Genetic Variants Identified by Whole Exome Sequencing in a Large Italian Family with High Plasma Levels of Factor VIII and Von Willebrand Factor
Abstract
:1. Introduction
2. Results
2.1. Patient Data
2.2. WES Reveals Variants Associated with High Levels of FVIII and VWF
(A) | |||||||||||||||
PredictSNP2 | |||||||||||||||
Position a | Variant | dbSNP ID | MAF b | Gene | RefSeq | cDNA | Protein | Type of Variant | CADD | DANN | FATHMM | FunSeq2 | GWAVA | Final Output | ClinVar |
156714137 | G>A | rs2288068 | 0.093 | CYFIP2 | NM_001037333 | c.207 + 20G>A | / | intronic | neutral | deleterious | neutral | deleterious | deleterious | neutral | - |
156727692 | T>C | rs3815829 | 0.082 | CYFIP2 | NM_001037333 | c.388 − 31T>C | / | intronic | neutral | neutral | neutral | - | neutral | neutral | - |
156766037 | A>G | rs3734027 | 0.465 | CYFIP2 | NM_001037333 | c.2386 − 28A>G | / | intronic | deleterious | neutral | - | deleterious | neutral | deleterious | - |
156770209 | G>A | rs10214194 | 0.229 | FNDC9 | NM_001001343 | c.336C>T | p.S112= | synonymous | deleterious | neutral | neutral | neutral | neutral | neutral | - |
(B) | |||||||||||||||
PredictSNP2 | |||||||||||||||
Position a | Variant | dbSNP ID | MAF b | Gene | RefSeq | cDNA | Protein | Type of Variant | CADD | DANN | FATHMM | FunSeq2 | GWAVA | Final Output | ClinVar |
148808474 | C>T | rs13158382 | 0.037 | MIR143/145 | NR_029684 | c.−112C>T | / | upstream | deleterious | deleterious | neutral | deleterious | neutral | neutral | - |
149003532 | C>A | - | - | ARHGEF37 | NM_001001669 | c.1336 − 43C>A | / | intronic | deleterious | neutral | - | - | deleterious | neutral | - |
149776232 | C>T | rs15251 | 0.219 | TCOF1 | NM_001135243 | c.4169C>T | p.A1390V | missense | neutral | deleterious | neutral | neutral | - | neutral | benign |
149776355 | G>C | rs45491898 | 0.016 | TCOF1 | NM_001135243 | c.4292G>C | p.G1431A | missense | neutral | deleterious | neutral | neutral | - | neutral | likely benign |
149919778 | G>A | rs61732050 | 0.041 | NDST1 | NM_001543 | c.1701G>A | p.A567= | synonymous | neutral | neutral | neutral | neutral | neutral | neutral | - |
149932712 | G>A | rs62383060 | 0.001 | NDST1 | NM_001543 | c.2530 − 63G>A | / | intronic | deleterious | neutral | neutral | neutral | neutral | neutral | - |
150578574 | A>G | rs3734038 | 0.195 | CCDC69 | NM_015621 | c.303T>C | p.N101= | synonymous | neutral | neutral | neutral | neutral | neutral | neutral | - |
150603444 | C>G | rs248461 | 0.295 | CCDC69 | NM_015621 | c.−40487 + 40G>C | / | intronic | neutral | neutral | neutral | deleterious | neutral | neutral | - |
150666933 | C>A | rs375396 | 0.218 | SLC36A3 | NM_001145017 | c.705G>T | p.L235= | synonymous | neutral | neutral | neutral | neutral | neutral | neutral | - |
151046928 | C>T | rs729853 | 0.168 | SPARC | NM_003118 | c.585 + 100G>A | / | intronic | neutral | neutral | neutral | - | neutral | neutral | - |
151054137 | A>C | rs2116780 | 0.170 | SPARC | NM_003118 | c.120 + 36T>G | / | intronic | neutral | neutral | neutral | - | neutral | neutral | - |
153783753 | C>T | rs6580076 | 0.242 | GALNT10 | NM_198321 | c.1146C>T | p.A382= | synonymous | neutral | neutral | neutral | neutral | neutral | neutral | - |
154135386 | G>A | rs78112077 | 0.054 | LARP1 | NM_015315 | c.206 − 34499G>A | / | intronic | neutral | deleterious | - | neutral | neutral | deleterious | - |
156816521 | C>T | rs142867180 | 0.012 | CYFIP2 | NM_001037333 | c.3446 + 86C>T | / | intronic | deleterious | neutral | neutral | deleterious | neutral | neutral | - |
157158414 | C>A | rs2270819 | 0.115 | THG1L | NM_017872 | c.−35C>A | / | 5′UTR | neutral | deleterious | deleterious | - | deleterious | deleterious | - |
157158439 | C>A | rs2270818 | 0.115 | THG1L | NM_017872 | c.−10C>A | / | 5′UTR | deleterious | neutral | deleterious | deleterious | deleterious | deleterious | - |
2.3. In Silico Prediction of Variants Identified by WES
2.4. Analysis of Intronic Variants in CYFIP2 and LARP1
2.5. Analysis of 5′UTR Variants in THG1L
2.6. Analysis of the Variant in the Promoter of MIR143/145
2.7. Impact of the rs13158382 Variant on miRNA Synthesis and Processing
3. Discussion
4. Materials and Methods
4.1. Patients and Blood Samples
4.2. Plasma Measurements
4.3. DNA and RNA Extraction
4.4. WES and Data Analysis
4.5. Prioritization of Variants and Genes
4.6. First-Strand cDNA Synthesis and qPCR
4.7. In Silico Analysis of Public Expression Data
4.8. Secondary Structure Prediction
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terraube, V.; O’Donnell, J.S.; Jenkins, P.V. Factor VIII and von Willebrand factor interaction: Biological, clinical and therapeutic importance. Haemophilia 2010, 16, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Kyrle, P.A.; Minar, E.; Hirschl, M.; Bialonczyk, C.; Stain, M.; Schneider, B.; Weltermann, A.; Speiser, W.; Lechner, K.; Eichinger, S. High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N. Engl. J. Med. 2000, 343, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.W.; Cushman, M.; Rosamond, W.D.; Heckbert, S.R.; Tracy, R.P.; Aleksic, N.; Folsom, A.R. Coagulation factors, inflammation markers, and venous thromboembolism: The longitudinal investigation of thromboembolism etiology (LITE). Am. J. Med. 2002, 113, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Pépin, M.; Kleinjan, A.; Hajage, D.; Büller, H.R.; Di Nisio, M.; Kamphuisen, P.W.; Salomon, L.; Veyradier, A.; Stepanian, A.; Mahé, I. ADAMTS-13 and von Willebrand factor predict venous thromboembolism in patients with cancer. J. Thromb. Haemost. 2016, 14, 306–315. [Google Scholar] [CrossRef]
- Cohen, W.; Castelli, C.; Suchon, P.; Bouvet, S.; Aillaud, M.F.; Brunet, D.; Barthet, M.C.; Alessi, M.C.; Trégouët, D.A.; Morange, P.E. Risk assessment of venous thrombosis in families with known hereditary thrombophilia: The MARseilles-Nimes prediction model. J. Thromb. Haemost. 2014, 12, 138–146. [Google Scholar] [CrossRef]
- Edvardsen, M.S.; Hindberg, K.; Hansen, E.S.; Morelli, V.M.; Ueland, T.; Aukrust, P.; Brækkan, S.K.; Evensen, L.H.; Hansen, J.B. Plasma levels of von Willebrand factor and future risk of incident venous thromboembolism. Blood Adv. 2021, 5, 224–232. [Google Scholar] [CrossRef]
- Virchow, R. Thrombose und Embolie. Gefässentzündung und Septische Infektion. In Gesammelte Abhandlungen zur Wissenschaftlichen Medicin; Von Meidinger & Sohn: Frankfurt am Main, Germany, 1856; pp. 219–732. [Google Scholar]
- Bagot, C.N.; Arya, R. Virchow and his triad: A question of attribution. Br. J. Haematol. 2008, 143, 180–190. [Google Scholar] [CrossRef]
- Khan, F.; Tritschler, T.; Kahn, S.R.; Rodger, M.A. Venous thromboembolism. Lancet 2021, 398, 64–77. [Google Scholar] [CrossRef]
- Lindström, S.; Wang, L.; Smith, E.N.; Gordon, W.; van Hylckama Vlieg, A.; de Andrade, M.; Brody, J.A.; Pattee, J.W.; Haessler, J.; Brumpton, B.M.; et al. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. Blood 2019, 134, 1645–1657. [Google Scholar] [CrossRef]
- Thibord, F.; Klarin, D.; Brody, J.A.; Chen, M.H.; Levin, M.G.; Chasman, D.I.; Goode, E.L.; Hveem, K.; Teder-Laving, M.; Martinez-Perez, A.; et al. Cross-Ancestry Investigation of Venous Thromboembolism Genomic Predictors. Circulation 2022, 146, 1225–1242. [Google Scholar] [CrossRef]
- Jenkins, P.V.; Rawley, O.; Smith, O.P.; O’Donnell, J.S. Elevated factor VIII levels and risk of venous thrombosis. Br. J. Haematol. 2012, 157, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Saleem, T.; Burr, B.; Robinson, J.; Degelman, K.; Stokes, J.; Noel, C.; Fuller, R. Elevated plasma factor VIII levels in a mixed patient population on anticoagulation and past venous thrombosis. J. Vasc. Surg. Venous Lymphat. Disord. 2021, 9, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Kraaijenhagen, R.A.; in’t Anker, P.S.; Koopman, M.M.; Reitsma, P.H.; Prins, M.H.; van den Ende, A.; Büller, H.R. High plasma concentration of factor VIIIc is a major risk factor for venous thromboembolism. Thromb. Haemost. 2000, 83, 5–9. [Google Scholar] [PubMed]
- Cristina, L.; Benilde, C.; Michela, C.; Mirella, F.; Giuliana, G.; Gualtiero, P. High plasma levels of factor VIII and risk of recurrence of venous thromboembolism. Br. J. Haematol. 2004, 124, 504–510. [Google Scholar] [CrossRef]
- Soria, J.M.; Almasy, L.; Souto, J.C.; Buil, A.; Martinez-Sanchez, E.; Mateo, J.; Borrell, M.; Stone, W.H.; Lathrop, M.; Fontcuberta, J.; et al. A new locus on chromosome 18 that influences normal variation in activated protein C resistance phenotype and factor VIII activity and its relation to thrombosis susceptibility. Blood 2003, 101, 163–167. [Google Scholar] [CrossRef]
- Swystun, L.L.; Lillicrap, D. Genetic regulation of plasma von Willebrand factor levels in health and disease. J. Thromb. Haemost. 2018, 16, 2375–2390. [Google Scholar] [CrossRef]
- Sabater-Lleal, M.; Huffman, J.E.; de Vries, P.S.; Marten, J.; Mastrangelo, M.A.; Song, C.; Pankratz, N.; Ward-Caviness, C.K.; Yanek, L.R.; Trompet, S.; et al. Genome-wide association transethnic meta-analyses identifies novel associations regulating coagulation factor VIII and von Willebrand factor plasma levels. Circulation 2019, 139, 620–635. [Google Scholar] [CrossRef]
- Smith, N.L.; Rice, K.M.; Bovill, E.G.; Cushman, M.; Bis, J.C.; McKnight, B.; Lumley, T.; Glazer, N.L.; van Hylckama Vlieg, A.; Tang, W.; et al. Genetic variation associated with plasma von Willebrand factor levels and the risk of incident venous thrombosis. Blood 2011, 117, 6007–6011. [Google Scholar] [CrossRef]
- Biguzzi, E.; Castelli, F.; Lijfering, W.M.; Cannegieter, S.C.; Eikenboom, J.; Rosendaal, F.R.; van Hylckama Vlieg, A. Rise of levels of von Willebrand factor and factor VIII with age: Role of genetic and acquired risk factors. Thromb. Res. 2021, 197, 172–178. [Google Scholar] [CrossRef]
- Shima, M.; Fujimura, Y.; Nishiyama, T.; Tsujiuchi, T.; Narita, N.; Matsui, T.; Titani, K.; Katayama, M.; Yamamoto, F.; Yoshioka, A. ABO blood group genotype and plasma von Willebrand factor in normal individuals. Vox Sang. 1995, 68, 236–240. [Google Scholar] [CrossRef]
- Samai, A.; Monlezun, D.; Shaban, A.; George, A.; Dowell, L.; Kruse-Jarres, R.; Schluter, L.; El Khoury, R.; Martin-Schild, S. Von Willebrand factor drives the association between elevated factor VIII and poor outcomes in patients with ischemic stroke. Stroke 2014, 45, 2789–2791. [Google Scholar] [CrossRef]
- Lippi, G.; Franchini, M.; Salvagno, G.L.; Montagnana, M.; Poli, G.; Guidi, G.C. Correlation between von Willebrand factor antigen, von Willebrand factor ristocetin cofactor activity and factor VIII activity in plasma. J. Thromb. Thrombolysis 2008, 26, 150–153. [Google Scholar] [CrossRef]
- Huffman, J.E.; de Vries, P.S.; Morrison, A.C.; Sabater-Lleal, M.; Kacprowski, T.; Auer, P.L.; Brody, J.A.; Chasman, D.I.; Chen, M.-H.; Guo, X.; et al. Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF. Blood 2015, 126, e19–e29. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, J.M.; Auer, P.L.; Morrison, A.C.; Jiao, S.; Wei, P.; Haessler, J.; Fox, K.; McGee, S.R.; Smith, J.D.; Carlson, C.S.; et al. Common and rare von Willebrand factor (VWF) coding variants, VWF levels, and factor VIII levels in African Americans: The NHLBI Exome Sequencing Project. Blood 2013, 122, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.L.; Chen, M.H.; Dehghan, A.; Strachan, D.P.; Basu, S.; Soranzo, N.; Hayward, C.; Rudan, I.; Sabater-Lleal, M.; Bis, J.C.; et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation 2010, 121, 1382–1392. [Google Scholar] [CrossRef]
- Harfouche, R.; Hentschel, D.M.; Piecewicz, S.; Basu, S.; Print, C.; Eavarone, D.; Kiziltepe, T.; Sasisekharan, R.; Sengupta, S. Glycome and transcriptome regulation of vasculogenesis. Circulation 2009, 120, 1883–1892. [Google Scholar] [CrossRef]
- van Hooren, K.W.; van Breevoort, D.; Fernandez-Borja, M.; Meijer, A.B.; Eikenboom, J.; Bierings, R.; Voorberg, J. Phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 1 regulates epinephrine-induced exocytosis of Weibel-Palade bodies. J. Thromb. Haemost. 2014, 12, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.N.; Yan, Y.; Chen, Z.Z.; Chen, J.; Tang, F.J.; Xie, H.Q.; Tang, S.J.; Cao, K.; Zhou, X.; Wang, A.J.; et al. LncRNA TUG1 regulates FGF1 to enhance endothelial differentiation of adipose-derived stem cells by sponging miR-143. J. Cell. Biochem. 2019, 120, 19087–19097. [Google Scholar] [CrossRef] [PubMed]
- Arderiu, G.; Peña, E.; Aledo, R.; Juan-Babot, O.; Crespo, J.; Vilahur, G.; Oñate, B.; Moscatiello, F.; Badimon, L. MicroRNA-145 Regulates the Differentiation of Adipose Stem Cells Toward Microvascular Endothelial Cells and Promotes Angiogenesis. Circ. Res. 2019, 125, 74–89, Erratum in Circ. Res. 2020, 127, e139. [Google Scholar] [CrossRef]
- Wu, S.; Sun, H.; Sun, B. MicroRNA-145 is involved in endothelial cell dysfunction and acts as a promising biomarker of acute coronary syndrome. Eur. J. Med. Res. 2020, 25, 2. [Google Scholar] [CrossRef]
- Chen, R.; Chen, S.; Liao, J.; Chen, X.; Xu, X. MiR-145 facilitates proliferation and migration of endothelial progenitor cells and recanalization of arterial thrombosis in cerebral infarction mice via JNK signal pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 13770–13776. [Google Scholar]
- Sennblad, B.; Basu, S.; Mazur, J.; Suchon, P.; Martinez-Perez, A.; van Hylckama Vlieg, A. Genome-wide association study with additional genetic and post-transcriptional analyses reveals novel regulators of plasma factor XI levels. Hum. Mol. Genet. 2017, 26, 637–649. [Google Scholar] [CrossRef]
- Sahu, A.; Jha, P.K.; Prabhakar, A.; Singh, H.D.; Gupta, N.; Chatterjee, T.; Tyagi, T.; Sharma, S.; Kumari, B.; Singh, S.; et al. MicroRNA-145 Impedes Thrombus Formation via Targeting Tissue Factor in Venous Thrombosis. EBioMedicine 2017, 26, 175–186. [Google Scholar] [CrossRef]
- Meiring, M.; Allers, W.; Le Roux, E. Tissue factor: A potent stimulator of Von Willebrand factor synthesis by human umbilical vein endothelial cells. Int. J. Med. Sci. 2016, 13, 759–764. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Wu, N.; Leong, M.C.; Zhang, W.; Ye, Z.; Li, R.; Huang, J.; Zhang, Z.; Li, L.; Yao, X.; et al. miR-145 improves metabolic inflammatory disease through multiple pathways. J. Mol. Cell Biol. 2020, 12, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tao, B.; Fan, S.; Pu, Y.; Xia, H.; Xu, L. MicroRNA-145 Protects against Myocardial Ischemia Reperfusion Injury via CaMKII-Mediated Antiapoptotic and Anti-Inflammatory Pathways. Oxid. Med. Cell Longev. 2019, 2019, 8948657. [Google Scholar] [CrossRef] [PubMed]
- Kilic, I.D.; Dodurga, Y.; Uludag, B.; Alihanoglu, Y.I.; Yildiz, B.S.; Enli, Y.; Secme, M.; Bostancı, H.E. MicroRNA -143 and -223 in obesity. Gene 2015, 560, 140–142. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yin, R.; Zhu, X.; Yang, S.; Wang, J.; Zhou, Z.; Pan, X.; Ma, A. Mesenchymal stem-cell-derived exosomal miR-145 inhibits atherosclerosis by targeting JAM-A. Mol. Ther. Nucleic Acids 2020, 23, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, S.; Li, Q.; Zhang, Y.; Fu, Y.; Yang, N.; Zeng, J.; Tan, T.; Hu, J.; Li, F.; et al. circ_0001274 Competitively Binds miR-143-3p to Upregulate VWF Expression to Improve Acute Traumatic Coagulopathy. Oxid. Med. Cell. Longev. 2023, 2023, 9650323. [Google Scholar] [CrossRef]
- Vacante, F.; Denby, L.; Sluimer, J.C.; Baker, A.H. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vasc. Pharmacol. 2019, 112, 24–30. [Google Scholar] [CrossRef]
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef]
- Suresh, P.S.; Venkatesh, T.; Tsutsumi, R. In silico analysis of polymorphisms in microRNAs that target genes affecting aerobic glycolysis. Ann. Transl. Med. 2016, 4, 69. [Google Scholar] [PubMed]
- Chu, H.; Zhong, D.; Tang, J.; Li, J.; Xue, Y.; Tong, N.; Qin, C.; Yin, C.; Zhang, Z.; Wang, M. A functional variant in miR-143 promoter contributes to prostate cancer risk. Arch. Toxicol. 2016, 90, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Sun, R.; Li, L.; Yuan, F.; Liang, W.; Wang, L.; Nie, X.; Chen, P.; Zhang, L.; Gao, L. A Functional Polymorphism in the Promoter of MiR-143/145 Is Associated With the Risk of Cervical Squamous Cell Carcinoma in Chinese Women: A Case-Control Study. Medicine 2015, 94, e1289. [Google Scholar] [CrossRef] [PubMed]
- Cammaerts, S.; Strazisar, M.; Dierckx, J.; Del Favero, J.; De Rijk, P. miRVaS: A tool to predict the impact of genetic variants on miRNAs. Nucleic Acids Res. 2016, 44, e23. [Google Scholar] [CrossRef]
- Lappalainen, T.; Sammeth, M.; Friedländer, M.R.; ‘t Hoen, P.A.; Monlong, J.; Rivas, M.A.; Gonzàlez-Porta, M.; Kurbatova, N.; Griebel, T.; Ferreira, P.G.; et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 2013, 501, 506–511. [Google Scholar] [CrossRef]
- Pan, J.; Dinh, T.T.; Rajaraman, A.; Lee, M.; Scholz, A.; Czupalla, C.J.; Kiefel, H.; Zhu, L.; Xia, L.; Morser, J.; et al. Patterns of expression of factor VIII and von Willebrand factor by endothelial cell subsets in vivo. Blood 2016, 128, 104–109. [Google Scholar] [CrossRef]
- Barrowcliffe, T.W. Laboratory testing and standardisation. Haemophilia 2013, 19, 799–804. [Google Scholar] [CrossRef]
- Palla, R.; Valsecchi, C.; Bajetta, M.; Spreafico, M.; De Cristofaro, R.; Peyvandi, F. Evaluation of assay methods to measure plasma ADAMTS13 activity in thrombotic microangiopathies. Thromb. Haemost. 2011, 105, 381–385. [Google Scholar]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 25 January 2019).
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Li, M.X.; Gui, H.S.; Kwan, J.S.; Bao, S.Y.; Sham, P.C. A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res. 2012, 40, e53. [Google Scholar] [CrossRef] [PubMed]
- Bendl, J.; Musil, M.; Štourač, J.; Zendulka, J.; Damborský, J.; Brezovský, J. PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions. PLoS Comput. Biol. 2016, 12, e1004962. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Qian, J. EnhancerAtlas 2.0: An updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res. 2020, 48, D58–D64. [Google Scholar] [CrossRef]
- Stelzer, G.; Plaschkes, I.; Oz-Levi, D.; Alkelai, A.; Olender, T.; Zimmerman, S.; Twik, M.; Belinky, F.; Fishilevich, S.; Nudel, R.; et al. VarElect: The phenotype-based variation prioritizer of the GeneCards Suite. BMC Genom. 2016, 17 (Suppl. S2), 444. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
Subject a | Sex | Age at First Visit | Blood Group | BMI | Thrombosis | Comorbidity b | Therapy | FVIII:C (51–147%) | FVIII:Ag (51–147%) | VWF:Ag (40–165%) c (55–169%) d | VWF:RCo (41–160%) c (53–168%) d |
---|---|---|---|---|---|---|---|---|---|---|---|
Proband II-8 | F | 51 | B | 40.1 | Deep vein thrombosis Superficial thrombophlebitis | Type III obesity Diabetes Dyslipidemia | Semaglutide Ezetimibe Vitamin D | 415 389 398 549 239 269 | - - - 520 - - | - - - 308 151 210 | - - - 209 133 157 |
II-2 | M | 55 | B | 29.1 | no | Overweight Diabetes | no | 180 | 195 | 185 | 120 |
II-3 | F | 65 | B | 35.2 | Pulmonary embolism Superficial thrombophlebitis Iliac artery stent | Type II obesity Diabetes Atrial fibrillation | Insulin Vitamin K antagonist | 317 | 336 | 295 | 234 |
II-5 | M | 63 | B | 29.4 | Superficial thrombophlebitis | Overweight Diabetes Hypertension Prostate carcinoma | Metformina Antihypertensive drug | 397 225 | 458 - | 390 210 | 307 157 |
II-6 | M | 57 | O | 19.0 | no | HIV | Anti-retroviral drug | 140 | 151 | 117 | 117 |
II-9 | F | 66 | O | 32.0 | Iliac artery thrombosis | Type I obesity | Aspirin | 188 189 | 194 - | 194 203 | 145 176 |
III-1 | F | 12 | B | - | - | - | - | 142 | - | 111 | 103 |
III-2 | M | 19 | B | - | no | no | no | 101 | - | 89 | 72 |
III-3 | M | 10 | B | - | - | - | - | 200 | - | 227 | 146 |
III-5 | F | 31 | O | 25.7 | no | Overweight | no | 198 | 251 | 145 | 108 |
III-7 | M | 15 | O | 18.3 | no | no | no | 79 | 97 | 71 | 61 |
III-8 | F | 30 | O | 21.0 | no | no | no | 122 | 124 | 79 | 79 |
III-4 | M | - | - | - | - | - | - | 164 | - | 126 | 123 |
III-6 | M | - | - | - | no | no | no | 165 | - | 153 | 134 |
III-9 | F | - | - | - | no | no | no | 165 | - | 132 | 122 |
Gene (Direct) | Category | Matched Phenotypes | Score (Direct Gene) | ||
MIR145 | RNA Gene | thrombosis, inflammation, VWF | 8.45 | ||
SPARC | Protein Coding | thrombosis, inflammation, VWF | 5.60 | ||
MIR143 | RNA Gene | thrombosis, inflammation, VWF | 5.38 | ||
NDST1 | Protein Coding | thrombosis, inflammation | 0.80 | ||
CYFIP2 | Protein Coding | inflammation, VWF | 0.64 | ||
ARHGEF37 | Protein Coding | VWF | 0.15 | ||
CCDC69 | Protein Coding | inflammation | 0.14 | ||
Gene (Indirect) | Category | Matched Phenotypes | Score (Indirect Gene) | Gene (Target) | Score (Target Gene) |
THG1L | Protein Coding | thrombosis, inflammation, VWF | 2.51 | IL10 | 1.81 |
THG1L | Protein Coding | thrombosis, inflammation, VWF | 2.51 | TP53 | 1.02 |
THG1L | Protein Coding | thrombosis, inflammation, VWF | 2.51 | CALR | 0.49 |
THG1L | Protein Coding | thrombosis, inflammation, VWF | 2.51 | PTEN | 0.33 |
THG1L | Protein Coding | thrombosis, inflammation, VWF | 2.51 | SERPINE1 | 0.27 |
CARMN a | Protein Coding | thrombosis, inflammation, VWF | 0.05 | CSNK1A1 | 0.03 |
CARMN a | Protein Coding | inflammation | 0.05 | IL17B | 0.02 |
CARMN a | Protein Coding | VWF | 0.05 | PCYOX1L | 0.01 |
CARMN a | Protein Coding | inflammation | 0.05 | GRPEL2 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spena, S.; Cairo, A.; Gianniello, F.; Pappalardo, E.; Mortarino, M.; Garagiola, I.; Martinelli, I.; Peyvandi, F. Genetic Variants Identified by Whole Exome Sequencing in a Large Italian Family with High Plasma Levels of Factor VIII and Von Willebrand Factor. Int. J. Mol. Sci. 2023, 24, 14167. https://doi.org/10.3390/ijms241814167
Spena S, Cairo A, Gianniello F, Pappalardo E, Mortarino M, Garagiola I, Martinelli I, Peyvandi F. Genetic Variants Identified by Whole Exome Sequencing in a Large Italian Family with High Plasma Levels of Factor VIII and Von Willebrand Factor. International Journal of Molecular Sciences. 2023; 24(18):14167. https://doi.org/10.3390/ijms241814167
Chicago/Turabian StyleSpena, Silvia, Andrea Cairo, Francesca Gianniello, Emanuela Pappalardo, Mimosa Mortarino, Isabella Garagiola, Ida Martinelli, and Flora Peyvandi. 2023. "Genetic Variants Identified by Whole Exome Sequencing in a Large Italian Family with High Plasma Levels of Factor VIII and Von Willebrand Factor" International Journal of Molecular Sciences 24, no. 18: 14167. https://doi.org/10.3390/ijms241814167
APA StyleSpena, S., Cairo, A., Gianniello, F., Pappalardo, E., Mortarino, M., Garagiola, I., Martinelli, I., & Peyvandi, F. (2023). Genetic Variants Identified by Whole Exome Sequencing in a Large Italian Family with High Plasma Levels of Factor VIII and Von Willebrand Factor. International Journal of Molecular Sciences, 24(18), 14167. https://doi.org/10.3390/ijms241814167