Identification and Validation of a Stable Major-Effect Quantitative Trait Locus for Kernel Number per Spike on Chromosome 2D in Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Analyses
2.2. QTL Analysis
2.3. KASP Marker Development and Evaluation of the Genetic Effect of the QTL
2.4. Genetic Analysis of QTL QKnps.sau-2D.1
2.5. Effects of the QTL QKnps.sau-2D.1 Related to Other Yield Traits
3. Discussion
3.1. QTL Mapping of KNPS
3.2. The Genetic Effects of QKnps.sau-2D.1
3.3. The Breeding Value of QKnps.sau-2D.1
4. Materials and Methods
4.1. Plant Materials
4.2. Phenotypic Evaluation and Statistical Analysis
4.3. QTL Mapping
4.4. KASP Markers Development and QTL Validation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaves, M.S.; Martinelli, J.A.; Wesp-Guterres, C.; Graichen, F.A.; Brammer, S.P.; Scagliusi, S.M.; da Silva, P.R.; Wiethölter, P.; Torres, G.A.M.; Lau, Y.; et al. The importance for food security of maintaining rust resistance in wheat. Food Secur. 2013, 5, 157–176. [Google Scholar] [CrossRef]
- Langridge, P. Wheat genomics and the ambitious targets for future wheat production. Genome 2013, 56, 545–547. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, J.; Ma, H.; Shi, Z.; Huang, X.; Fan, G. Shading affects the starch structure and digestibility of wheat by regulating the photosynthetic light response of flag leaves. Shading affects the starch structure and digestibility of wheat by regulating the photosynthetic light response of flag leaves. Int. J. Biol. Macrol. 2023, 236, 123972. [Google Scholar]
- Zhai, H.; Feng, Z.; Du, X.; Song, Y.; Liu, X.; Qi, Z.; Song, L.; Li, J.; Li, L.; Peng, H.; et al. A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2017, 131, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, S.; Golan, G.; Guo, Z.; Ogawa, T.; Tagiri, A.; Sugimoto, K.; Bernhardt, N.; Brassac, J.; Mascher, M.; Hensel, G.; et al. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc. Natl. Acad. Sci. USA 2019, 116, 5182–5187. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.O.; Lawson, C. Genetic grain in yield and associated changes in phenotype, trait plasticity and competitive ability of South Australian wheat varieties released between 1958 and 2007. Crop Pasture Sci. 2011, 62, 533–549. [Google Scholar] [CrossRef]
- Gao, F.; Ma, D.; Yin, G.; Rasheed, A.; Dong, Y.; Xiao, Y.; Wu, X.; Xia, X.; He, Z. Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of Southern Yellow and Huai Valley since 1950. Crop Sci. 2017, 57, 760–773. [Google Scholar] [CrossRef]
- Ren, T.; Hu, Y.; Tang, Y.; Li, C.; Yan, B.; Ren, Z.; Tan, F.; Tang, Z.; Fu, S.; Li, Z. Utilization of a Wheat55K SNP Array for mapping of major QTL for temporal expression of the tiller number. Front. Plant Sci. 2018, 9, 333. [Google Scholar] [CrossRef]
- Calderini, D.F.; Castillo, F.; Arenas, M.A.; Molero, G.; Reynolds, M.P.; Craze, M.; Bowden, S.; Milner, M.J.; Wallington, E.J.; Dowle, A.; et al. Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential. New Phytol. 2021, 230, 629–640. [Google Scholar] [CrossRef]
- Deng, S.; Wu, X.; Wu, Y.; Zhou, R.; Wang, H.; Jia, J.; Liu, S. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor. Appl. Genet. 2011, 122, 281–289. [Google Scholar] [CrossRef]
- Würschum, T.; Leiser, W.L.; Langer, S.M.; Tucker, M.R.; Longin, C.F.H. Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. Theor. Appl. Genet. 2018, 131, 2071–2084. [Google Scholar] [CrossRef] [PubMed]
- Voss-Fels, K.P.; Keeble-Gagnère, G.; Hickey, L.T.; Tibbits, J.; Nagornyy, S.; Hayden, M.J.; Pasam, R.K.; Kant, S.; Friedt, W.; Snowdon, R.J.; et al. High-resolution mapping of rachis nodes per rachis, a critical determinant of grain yield components in wheat. Theor. Appl. Genet. 2019, 132, 2707–2719. [Google Scholar] [CrossRef] [PubMed]
- Lichthardt, C.; Chen, T.; Stahl, A.; Stützel, H. Co-Evolution of sink and source in the recent breeding history of winter wheat in Germany. Front. Plant Sci. 2020, 10, 1771. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wu, X.Y.; Wu, K.; Zhang, J.P.; Liu, W.H.; Yang, X.M.; Li, X.Q.; Lu, Y.Q.; Li, L.H. Novel and favorable genomic regions for spike related traits in a wheat germplasm Pubing 3504 with high grain number per spike under varying environments. J. Integr. Agric. 2017, 16, 2386–2401. [Google Scholar] [CrossRef]
- Cui, F.; Zhang, N.; Fan, X.; Zhang, W.; Zhao, C.; Yang, L.; Pan, R.; Chen, M.; Han, J.; Zhao, X.; et al. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci. Rep. 2017, 7, 3788. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, X.; Zhang, D.; Zhao, J.; Jiang, X.; Sun, H.; Ru, Z. Identification and validation of QTLs for kernel number per spike and spike length in two founder genotypes of wheat. BMC Plant Biol. 2022, 22, 146. [Google Scholar] [CrossRef]
- Kuang, C.; Zhao, X.; Yang, K.; Zhang, Z.; Ding, L.; Pu, Z.; Ma, J.; Jiang, Q.; Chen, G.; Wang, J.; et al. Mapping and characterization of major QTL for spike traits in common wheat. Physiol. Mol. Biol. Plants 2020, 26, 1295–1307. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Li, R.; Deng, Z.; Zhang, K.; Liu, B.; Tian, J. Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). Crop J. 2016, 3, 220–228. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Wang, H.; Li, L.; Wu, J.; Yang, X.; Li, X.; Gao, A. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica 2011, 177, 277–292. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, X.; Hu, H.; Zhou, K.; Wang, Q.; Yu, S.; Yang, X.; Wang, Z.; Wu, F.; Liu, S.; et al. QTL mapping for grain number per spikelet in wheat using a high-density genetic map. Crop J. 2021, 5, 1108–1114. [Google Scholar] [CrossRef]
- Gouda, G.; Gupta, M.K.; Donde, R.; Kumar, J.; Vadde, R.; Mohapatra, T.; Behera, L. Computational approach towards understanding structural and functional role of cytokinin oxidase/dehydrogenase 2 (CKX2) in enhancing grain yield in rice plant. J. Biomol. Struct. Dyn. 2020, 38, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Qin, P.; Hu, L.; Zhan, S.J.; Wang, S.F.; Gao, P.; Li, J.; Jin, M.Y.; Xu, Z.Y.; Gao, Q.; et al. OsSPL18 controls grain weight and grain number in rice. J. Genet. Genom. 2019, 46, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Sasao, M.; Yasuno, N.; Takagi, K.; Daimon, Y.; Chen, R.; Yamazaki, R.; Tokunaga, H.; Kitaguchi, Y.; Sato, Y.; et al. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proc. Natl. Acad. Sci. USA 2013, 110, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.Y.; Xu, Q.K.; Qiu, Z.N.; Cui, Y.J.; Zhou, T.T.; Zeng, D.L.; Guo, L.B.; Qian, Q. FON4 prevents the multi-floret spikelet in rice. Plant Biotechnol. J. 2019, 17, 1007–1009. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, H.; Wang, Y.; Wang, L.; Chang, X.; Jing, R.; Hao, C.; Zhang, X. TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.). J. Exp. Bot. 2014, 65, 5351–5365. [Google Scholar] [CrossRef]
- Wu, C.Y.; Trieu, A.; Radhakrishnan, P.; Kwok, S.F.; Harris, S.; Zhang, K.; Wang, J.; Wan, J.; Zhai, H.; Takatsuto, S.; et al. Brassinosteroids regulate grain filling in rice. Plant Cell 2008, 20, 2130–2145. [Google Scholar] [CrossRef]
- Yang, G.; Matsuoka, M.; Iwasaki, Y.; Komatsu, S. A novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice. Plant Mol. Biol. 2003, 52, 843–854. [Google Scholar] [CrossRef]
- Jali, S.S.; Rosloski, S.M.; Janakirama, P.; Steffen, J.G.; Zhurov, V.; Berleth, T.; Clark, R.M.; Grbic, V. A plant-specific HUA2-LIKE(HULK) gene family in Arabidopsis thaliana is essential for development. Plant J. 2014, 80, 242–254. [Google Scholar] [CrossRef]
- Gao, F.; Wen, W.; Liu, J.; Rasheed, A.; Yin, G.; Xia, X.; Wu, X.; He, Z. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front. Plant Sci. 2015, 18, 1099. [Google Scholar] [CrossRef]
- Heidari, B.; Sayed-Tabatabaei, B.E.; Saeidi, G.; Kearsey, M.; Suenaga, K.; Gulick, P. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome 2011, 54, 517–527. [Google Scholar] [CrossRef]
- Lee, H.S.; Jung, J.; Kang, C.; Heo, H.; Park, C. Mapping of QTL for yield and its related traits in a doubled haploid population of Korean wheat. Plant Biotechnol. Rep. 2014, 8, 443–454. [Google Scholar] [CrossRef]
- Acreche, M.M.; Slafer, G.A. Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crop. Res. 2006, 98, 52–59. [Google Scholar] [CrossRef]
- Bustos, D.V.; Hasana, A.K.; Reynolds, M.P.; Calderini, D.F. Combining high grain number and weight through a DH-population to improve grain yield potential of wheat in high-yielding environments. Field Crop. Res. 2013, 145, 106–115. [Google Scholar] [CrossRef]
- Quintero, A.; Molero, G.; Reynolds, M.; Calderini, D. Trade-off between grain weight and grain number in wheat depends on GxE interaction: A case study of an elite CIMMYT panel (CIMCOG). Eur. J. Agron. 2018, 92, 17–29. [Google Scholar] [CrossRef]
- Molero, G.; Joynson, R.; Pinera-Chavez, F.J.; Gardiner, L.; Rivera-Amado, C.; Hall, A.; Reynolds, M.P. Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential. Plant Biotechnol. J. 2019, 17, 1276–1288. [Google Scholar] [CrossRef]
- Wiersma, J.J.; Busch, R.H.; Fulcher, G.G.; Hareland, G.A. Recurrent selection for kernel weight in spring wheat. Crop Sci. 2001, 41, 568–572. [Google Scholar] [CrossRef]
- Gambín, B.L.; Borrás, L. Resource distribution and the trade-off between seed number and seed weight: A comparison across crop species. Ann. Appl. Biol. 2010, 156, 91–102. [Google Scholar] [CrossRef]
- Xu, Y.; Crouch, J.H. Marker-Assisted Selection in Plant Breeding: From Publications to Practice. Crop Sci. 2008, 48, 391–407. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, H.; Li, S.; Zou, Y.; Li, T.; Liu, J.; Ding, P.; Mu, Y.; Tang, H.; Deng, M.; et al. Identifcation of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genet. 2019, 20, 77. [Google Scholar] [CrossRef]
- Ma, J.; Ding, P.; Liu, J.; Li, T.; Zou, Y.; Habib, A.; Mu, Y.; Tang, H.; Jiang, Q.; Liu, Y.; et al. Identifcation and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor. Appl. Genet. 2019, 132, 3155–3167. [Google Scholar] [CrossRef]
- Ren, T.; Fan, T.; Chen, S.; Chen, Y.; Ou, X.; Jiang, Q.; Peng, W.; Ren, Z.; Tan, F.; Luo, P.; et al. Identification and validation of quantitative trait loci for functional stay green traits in common wheat (Triticum aestivum L.) via high-density SNP-based genotyping. Theor. Appl. Genet. 2022, 135, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, Y.; Ou, X.; Wang, M.; Wang, N.; Li, W.; Deng, Y.; Diao, Y.; Sun, Z.; Luo, Q.; et al. Identification of a stable major-effect quantitative trait locus for pre-harvest sprouting in common wheat (Triticum aestivum L.) via high-density SNP-based genotyping. Theor. Appl. Genet. 2022, 135, 4183–4195. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Fan, T.; Chen, S.; Ou, X.; Chen, Y.; Jiang, Q.; Diao, Y.; Sun, Z.; Peng, W.; Ren, Z.; et al. QTL mapping and validation for kernel area and circumference in common wheat via high-density SNP-based genotyping. Front. Plant Sci. 2021, 12, 713890. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Fan, T.; Chen, S.; Li, C.; Chen, Y.; Ou, X.; Jiang, Q.; Ren, Z.; Tan, F.; Luo, P.; et al. Utilization of a Wheat55K SNP Array-derived high-density genetic map for high-resolution mapping of Quantitative Trait Loci for Important Kernel-related Traits in common wheat. Theor. Appl. Genet. 2021, 134, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Li, H.H.; Zhang, L.Y.; Wang, J.K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Zhao, C.; Tang, H.; Mu, Y.; Xu, Q.; Deng, M.; Jiang, Q.; Chen, G.; Qi, P.; et al. Mapping and validation of major and stable QTL for flag leaf size from tetraploid wheat. Plant Genome 2022, 15, e20252. [Google Scholar] [CrossRef]
- International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 2014, 345, 1251788. [Google Scholar] [CrossRef]
- Ma, S.; Wang, M.; Wu, J.; Guo, W.; Chen, Y.; Li, G.; Wang, Y.; Shi, W.; Xia, G.; Fu, D.; et al. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol. Plant 2021, 14, 1965–1968. [Google Scholar] [CrossRef]
- Tan, C.T.; Yu, H.; Yan, Y.; Xu, X.; Chen, M.; Rudd, J.C.; Xue, Q.; Ibrahim, A.M.H.; Garza, L.; Wang, S. Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. Theor. Appl. Genet. 2017, 130, 1867–1884. [Google Scholar] [CrossRef]
Traits | Years | Parental Lines | Population | h2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T1208 | CN18 | Mean | Range | SD | CV (%) | Ku | Sk | |||
KNPS | 2016 | 46.60 | 34.93 | 40.60 | 24.72–62.58 | 6.39 | 15.73 | 0.19 | 0.29 | 0.68 |
2019 | 74.00 | 64.33 | 66.04 | 43.00–97.00 | 8.87 | 13.43 | 0.13 | 0.19 | ||
2021 | 67.05 | 58.38 | 61.02 | 39.20–83.30 | 7.86 | 12.88 | −0.02 | 0.19 | ||
Mean | 62.55 | 52.54 | 55.84 | 39.41–74.77 | 6.11 | 10.95 | −0.15 | 0.17 |
KNPS | SN | PH | GY | TKW | GL | GW | GDR | |
---|---|---|---|---|---|---|---|---|
KNPS | 1 | |||||||
SN | −0.332 ** | 1 | ||||||
PH | 0.202 ** | −0.356 ** | 1 | |||||
GY | 0.301 ** | 0.089 | 0.125 * | 1 | ||||
TKW | 0.101 | −0.421 ** | 0.604 ** | 0.078 | 1 | |||
GL | 0.089 | −0.307 ** | 0.180 ** | −0.024 | 0.748 ** | 1 | ||
GW | −0.027 | −0.237 ** | 0.605 ** | 0.081 | 0.659 ** | 0.248 ** | 1 | |
GDR | 0.103 * | −0.191 ** | −0.126 * | −0.06 | 0.416 ** | 0.874 ** | −0.252 ** | 1 |
QTL | Years | CI (cM) | Left Marker | Right Marker | LOD | PVE (%) | ADD |
---|---|---|---|---|---|---|---|
QKnps.sau-2D.1 | 2016 | 70.5–73.5 | AX-110544009 | AX-109283238 | 8.49 | 11.23 | 1.69 |
2019 | 71.5–74.5 | AX-110544009 | AX-109283238 | 11.28 | 11.95 | 3.14 | |
2021 | 71.5–74.5 | AX-109283238 | AX-111606890 | 10.29 | 12.13 | 2.69 | |
Mean | 71.5–74.5 | AX-110544009 | AX-109283238 | 13.21 | 18.10 | 2.08 | |
QKnps.sau-2D.2 | 2016 | 90.5–101.5 | AX-109422526 | AX-108762451 | 8.98 | 12.80 | 1.78 |
QKnps.sau-2D.3 | 2016 | 178.5–183.5 | AX-108808143 | AX-110996701 | 10.05 | 12.94 | 1.88 |
QKnps.sau-3B.1 | 2019 | 10.5–20.5 | AX-108760591 | AX-109814878 | 2.95 | 2.87 | 1.55 |
QKnps.sau-3B.2 | Mean | 88.5–89.5 | AX-110392610 | AX-111577389 | 7.17 | 9.19 | 1.45 |
QKnps.sau-4A | 2021 | 65.5–66.5 | AX-110102976 | AX-108907490 | 3.25 | 3.69 | 1.52 |
QKnps.sau-6A | 2019 | 55.5–65.5 | AX-108999974 | AX-111552648 | 7.01 | 8.07 | 2.54 |
Mean | 54.5–64.5 | AX-108999974 | AX-111552648 | 5.35 | 7.87 | 1.35 | |
QKnps.sau-7D | 2016 | 86.5–87.5 | AX-110603982 | AX-111559194 | 3.97 | 4.96 | −1.23 |
cQTL | Interval (cM) | LeftMarker | RightMarker | LOD | LOD (A) | LOD (AbyE) | PVE | PVE (A) | PVE (AbyE) | ADD |
---|---|---|---|---|---|---|---|---|---|---|
cQKnps.sau-1D | 221.5–238.5 | AX-111070702 | AX-111589728 | 3.54 | 2.98 | 0.57 | 1.04 | 1.01 | 0.03 | 0.61 |
cQKnps.sau-2A.1 | 0–2.5 | AX-111650990 | AX-108888647 | 4.02 | 3.93 | 0.09 | 1.53 | 1.35 | 0.18 | −0.69 |
cQKnps.sau-2A.2 | 22.5–37.5 | AX-109477459 | AX-109277755 | 2.91 | 2.73 | 0.18 | 1.19 | 0.94 | 0.24 | −0.57 |
cQKnps.sau-2B.1 | 70.5–72.5 | AX-111458829 | AX-109359046 | 3.27 | 3.22 | 0.06 | 1.28 | 1.11 | 0.17 | −0.64 |
cQKnps.sau-2B.2 | 191.5–197.5 | AX-110965907 | AX-111729522 | 3.71 | 1.33 | 2.37 | 1.45 | 0.46 | 0.99 | −0.40 |
cQKnps.sau-2D.1 | 72.5–73.5 | AX-110544009 | AX-109283238 | 43.03 | 40.57 | 2.46 | 15.96 | 15.16 | 0.80 | 2.33 |
cQKnps.sau-2D.2 | 91.5–98.5 | AX-109422526 | AX-108762451 | 9.61 | 3.81 | 5.80 | 2.30 | 1.32 | 0.98 | 0.68 |
cQKnps.sau-2D.3 | 178.5–182.5 | AX-108808143 | AX-110996701 | 10.17 | 2.47 | 7.70 | 2.34 | 0.86 | 1.48 | 0.57 |
cQKnps.sau-2D.4 | 213.5–228.5 | AX-110069106 | AX-110090611 | 2.53 | 2.41 | 0.12 | 1.11 | 0.81 | 0.30 | −0.56 |
cQKnps.sau-2D.5 | 290.5–297.5 | AX-111045643 | AX-86176576 | 3.64 | 1.76 | 1.88 | 1.53 | 0.60 | 0.92 | −0.46 |
cQKnps.sau-3A | 75.5–78.5 | AX-109892124 | AX-95003297 | 2.81 | 2.00 | 0.82 | 1.09 | 0.70 | 0.39 | −0.50 |
cQKnps.sau-3B.1 | 11.5–20.5 | AX-108760591 | AX-109814878 | 3.97 | 3.30 | 0.66 | 2.02 | 1.15 | 0.87 | 0.65 |
cQKnps.sau-3B.2 | 88.5–89.5 | AX-110392610 | AX-111577389 | 10.20 | 6.65 | 3.55 | 2.71 | 2.31 | 0.39 | 0.91 |
cQKnps.sau-3D | 195.5–210.5 | AX-110503031 | AX-109905770 | 2.79 | 1.13 | 1.67 | 1.01 | 0.39 | 0.62 | −0.38 |
cQKnps.sau-4A.1 | 65.5–68.5 | AX-110102976 | AX-108907490 | 4.85 | 3.58 | 1.27 | 1.86 | 1.24 | 0.62 | 0.68 |
cQKnps.sau-4A.2 | 75.5–78.5 | AX-110568092 | AX-109335789 | 3.54 | 2.21 | 1.33 | 1.22 | 0.76 | 0.46 | 0.52 |
cQKnps.sau-4B | 14.5–17.5 | AX-111618183 | AX-111159798 | 3.50 | 3.27 | 0.23 | 1.43 | 1.13 | 0.31 | −0.62 |
cQKnps.sau-5A | 20.5–21.5 | AX-109885906 | AX-109459767 | 4.09 | 3.51 | 0.58 | 1.38 | 1.21 | 0.17 | 0.65 |
cQKnps.sau-5B | 7.5–14.5 | AX-111567276 | AX-109941289 | 3.49 | 3.30 | 0.19 | 1.21 | 1.13 | 0.09 | −0.62 |
cQKnps.sau-6A | 58.5–64.5 | AX-108999974 | AX-111552648 | 14.20 | 12.24 | 1.96 | 5.70 | 4.27 | 1.43 | 1.21 |
cQKnps.sau-6B | 23.5–27.5 | AX-108739547 | AX-108925480 | 2.51 | 2.11 | 0.40 | 0.76 | 0.73 | 0.03 | 0.51 |
cQKnps.sau-7A | 31.5–37.5 | AX-108820421 | AX-109916202 | 2.78 | 2.32 | 0.46 | 0.93 | 0.80 | 0.13 | 0.60 |
cQKnps.sau-7B | 134.5–139.5 | AX-110460794 | AX-109908023 | 4.58 | 4.00 | 0.58 | 1.39 | 1.38 | 0.01 | 0.72 |
cQKnps.sau-7D.1 | 86.5–87.5 | AX-110603982 | AX-111559194 | 4.85 | 0.79 | 4.07 | 1.30 | 0.27 | 1.03 | −0.34 |
cQKnps.sau-7D.2 | 114.5–120.5 | AX-109728672 | AX-110359924 | 2.51 | 1.81 | 0.70 | 0.75 | 0.63 | 0.12 | 0.47 |
cQKnps.sau-7D.3 | 157.5–162.5 | AX-109920134 | AX-94514350 | 5.54 | 4.91 | 0.63 | 1.73 | 1.70 | 0.03 | 0.79 |
cQKnps.sau-7D.4 | 173.5–190.5 | AX-111523243 | AX-108872235 | 3.00 | 2.18 | 0.82 | 0.80 | 0.75 | 0.05 | 0.52 |
QTL | Genotypes | TKW | GL | GW | GDR | SN | GY | PH |
---|---|---|---|---|---|---|---|---|
QKnps.sau-2D.1 | aa | 44.17 | 6.87 | 3.47 | 1.98 | 304.01 | 645.71 | 78.70 |
AA | 48.35 *** | 7.27 *** | 3.51 ** | 2.07 *** | 256.09 ** | 665.56 * | 88.61 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Luo, Q.; Deng, Y.; Du, K.; Li, X.; Ren, T. Identification and Validation of a Stable Major-Effect Quantitative Trait Locus for Kernel Number per Spike on Chromosome 2D in Wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2023, 24, 14289. https://doi.org/10.3390/ijms241814289
Li Z, Luo Q, Deng Y, Du K, Li X, Ren T. Identification and Validation of a Stable Major-Effect Quantitative Trait Locus for Kernel Number per Spike on Chromosome 2D in Wheat (Triticum aestivum L.). International Journal of Molecular Sciences. 2023; 24(18):14289. https://doi.org/10.3390/ijms241814289
Chicago/Turabian StyleLi, Zhi, Qinyi Luo, Yawen Deng, Ke Du, Xinli Li, and Tianheng Ren. 2023. "Identification and Validation of a Stable Major-Effect Quantitative Trait Locus for Kernel Number per Spike on Chromosome 2D in Wheat (Triticum aestivum L.)" International Journal of Molecular Sciences 24, no. 18: 14289. https://doi.org/10.3390/ijms241814289
APA StyleLi, Z., Luo, Q., Deng, Y., Du, K., Li, X., & Ren, T. (2023). Identification and Validation of a Stable Major-Effect Quantitative Trait Locus for Kernel Number per Spike on Chromosome 2D in Wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 24(18), 14289. https://doi.org/10.3390/ijms241814289