverse environments, mtu01100: Metabolic pathways, mtu00680: Methane metabolism | Delamanid, Pretomanid | Amoxicillin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahra, N.u.A.; Vagiona, A.-C.; Uddin, R.; Andrade-Navarro, M.A. Selection of Multi-Drug Targets against Drug-Resistant Mycobacterium tuberculosis XDR1219 Using the Hyperbolic Mapping of the Protein Interaction Network. Int. J. Mol. Sci. 2023, 24, 14050. https://doi.org/10.3390/ijms241814050
Zahra NuA, Vagiona A-C, Uddin R, Andrade-Navarro MA. Selection of Multi-Drug Targets against Drug-Resistant Mycobacterium tuberculosis XDR1219 Using the Hyperbolic Mapping of the Protein Interaction Network. International Journal of Molecular Sciences. 2023; 24(18):14050. https://doi.org/10.3390/ijms241814050
Chicago/Turabian StyleZahra, Noor ul Ain, Aimilia-Christina Vagiona, Reaz Uddin, and Miguel A. Andrade-Navarro. 2023. "Selection of Multi-Drug Targets against Drug-Resistant Mycobacterium tuberculosis XDR1219 Using the Hyperbolic Mapping of the Protein Interaction Network" International Journal of Molecular Sciences 24, no. 18: 14050. https://doi.org/10.3390/ijms241814050
APA StyleZahra, N. u. A., Vagiona, A. -C., Uddin, R., & Andrade-Navarro, M. A. (2023). Selection of Multi-Drug Targets against Drug-Resistant Mycobacterium tuberculosis XDR1219 Using the Hyperbolic Mapping of the Protein Interaction Network. International Journal of Molecular Sciences, 24(18), 14050. https://doi.org/10.3390/ijms241814050