Anti-Amyloid Therapies for Alzheimer’s Disease and the Amyloid Cascade Hypothesis
Abstract
:1. Alzheimer’s Disease
2. The Amyloid Cascade Hypothesis: From Plaques to Soluble Oligomers
3. Is (Pre)Clinical Evidence in Favour of or against the Amyloid Cascade Hypothesis?
3.1. Preclinical Evidence
3.2. Clinical Evidence: Active Immunotherapies
3.3. Clinical Evidence: Passive Immunotherapies
3.3.1. Bapineuzumab
Study Design and Duration | Study Population | Cognitive Primary Endpoint | CSF or Plasma Aβ | Amyloid PET | Volumetric MRI |
---|---|---|---|---|---|
Phase III, randomised, double-blind, placebo-controlled 78 weeks [50,51] | Mild to moderate AD, APOE ε4 carriers and non-carriers | ADAS-cog11 and DAD No significant effects in the whole population | ND | Significant effects in carriers | No significant effects |
Phase III, randomised, double-blind, placebo-controlled (3000 and 3001 studies) 78 weeks Terminated early [52] | Mild to moderate AD, APOE ε4 carriers and non-carriers | ADAS-cog11 and DAD No significant effects in the whole population | Significant increase in plasma | No significant effects | No significant effects |
Phase III extension of 3000 and 3001 studies 208 weeks Terminated early [53] | Mild to moderate AD, APOE ε4 carriers and non-carriers | ADAS-cog11, DAD, and MMSE No significant effects in the whole population | ND | Insufficient data | No significant effects |
3.3.2. Solanezumab
3.3.3. Gantenerumab
3.3.4. Solanezumab and Gantenerumab in DIAD
Study Design and Duration | Study Population | Cognitive Primary Endpoint | CSF or Plasma Aβ | Amyloid PET | Volumetric MRI |
---|---|---|---|---|---|
Phase III, randomised, double-blind, placebo-controlled (EXPEDITION 1, 2) 80 weeks [54] | Mild to moderate AD | ADAS-Cog11 and ADCS-ADL Significant small effects for ADCS-ADL only in EXPEDITION 2 Significant small effects in a secondary analysis on the pooled mild AD-population [55] | Significant increase in plasma and CSF | No significant effects | No significant effects |
Phase III, randomised, double-blind, placebo-controlled (EXPEDITION 3) 76 weeks [56] | Mild AD | ADAS-Cog11 No significant effects | Significant increase in plasma and CSF | No significant effects | No significant effects |
Phase III, randomised, double-blind, placebo-controlled (A4) 240 weeks [58] | Preclinical AD | PACC No significant effects | ND | Smaller increase vs. placebo | No significant effects |
Phase II/III, randomised, double-blind, placebo-controlled (DIAN-TU) 208 weeks [72] | Dominantly inherited AD | DIAN-MCE No significant effects | Significant increase in CSF | No significant effects | No significant effects |
Study Design and Duration | Study Population | Cognitive Primary Endpoint | CSF or Plasma Aβ | Amyloid PET | Volumetric MRI |
---|---|---|---|---|---|
Phase III, randomised, double-blind, placebo-controlled (Scarlet RoAD) 104 weeks Terminated early [62] Transformed in OLE | Prodromal AD | CDR-SB No significant effects | No significant effects in CSF | Slight reduction | No significant effects |
Phase III, randomised, double-blind, placebo-controlled (Marguerite RoAD) 100 weeks Terminated early Transformed in OLE | Mild AD | ___ | ___ | ___ | ___ |
Phase III, randomised, double-blind, placebo-controlled (GRADUATE I–II) 27 months Terminated early [67,68] | Early AD | CDR-SB No significant effects | ___ | Significant reduction (on average −44% at 2 years) | ___ |
Phase II/III, randomised, double-blind, placebo-controlled (DIAN-TU) 208 weeks [72] | Dominantly inherited AD | DIAN-MCE No significant effects | Significant increase in CSF | Significant reduction (−24% at 4 years) | ND |
3.3.5. Crenezumab
Study Design and Duration | Study Population | Cognitive Primary Endpoint | CSF or Plasma Aβ | Amyloid PET | Volumetric MRI |
---|---|---|---|---|---|
Phase III, randomised, double-blind, placebo-controlled (CREAD, CREAD2) 100 weeks Terminated early [75] | Early AD | CDR-SB No significant effects | Significant increase in CSF and plasma | No significant effects | No significant effects |
Phase II, randomised, double-blind, placebo-controlled (API ADAD Colombia) 5 to 8 years Terminated early [76,80,81] | Cognitively healthy Colombian family | APICC No significant effects | Stable levels/significant increase in CSF | No significant effects | No significant effects |
3.3.6. Aducanumab
3.3.7. Lecanemab
3.3.8. Donanemab
Study Design and Duration | Study Population | Cognitive Primary Endpoint | CSF or Plasma Aβ | Amyloid PET | Volumetric MRI |
---|---|---|---|---|---|
Aducanumab Phase III, randomised, double-blind, placebo-controlled (EMERGE, ENGAGE) 76 weeks Terminated early [85] | Early AD | CDR-SB Significant effect only in EMERGE (−0.39 mean change vs. placebo) | Significant increase | Significant reduction (−71% EMERGE, −59% ENGAGE) | Significant increase in lateral ventricle volume |
Lecanemab Phase III, randomised, double-blind, placebo-controlled (Clarity AD) 18 months [104] | Early AD | CDR-SB Significant effect (−0.45 mean change vs. placebo) | No significant effects | Significant reduction (−71%) | ___ |
Donanemab Phase III, randomised, double-blind, placebo-controlled (TRAILBLAZER-ALZ 2) 76 weeks [120] | Early AD | iADRS Significant effect (2.92–3.25 mean change vs. placebo) | ND | Significant reduction (−85% on average) | Significant decrease in whole brain volume Significant increase in lateral ventricle volume |
- -
- In the SR-MR OLE trials, gantenerumab showed a non-significant modest trend for slowing disease progression in early AD patients, despite a decrease of brain Aβ levels of up to 78% and 51% of patients below amyloid positivity threshold at 2 years.
- -
- In the GRADUATE I and II trials, gantenerumab caused a very modest, insignificant effect on cognition in early AD patients at two years, although a 44% decrease in brain Aβ levels was observed, and 27% of patients became amyloid-negative at the same time point.
- -
- In the ENGAGE study in early AD patients, aducanumab induced almost no variation in the cognitive primary endpoint with respect to the placebo at 78 weeks, but caused a 60% reduction of brain Aβ load, with 31% of patients having an amyloid-PET score at or below the threshold for positivity.
- -
- In the EMERGE study (with exactly the same design as ENGAGE), aducanumab was able to significantly affect the cognitive primary endpoint, but the effect was modest (−0.39 in the CDR-SB mean change vs. placebo), despite a 71% reduction of Aβ burden and 48% of patients at or below threshold for amyloid-PET positivity.
- -
- In the Clarity AD trial, lecanemab produced a significant change in the cognitive primary endpoint (−0.45 in the CDR-SB mean change vs. placebo) at 18 months, but again the effect was small if compared to the 71% reduction in brain Aβ levels, with all patients below the threshold for positivity.
- -
- In the TRAILBLAZER-ALZ 2 trial, in early AD patients, donanemab produced a dramatic, more than 80%, decrease in brain Aβ, with almost 80% of participants reaching amyloid clearance at week 76. On the other hand, its significant effect on the cognitive primary endpoint was still limited (on average, −0.7 in the CDR-SB mean change vs. placebo).
4. The Aβ Loss-of-Function Hypothesis
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Global Dementia Observatory—World Health Organization. Available online: https://iris.who.int/bitstream/handle/10665/272669/WHO-MSD-MER-18.1-eng.pdf?sequence=1&isAllowed=y (accessed on 20 September 2023).
- Winblad, B.; Amouyel, P.; Andrieu, S.; Ballard, C.; Brayne, C.; Brodaty, H.; Cedazo-Minguez, A.; Dubois, B.; Edvardsson, D.; Feldman, H.; et al. Defeating Alzheimer’s Disease and Other Dementias: A Priority for European Science and Society. Lancet Neurol. 2016, 15, 455–532. [Google Scholar] [CrossRef]
- Piaceri, I. Genetics of Familial and Sporadic Alzheimer s Disease. Front. Biosci. 2013, E5, E605. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Guerrero, J.; Santiago-Balmaseda, A.; Jeronimo-Aguilar, P.; Vargas-Rodríguez, I.; Cadena-Suárez, A.R.; Sánchez-Garibay, C.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Cardenas-Aguayo, M.-D.-C.; Diaz-Cintra, S.; et al. Alzheimer’s Disease: An Updated Overview of Its Genetics. Int. J. Mol. Sci. 2023, 24, 3754. [Google Scholar] [CrossRef]
- Armstrong, R.A. Risk Factors for Alzheimer’s Disease. Folia Neuropathol. 2019, 57, 87–105. [Google Scholar] [CrossRef]
- Lambert, J.-C.; Ramirez, A.; Grenier-Boley, B.; Bellenguez, C. Step by Step: Towards a Better Understanding of the Genetic Architecture of Alzheimer’s Disease. Mol Psychiatry 2023. [Google Scholar] [CrossRef]
- Quan, M.; Cao, S.; Wang, Q.; Wang, S.; Jia, J. Genetic Phenotypes of Alzheimer’s Disease: Mechanisms and Potential Therapy. Phenomics 2023, 3, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Rahman, M.S.; Uddin, M.J.; Mamum-Or-Rashid, A.N.M.; Pang, M.-G.; Rhim, H. Emerging Risk of Environmental Factors: Insight Mechanisms of Alzheimer’s Diseases. Environ. Sci. Pollut. Res. 2020, 27, 44659–44672. [Google Scholar] [CrossRef] [PubMed]
- Krishaa, L.; Ng, T.K.S.; Wee, H.N.; Ching, J. Gut-Brain Axis through the Lens of Gut Microbiota and Their Relationships with Alzheimer’s Disease Pathology: Review and Recommendations. Mech. Ageing Dev. 2023, 211, 111787. [Google Scholar] [CrossRef]
- Qu, L.; Li, Y.; Liu, F.; Fang, Y.; He, J.; Ma, J.; Xu, T.; Wang, L.; Lei, P.; Dong, H.; et al. Microbiota-Gut-Brain Axis Dysregulation in Alzheimer’s Disease: Multi-Pathway Effects and Therapeutic Potential. Aging Dis. 2023, 15, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Glenner, G.G.; Wong, C.W. Alzheimer’s Disease: Initial Report of the Purification and Characterization of a Novel Cerebrovascular Amyloid Protein. Biochem. Biophys. Res. Commun. 1984, 120, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Goldgaber, D.; Lerman, M.I.; McBride, W.O.; Saffiotti, U.; Gajdusek, D.C. Isolation, Characterization, and Chromosomal Localization of Human Brain CDNA Clones Coding for the Precursor of the Amyloid of Brain in Alzheimer’s Disease, Down’s Syndrome and Aging. J. Neural Transm. Suppl. 1987, 24, 23–28. [Google Scholar] [PubMed]
- Kang, J.; Lemaire, H.-G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik, K.-H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The Precursor of Alzheimer’s Disease Amyloid A4 Protein Resembles a Cell-Surface Receptor. Nature 1987, 325, 733–736. [Google Scholar] [CrossRef]
- Robakis, N.K.; Wisniewski, H.M.; Jenkins, E.C.; Devine-Gage, E.A.; Houck, G.E.; Yao, X.L.; Ramakrishna, N.; Wolfe, G.; Silverman, W.P.; Brown, W.T. Chromosome 21q21 Sublocalisation of Gene Encoding Beta-Amyloid Peptide in Cerebral Vessels and Neuritic (Senile) Plaques of People with Alzheimer Disease and Down Syndrome. Lancet 1987, 1, 384–385. [Google Scholar] [CrossRef] [PubMed]
- Tanzi, R.E.; Gusella, J.F.; Watkins, P.C.; Bruns, G.A.; St George-Hyslop, P.; Van Keuren, M.L.; Patterson, D.; Pagan, S.; Kurnit, D.M.; Neve, R.L. Amyloid Beta Protein Gene: CDNA, MRNA Distribution, and Genetic Linkage near the Alzheimer Locus. Science 1987, 235, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Esch, F.S.; Keim, P.S.; Beattie, E.C.; Blacher, R.W.; Culwell, A.R.; Oltersdorf, T.; McClure, D.; Ward, P.J. Cleavage of Amyloid Beta Peptide during Constitutive Processing of Its Precursor. Science 1990, 248, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.P.; Esch, F.S.; Keim, P.S.; Sambamurti, K.; Lieberburg, I.; Robakis, N.K. Exact Cleavage Site of Alzheimer Amyloid Precursor in Neuronal PC-12 Cells. Neurosci. Lett. 1991, 128, 126–128. [Google Scholar] [CrossRef]
- Haass, C.; Koo, E.H.; Mellon, A.; Hung, A.Y.; Selkoe, D.J. Targeting of Cell-Surface Beta-Amyloid Precursor Protein to Lysosomes: Alternative Processing into Amyloid-Bearing Fragments. Nature 1992, 357, 500–503. [Google Scholar] [CrossRef]
- Haass, C.; Selkoe, D.J. Cellular Processing of Beta-Amyloid Precursor Protein and the Genesis of Amyloid Beta-Peptide. Cell 1993, 75, 1039–1042. [Google Scholar] [CrossRef]
- Vassar, R.; Bennett, B.D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; et al. Beta-Secretase Cleavage of Alzheimer’s Amyloid Precursor Protein by the Transmembrane Aspartic Protease BACE. Science 1999, 286, 735–741. [Google Scholar] [CrossRef]
- Wolfe, M.S. The Gamma-Secretase Complex: Membrane-Embedded Proteolytic Ensemble. Biochemistry 2006, 45, 7931–7939. [Google Scholar] [CrossRef]
- Delport, A.; Hewer, R. The Amyloid Precursor Protein: A Converging Point in Alzheimer’s Disease. Mol. Neurobiol. 2022, 59, 4501–4516. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.-S.; Li, S.; Zhang, F.; Deng, J.; Zeng, L.-H.; Tan, J. Amyloid Precursor Protein: A Regulatory Hub in Alzheimer’s Disease. Aging Dis. 2023, 15, 1–25. [Google Scholar] [CrossRef]
- Steiner, H.; Fukumori, A.; Tagami, S.; Okochi, M. Making the Final Cut: Pathogenic Amyloid-β Peptide Generation by γ-Secretase. Cell Stress. 2018, 2, 292–310. [Google Scholar] [CrossRef]
- Sisodia, S.S.; Koo, E.H.; Beyreuther, K.; Unterbeck, A.; Price, D.L. Evidence That Beta-Amyloid Protein in Alzheimer’s Disease Is Not Derived by Normal Processing. Science 1990, 248, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J.; Hardy, J. The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Ittner, L.M.; Götz, J. Amyloid-β and Tau—A Toxic Pas de Deux in Alzheimer’s Disease. Nat. Rev. Neurosci. 2011, 12, 65–72. [Google Scholar] [CrossRef]
- Bloom, G.S. Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef]
- Benilova, I.; Karran, E.; De Strooper, B. The Toxic Aβ Oligomer and Alzheimer’s Disease: An Emperor in Need of Clothes. Nat. Neurosci. 2012, 15, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Madhu, P.; Mukhopadhyay, S. Distinct Types of Amyloid-β Oligomers Displaying Diverse Neurotoxicity Mechanisms in Alzheimer’s Disease. J. Cell Biochem. 2021, 122, 1594–1608. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Giraldo, M.; González-Reyes, R.E.; Ramírez-Guerrero, S.; Bonilla-Trilleras, C.E.; Guardo-Maya, S.; Nava-Mesa, M.O. Astrocytes as a Therapeutic Target in Alzheimer’s Disease-Comprehensive Review and Recent Developments. Int. J. Mol. Sci. 2022, 23, 13630. [Google Scholar] [CrossRef]
- Araki, W. Aβ Oligomer Toxicity-Reducing Therapy for the Prevention of Alzheimer’s Disease: Importance of the Nrf2 and PPARγ Pathways. Cells 2023, 12, 1386. [Google Scholar] [CrossRef]
- Kepp, K.P.; Robakis, N.K.; Høilund-Carlsen, P.F.; Sensi, S.L.; Vissel, B. The Amyloid Cascade Hypothesis: An Updated Critical Review. Brain 2023, 1–22. [Google Scholar] [CrossRef]
- Raskatov, J.A. What Is the “Relevant” Amyloid Β42 Concentration? Chembiochem 2019, 20, 1725–1726. [Google Scholar] [CrossRef]
- Hooli, B.V.; Mohapatra, G.; Mattheisen, M.; Parrado, A.R.; Roehr, J.T.; Shen, Y.; Gusella, J.F.; Moir, R.; Saunders, A.J.; Lange, C.; et al. Role of Common and Rare APP DNA Sequence Variants in Alzheimer Disease. Neurology 2012, 78, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Quan, M.; Wei, Y.; Wang, W.; Xu, L.; Wang, Q.; Jia, J. Critical Thinking of Alzheimer’s Transgenic Mouse Model: Current Research and Future Perspective. Sci. China Life Sci. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Ulaganathan, S.; Pitchaimani, A. Spontaneous and Familial Models of Alzheimer’s Disease: Challenges and Advances in Preclinical Research. Life Sci. 2023, 328, 121918. [Google Scholar] [CrossRef]
- Lewis, J.; Dickson, D.W.; Lin, W.-L.; Chisholm, L.; Corral, A.; Jones, G.; Yen, S.-H.; Sahara, N.; Skipper, L.; Yager, D.; et al. Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and APP. Science 2001, 293, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Oddo, S.; Caccamo, A.; Shepherd, J.D.; Murphy, M.P.; Golde, T.E.; Kayed, R.; Metherate, R.; Mattson, M.P.; Akbari, Y.; LaFerla, F.M. Triple-Transgenic Model of Alzheimer’s Disease with Plaques and Tangles: Intracellular Abeta and Synaptic Dysfunction. Neuron 2003, 39, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, M.; Kotilinek, L.; Forster, C.; Paulson, J.; McGowan, E.; SantaCruz, K.; Guimaraes, A.; Yue, M.; Lewis, J.; Carlson, G.; et al. Age-Dependent Neurofibrillary Tangle Formation, Neuron Loss, and Memory Impairment in a Mouse Model of Human Tauopathy (P301L). J. Neurosci. 2005, 25, 10637–10647. [Google Scholar] [CrossRef] [PubMed]
- Gilman, S.; Koller, M.; Black, R.S.; Jenkins, L.; Griffith, S.G.; Fox, N.C.; Eisner, L.; Kirby, L.; Rovira, M.B.; Forette, F.; et al. Clinical Effects of A Immunization (AN1792) in Patients with AD in an Interrupted Trial. Neurology 2005, 64, 1553–1562. [Google Scholar] [CrossRef]
- Vellas, B.; Black, R.; Thal, L.J.; Fox, N.C.; Daniels, M.; McLennan, G.; Tompkins, C.; Leibman, C.; Pomfret, M.; Grundman, M.; et al. Long-Term Follow-up of Patients Immunized with AN1792: Reduced Functional Decline in Antibody Responders. Curr. Alzheimer Res. 2009, 6, 144–151. [Google Scholar] [CrossRef]
- Holmes, C.; Boche, D.; Wilkinson, D.; Yadegarfar, G.; Hopkins, V.; Bayer, A.; Jones, R.W.; Bullock, R.; Love, S.; Neal, J.W.; et al. Long-Term Effects of Aβ42 Immunisation in Alzheimer’s Disease: Follow-up of a Randomised, Placebo-Controlled Phase I Trial. Lancet 2008, 372, 216–223. [Google Scholar] [CrossRef]
- Winblad, B.; Andreasen, N.; Minthon, L.; Floesser, A.; Imbert, G.; Dumortier, T.; Maguire, R.P.; Blennow, K.; Lundmark, J.; Staufenbiel, M.; et al. Safety, Tolerability, and Antibody Response of Active Aβ Immunotherapy with CAD106 in Patients with Alzheimer’s Disease: Randomised, Double-Blind, Placebo-Controlled, First-in-Human Study. Lancet Neurol. 2012, 11, 597–604. [Google Scholar] [CrossRef]
- Farlow, M.R.; Andreasen, N.; Riviere, M.-E.; Vostiar, I.; Vitaliti, A.; Sovago, J.; Caputo, A.; Winblad, B.; Graf, A. Long-Term Treatment with Active Aβ Immunotherapy with CAD106 in Mild Alzheimer’s Disease. Alzheimers Res. Ther. 2015, 7, 23. [Google Scholar] [CrossRef]
- Vandenberghe, R.; Riviere, M.-E.; Caputo, A.; Sovago, J.; Maguire, R.P.; Farlow, M.; Marotta, G.; Sanchez-Valle, R.; Scheltens, P.; Ryan, J.M.; et al. Active Aβ Immunotherapy CAD106 in Alzheimer’s Disease: A Phase 2b Study. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017, 3, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Lopez Lopez, C.; Tariot, P.N.; Caputo, A.; Langbaum, J.B.; Liu, F.; Riviere, M.; Langlois, C.; Rouzade-Dominguez, M.; Zalesak, M.; Hendrix, S.; et al. The Alzheimer’s Prevention Initiative Generation Program: Study Design of Two Randomized Controlled Trials for Individuals at Risk for Clinical Onset of Alzheimer’s Disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Pasquier, F.; Sadowsky, C.; Holstein, A.; Leterme, G.L.P.; Peng, Y.; Jackson, N.; Fox, N.C.; Ketter, N.; Liu, E.; Ryan, J.M. Two Phase 2 Multiple Ascending–Dose Studies of Vanutide Cridificar (ACC-001) and QS-21 Adjuvant in Mild-to-Moderate Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 51, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Sperling, R.; Fox, N.C.; Blennow, K.; Klunk, W.; Raskind, M.; Sabbagh, M.; Honig, L.S.; Porsteinsson, A.P.; Ferris, S.; et al. Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer’s Disease. N. Engl. J. Med. 2014, 370, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Schmidt, M.E.; Margolin, R.; Sperling, R.; Koeppe, R.; Mason, N.S.; Klunk, W.E.; Mathis, C.A.; Salloway, S.; Fox, N.C.; et al. Amyloid-β 11C-PiB-PET Imaging Results from 2 Randomized Bapineuzumab Phase 3 AD Trials. Neurology 2015, 85, 692–700. [Google Scholar] [CrossRef]
- Vandenberghe, R.; Rinne, J.O.; Boada, M.; Katayama, S.; Scheltens, P.; Vellas, B.; Tuchman, M.; Gass, A.; Fiebach, J.B.; Hill, D.; et al. Bapineuzumab for Mild to Moderate Alzheimer’s Disease in Two Global, Randomized, Phase 3 Trials. Alzheimers Res. Ther. 2016, 8, 18. [Google Scholar] [CrossRef]
- Ivanoiu, A.; Pariente, J.; Booth, K.; Lobello, K.; Luscan, G.; Hua, L.; Lucas, P.; Styren, S.; Yang, L.; Li, D.; et al. Long-Term Safety and Tolerability of Bapineuzumab in Patients with Alzheimer’s Disease in Two Phase 3 Extension Studies. Alzheimers Res. Ther. 2016, 8, 24. [Google Scholar] [CrossRef]
- Doody, R.S.; Thomas, R.G.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; Raman, R.; Sun, X.; Aisen, P.S.; et al. Phase 3 Trials of Solanezumab for Mild-to-Moderate Alzheimer’s Disease. N. Engl. J. Med. 2014, 370, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Siemers, E.R.; Sundell, K.L.; Carlson, C.; Case, M.; Sethuraman, G.; Liu-Seifert, H.; Dowsett, S.A.; Pontecorvo, M.J.; Dean, R.A.; Demattos, R. Phase 3 Solanezumab Trials: Secondary Outcomes in Mild Alzheimer’s Disease Patients. Alzheimer’s Dement. 2016, 12, 110–120. [Google Scholar] [CrossRef]
- Honig, L.S.; Vellas, B.; Woodward, M.; Boada, M.; Bullock, R.; Borrie, M.; Hager, K.; Andreasen, N.; Scarpini, E.; Liu-Seifert, H.; et al. Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. N. Engl. J. Med. 2018, 378, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Holdridge, K.C.; Yaari, R.; Hoban, D.B.; Andersen, S.; Sims, J.R. Targeting Amyloid β in Alzheimer’s Disease: Meta-analysis of Low-dose Solanezumab in Alzheimer’s Disease with Mild Dementia Studies. Alzheimer’s Dement. 2023, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Donohue, M.C.; Raman, R.; Rafii, M.S.; Johnson, K.; Masters, C.L.; van Dyck, C.H.; Iwatsubo, T.; Marshall, G.A.; Yaari, R.; et al. Trial of Solanezumab in Preclinical Alzheimer’s Disease. N. Engl. J. Med. 2023, 389, 1096–1107. [Google Scholar] [CrossRef] [PubMed]
- Bohrmann, B.; Baumann, K.; Benz, J.; Gerber, F.; Huber, W.; Knoflach, F.; Messer, J.; Oroszlan, K.; Rauchenberger, R.; Richter, W.F.; et al. Gantenerumab: A Novel Human Anti-Aβ Antibody Demonstrates Sustained Cerebral Amyloid-β Binding and Elicits Cell-Mediated Removal of Human Amyloid-β. J. Alzheimer’s Dis. 2012, 28, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Ostrowitzki, S.; Deptula, D.; Thurfjell, L.; Barkhof, F.; Bohrmann, B.; Brooks, D.J.; Klunk, W.E.; Ashford, E.; Yoo, K.; Xu, Z.-X.; et al. Mechanism of Amyloid Removal in Patients with Alzheimer Disease Treated with Gantenerumab. Arch. Neurol. 2012, 69, 198–207. [Google Scholar] [CrossRef]
- Söderberg, L.; Johannesson, M.; Nygren, P.; Laudon, H.; Eriksson, F.; Osswald, G.; Möller, C.; Lannfelt, L. Lecanemab, Aducanumab, and Gantenerumab—Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer’s Disease. Neurotherapeutics 2023, 20, 195–206. [Google Scholar] [CrossRef]
- Ostrowitzki, S.; Lasser, R.A.; Dorflinger, E.; Scheltens, P.; Barkhof, F.; Nikolcheva, T.; Ashford, E.; Retout, S.; Hofmann, C.; Delmar, P.; et al. A Phase III Randomized Trial of Gantenerumab in Prodromal Alzheimer’s Disease. Alzheimers Res. Ther. 2017, 9, 95. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; DeKosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; et al. Research Criteria for the Diagnosis of Alzheimer’s Disease: Revising the NINCDS–ADRDA Criteria. Lancet Neurol. 2007, 6, 734–746. [Google Scholar] [CrossRef]
- Delor, I.; Charoin, J.-E.; Gieschke, R.; Retout, S.; Jacqmin, P. Modeling Alzheimer’s Disease Progression Using Disease Onset Time and Disease Trajectory Concepts Applied to CDR-SOB Scores From ADNI. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, 78. [Google Scholar] [CrossRef]
- Klein, G.; Delmar, P.; Voyle, N.; Rehal, S.; Hofmann, C.; Abi-Saab, D.; Andjelkovic, M.; Ristic, S.; Wang, G.; Bateman, R.; et al. Gantenerumab Reduces Amyloid-β Plaques in Patients with Prodromal to Moderate Alzheimer’s Disease: A PET Substudy Interim Analysis. Alzheimers Res. Ther. 2019, 11, 101. [Google Scholar] [CrossRef]
- Klein, G.; Delmar, P.; Kerchner, G.A.; Hofmann, C.; Abi-Saab, D.; Davis, A.; Voyle, N.; Baudler, M.; Fontoura, P.; Doody, R. Thirty-Six-Month Amyloid Positron Emission Tomography Results Show Continued Reduction in Amyloid Burden with Subcutaneous Gantenerumab. J. Prev. Alzheimers Dis. 2020, 8, 3–6. [Google Scholar] [CrossRef]
- Roche Provides Update on Phase III GRADUATE Programme Evaluating Gantenerumab in Early Alzheimer’s Disease. Available online: https://www.roche.com/media/releases/med-cor-2022-11-14 (accessed on 25 August 2023).
- Gantenerumab Mystery: How Did It Lose Potency in Phase 3? Available online: https://www.alzforum.org/news/conference-coverage/gantenerumab-mystery-how-did-it-lose-potency-phase-3 (accessed on 25 August 2023).
- Ryman, D.C.; Acosta-Baena, N.; Aisen, P.S.; Bird, T.; Danek, A.; Fox, N.C.; Goate, A.; Frommelt, P.; Ghetti, B.; Langbaum, J.B.S.; et al. Symptom Onset in Autosomal Dominant Alzheimer Disease: A Systematic Review and Meta-Analysis. Neurology 2014, 83, 253–260. [Google Scholar] [CrossRef]
- Ryan, N.S.; Nicholas, J.M.; Weston, P.S.J.; Liang, Y.; Lashley, T.; Guerreiro, R.; Adamson, G.; Kenny, J.; Beck, J.; Chavez-Gutierrez, L.; et al. Clinical Phenotype and Genetic Associations in Autosomal Dominant Familial Alzheimer’s Disease: A Case Series. Lancet Neurol. 2016, 15, 1326–1335. [Google Scholar] [CrossRef] [PubMed]
- Rujeedawa, T.; Carrillo Félez, E.; Clare, I.C.H.; Fortea, J.; Strydom, A.; Rebillat, A.-S.; Coppus, A.; Levin, J.; Zaman, S.H. The Clinical and Neuropathological Features of Sporadic (Late-Onset) and Genetic Forms of Alzheimer’s Disease. J. Clin. Med. 2021, 10, 4582. [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Farlow, M.; McDade, E.; Clifford, D.B.; Wang, G.; Llibre-Guerra, J.J.; Hitchcock, J.M.; Mills, S.L.; Santacruz, A.M.; Aschenbrenner, A.J.; et al. A Trial of Gantenerumab or Solanezumab in Dominantly Inherited Alzheimer’s Disease. Nat. Med. 2021, 27, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Adolfsson, O.; Pihlgren, M.; Toni, N.; Varisco, Y.; Buccarello, A.L.; Antoniello, K.; Lohmann, S.; Piorkowska, K.; Gafner, V.; Atwal, J.K.; et al. An Effector-Reduced Anti-β-Amyloid (Aβ) Antibody with Unique A Binding Properties Promotes Neuroprotection and Glial Engulfment of Aβ. J. Neurosci. 2012, 32, 9677–9689. [Google Scholar] [CrossRef] [PubMed]
- Ultsch, M.; Li, B.; Maurer, T.; Mathieu, M.; Adolfsson, O.; Muhs, A.; Pfeifer, A.; Pihlgren, M.; Bainbridge, T.W.; Reichelt, M.; et al. Structure of Crenezumab Complex with Aβ Shows Loss of β-Hairpin. Sci. Rep. 2016, 6, 39374. [Google Scholar] [CrossRef]
- Ostrowitzki, S.; Bittner, T.; Sink, K.M.; Mackey, H.; Rabe, C.; Honig, L.S.; Cassetta, E.; Woodward, M.; Boada, M.; van Dyck, C.H.; et al. Evaluating the Safety and Efficacy of Crenezumab vs Placebo in Adults with Early Alzheimer Disease. JAMA Neurol. 2022, 79, 1113. [Google Scholar] [CrossRef]
- Tariot, P.N.; Lopera, F.; Langbaum, J.B.; Thomas, R.G.; Hendrix, S.; Schneider, L.S.; Rios-Romenets, S.; Giraldo, M.; Acosta, N.; Tobon, C.; et al. The Alzheimer’s Prevention Initiative Autosomal-Dominant Alzheimer’s Disease Trial: A Study of Crenezumab versus Placebo in Preclinical PSEN1 E280A Mutation Carriers to Evaluate Efficacy and Safety in the Treatment of Autosomal-dominant Alzheimer’s Disease, Including a Placebo-treated Noncarrier Cohort. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2018, 4, 150–160. [Google Scholar] [CrossRef]
- Arango-Lasprilla, J.C.; Cuetos, F.; Valencia, C.; Uribe, C.; Lopera, F. Cognitive Changes in the Preclinical Phase of Familial Alzheimer’s Disease. J. Clin. Exp. Neuropsychol. 2007, 29, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Baena, N.; Sepulveda-Falla, D.; Lopera-Gómez, C.M.; Jaramillo-Elorza, M.C.; Moreno, S.; Aguirre-Acevedo, D.C.; Saldarriaga, A.; Lopera, F. Pre-Dementia Clinical Stages in Presenilin 1 E280A Familial Early-Onset Alzheimer’s Disease: A Retrospective Cohort Study. Lancet Neurol. 2011, 10, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Fleisher, A.S.; Chen, K.; Quiroz, Y.T.; Jakimovich, L.J.; Gomez, M.G.; Langois, C.M.; Langbaum, J.B.; Ayutyanont, N.; Roontiva, A.; Thiyyagura, P.; et al. Florbetapir PET Analysis of Amyloid-β Deposition in the Presenilin 1 E280A Autosomal Dominant Alzheimer’s Disease Kindred: A Cross-Sectional Study. Lancet Neurol. 2012, 11, 1057–1065. [Google Scholar] [CrossRef]
- Roche Provides Update on Alzheimer’s Prevention Initiative Study Evaluating Crenezumab in Autosomal Dominant Alzheimer’s Disease. Available online: https://www.roche.com/media/releases/med-cor-2022-06-16 (accessed on 29 August 2023).
- Alzforum.Org API ADAD Columbia Trial Reported Results. Available online: https://www.alzforum.org/news/conference-coverage/crenezumab-secondaries-negative-gantenerumab-ole-hints-efficacy (accessed on 29 August 2023).
- Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; et al. The Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature 2016, 537, 50–56. [Google Scholar] [CrossRef]
- Biogen and Eisai to Discontinue Phase 3 ENGAGE and EMERGE Trials of Aducanumab in Alzheimer’s Disease. Available online: https://investors.biogen.com/news-releases/news-release-details/biogen-and-eisai-discontinue-phase-3-engage-and-emerge-trials#:~:text=The%20decision%20to%20stop%20the,not%20based%20on%20safety%20concerns (accessed on 29 August 2023).
- Biogen Plans Regulatory Filing for Aducanumab in Alzheimer’s Disease Based on New Analysis of Larger Dataset from Phase 3 Studies. Available online: https://investors.biogen.com/news-releases/news-release-details/biogen-plans-regulatory-filing-aducanumab-alzheimers-disease (accessed on 29 August 2023).
- Budd Haeberlein, S.; Aisen, P.S.; Barkhof, F.; Chalkias, S.; Chen, T.; Cohen, S.; Dent, G.; Hansson, O.; Harrison, K.; von Hehn, C.; et al. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2022, 9, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Final Summary Minutes of the PCNS Drugs Advisory Committee Meeting. Available online: https://www.fda.gov/media/145690/download (accessed on 30 August 2023).
- Update on FDA Advisory Committee’s Meeting on Aducanumab in Alzheimer’s Disease. Available online: https://investors.biogen.com/news-releases/news-release-details/update-fda-advisory-committees-meeting-aducanumab-alzheimers (accessed on 30 August 2023).
- Mahase, E. Three FDA Advisory Panel Members Resign over Approval of Alzheimer’s Drug. BMJ 2021, 373, n1503. [Google Scholar] [CrossRef]
- Alexander, G.C.; Knopman, D.S.; Emerson, S.S.; Ovbiagele, B.; Kryscio, R.J.; Perlmutter, J.S.; Kesselheim, A.S. Revisiting FDA Approval of Aducanumab. N. Engl. J. Med. 2021, 385, 769–771. [Google Scholar] [CrossRef]
- Cummings, J.; Aisen, P.; Lemere, C.; Atri, A.; Sabbagh, M.; Salloway, S. Aducanumab Produced a Clinically Meaningful Benefit in Association with Amyloid Lowering. Alzheimers Res. Ther. 2021, 13, 98. [Google Scholar] [CrossRef]
- Liu, K.Y.; Howard, R. Can We Learn Lessons from the FDA’s Approval of Aducanumab? Nat. Rev. Neurol. 2021, 17, 715–722. [Google Scholar] [CrossRef]
- Rabinovici, G.D. Controversy and Progress in Alzheimer’s Disease—FDA Approval of Aducanumab. N. Engl. J. Med. 2021, 385, 771–774. [Google Scholar] [CrossRef]
- Salloway, S.; Cummings, J. Aducanumab, Amyloid Lowering, and Slowing of Alzheimer Disease. Neurology 2021, 97, 543–544. [Google Scholar] [CrossRef]
- Selkoe, D.J. Treatments for Alzheimer’s Disease Emerge. Science 2021, 373, 624–626. [Google Scholar] [CrossRef]
- Servick, K. Alzheimer’s Drug Approved despite Murky Results. Science 2021, 372, 1141. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.S. Aducanumab Trials EMERGE But Don’t ENGAGE. J. Prev. Alzheimers Dis. 2022, 9, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Vaz, M.; Silva, V.; Monteiro, C.; Silvestre, S. Role of Aducanumab in the Treatment of Alzheimer’s Disease: Challenges and Opportunities. Clin. Interv. Aging 2022, 17, 797–810. [Google Scholar] [CrossRef]
- Rizk, J.G.; Lewin, J.C. FDA’s Dilemma with the Aducanumab Approval: Public Pressure and Hope, Surrogate Markers and Efficacy, and Possible next Steps. BMJ Evid. Based Med. 2023, 28, 78–82. [Google Scholar] [CrossRef]
- Wang, Y. An Insider’s Perspective on FDA Approval of Aducanumab. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2023, 9, e12382. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.; Rudkowska, M.; Orzeł-Sajdłowska, A. Aducanumab—Hope or Disappointment for Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 4367. [Google Scholar] [CrossRef]
- Refusal of the Marketing Authorisation for Aduhelm (Aducanumab). Available online: https://www.ema.europa.eu/en/documents/medicine-qa/questions-answers-refusal-marketing-authorisation-aduhelm-aducanumab_en.pdf (accessed on 30 August 2023).
- Aduhelm: Withdrawal of the Marketing Authorisation Application. Available online: https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/aduhelm (accessed on 30 August 2023).
- Tucker, S.; Möller, C.; Tegerstedt, K.; Lord, A.; Laudon, H.; Sjödahl, J.; Söderberg, L.; Spens, E.; Sahlin, C.; Waara, E.R.; et al. The Murine Version of BAN2401 (MAb158) Selectively Reduces Amyloid-β Protofibrils in Brain and Cerebrospinal Fluid of Tg-ArcSwe Mice. J. Alzheimers Dis. 2015, 43, 575–588. [Google Scholar] [CrossRef] [PubMed]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Kurkinen, M. Lecanemab (Leqembi) Is Not the Right Drug for Patients with Alzheimer’s Disease. Adv. Clin. Exp. Med. 2023. [Google Scholar] [CrossRef] [PubMed]
- FDA Grants Traditional Approval for LEQEMBI® (Lecanemab-Irmb) for the Treatment of Alzheimer’s Disease. Available online: https://investors.biogen.com/news-releases/news-release-details/fda-grants-traditional-approval-leqembir-lecanemab-irmb (accessed on 31 August 2023).
- Mahase, E. Lecanemab Trial Finds Slight Slowing of Cognitive Decline, but Clinical Benefits Are Uncertain. BMJ 2022, 379, o2912. [Google Scholar] [CrossRef] [PubMed]
- The Lancet. Lecanemab for Alzheimer’s Disease: Tempering Hype and Hope. Lancet 2022, 400, 1899. [Google Scholar] [CrossRef]
- Walsh, S.; Merrick, R.; Richard, E.; Nurock, S.; Brayne, C. Lecanemab for Alzheimer’s Disease. BMJ 2022, 379, o3010. [Google Scholar] [CrossRef]
- Brenman, J.E. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 1631. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.F.; Kerber, K.A.; Langa, K.M.; Albin, R.L.; Kotagal, V. Lecanemab: Looking Before We Leap. Neurology, 2023; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Daly, T. Lecanemab: Turning Point, or Status Quo? An Ethics Perspective. Brain 2023, 146, awad094. [Google Scholar] [CrossRef]
- Hardy, J.; Mummery, C. Reply: Lecanemab: Turning Point, or Status Quo? An Ethics Perspective. Brain 2023, 146, e71–e72. [Google Scholar] [CrossRef]
- Kepp, K.P.; Sensi, S.L.; Johnsen, K.B.; Barrio, J.R.; Høilund-Carlsen, P.F.; Neve, R.L.; Alavi, A.; Herrup, K.; Perry, G.; Robakis, N.K.; et al. The Anti-Amyloid Monoclonal Antibody Lecanemab: 16 Cautionary Notes. J. Alzheimer’s Dis. 2023, 94, 497–507. [Google Scholar] [CrossRef]
- Pomara, N.; Imbimbo, B.P. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 1630–1631. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, M.J.; Pascual-Leone, A. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 1630. [Google Scholar] [CrossRef] [PubMed]
- van Dyck, C.H.; Sabbagh, M.; Cohen, S. Response: Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 1631–1632. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.-S.; Tseng, P.-T.; Liang, C.-S. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 1630. [Google Scholar] [CrossRef] [PubMed]
- DeMattos, R.B.; Lu, J.; Tang, Y.; Racke, M.M.; DeLong, C.A.; Tzaferis, J.A.; Hole, J.T.; Forster, B.M.; McDonnell, P.C.; Liu, F.; et al. A Plaque-Specific Antibody Clears Existing β-Amyloid Plaques in Alzheimer’s Disease Mice. Neuron 2012, 76, 908–920. [Google Scholar] [CrossRef]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in Early Symptomatic Alzheimer Disease. JAMA 2023, 330, 512–527. [Google Scholar] [CrossRef]
- Iacobucci, G. Donanemab Leads to Modest Slowing of Alzheimer’s Progression, Study Finds. BMJ 2023, 382, p1659. [Google Scholar] [CrossRef] [PubMed]
- Manly, J.J.; Deters, K.D. Donanemab for Alzheimer Disease—Who Benefits and Who Is Harmed? JAMA 2023, 330, 510–511. [Google Scholar] [CrossRef]
- Rabinovici, G.D.; La Joie, R. Amyloid-Targeting Monoclonal Antibodies for Alzheimer Disease. JAMA 2023, 330, 507–509. [Google Scholar] [CrossRef]
- Widera, E.W.; Brangman, S.A.; Chin, N.A. Ushering in a New Era of Alzheimer Disease Therapy. JAMA 2023, 330, 503–504. [Google Scholar] [CrossRef]
- Liu, K.Y.; Schneider, L.S.; Howard, R. The Need to Show Minimum Clinically Important Differences in Alzheimer’s Disease Trials. Lancet Psychiatry 2021, 8, 1013–1016. [Google Scholar] [CrossRef]
- Barakos, J.; Purcell, D.; Suhy, J.; Chalkias, S.; Burkett, P.; Marsica Grassi, C.; Castrillo-Viguera, C.; Rubino, I.; Vijverberg, E. Detection and Management of Amyloid-Related Imaging Abnormalities in Patients with Alzheimer’s Disease Treated with Anti-Amyloid Beta Therapy. J. Prev. Alzheimers Dis. 2022, 9, 211–220. [Google Scholar] [CrossRef]
- Hampel, H.; Elhage, A.; Cho, M.; Apostolova, L.G.; Nicoll, J.A.R.; Atri, A. Amyloid-Related Imaging Abnormalities (ARIA): Radiological, Biological and Clinical Characteristics. Brain 2023, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.; Kalinowski, P.; Ayton, S. Accelerated Brain Volume Loss Caused by Anti–β-Amyloid Drugs. Neurology 2023, 100, e2114–e2124. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.L.; Vassar, R. The Alzheimer’s Disease Beta-Secretase Enzyme, BACE1. Mol. Neurodegener. 2007, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Tamaoka, A.; Sawamura, N.; Fukushima, T.; Shoji, S.; Matsubara, E.; Shoji, M.; Hirai, S.; Furiya, Y.; Endoh, R.; Mori, H. Amyloid β Protein 42(43) in Cerebrospinal Fluid of Patients with Alzheimer’s Disease. J. Neurol. Sci. 1997, 148, 41–45. [Google Scholar] [CrossRef]
- Cirrito, J.R.; May, P.C.; O’Dell, M.A.; Taylor, J.W.; Parsadanian, M.; Cramer, J.W.; Audia, J.E.; Nissen, J.S.; Bales, K.R.; Paul, S.M.; et al. In Vivo Assessment of Brain Interstitial Fluid with Microdialysis Reveals Plaque-Associated Changes in Amyloid-Beta Metabolism and Half-Life. J. Neurosci. 2003, 23, 8844–8853. [Google Scholar] [CrossRef]
- Mehta, P.D.; Pirttila, T. Increased Cerebrospinal Fluid Aβ38/Aβ42 Ratio in Alzheimer Disease. Neurodegener. Dis. 2005, 2, 242–245. [Google Scholar] [CrossRef]
- Giedraitis, V.; Sundelöf, J.; Irizarry, M.C.; Gårevik, N.; Hyman, B.T.; Wahlund, L.-O.; Ingelsson, M.; Lannfelt, L. The Normal Equilibrium between CSF and Plasma Amyloid Beta Levels Is Disrupted in Alzheimer’s Disease. Neurosci. Lett. 2007, 427, 127–131. [Google Scholar] [CrossRef]
- Whitson, J.S.; Selkoe, D.J.; Cotman, C.W. Amyloid β Protein Enhances the Survival of Hippocampal Neurons in Vitro. Science (1979) 1989, 243, 1488–1490. [Google Scholar] [CrossRef] [PubMed]
- Yankner, B.A.; Duffy, L.K.; Kirschner, D.A. Neurotrophic and Neurotoxic Effects of Amyloid β Protein: Reversal by Tachykinin Neuropeptides. Science 1990, 250, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Plant, L.D.; Boyle, J.P.; Smith, I.F.; Peers, C.; Pearson, H.A. The Production of Amyloid Beta Peptide Is a Critical Requirement for the Viability of Central Neurons. J. Neurosci. 2003, 23, 5531–5535. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, M.L.; Caraci, F.; Pignataro, B.; Cataldo, S.; De Bona, P.; Bruno, V.; Molinaro, G.; Pappalardo, G.; Messina, A.; Palmigiano, A.; et al. β-Amyloid Monomers Are Neuroprotective. J. Neurosci. 2009, 29, 10582–10587. [Google Scholar] [CrossRef]
- López-Toledano, M.A.; Shelanski, M.L. Neurogenic Effect of Beta-Amyloid Peptide in the Development of Neural Stem Cells. J. Neurosci. 2004, 24, 5439–5444. [Google Scholar] [CrossRef]
- Ortiz-Sanz, C.; Gaminde-Blasco, A.; Valero, J.; Bakota, L.; Brandt, R.; Zugaza, J.L.; Matute, C.; Alberdi, E. Early Effects of Aβ Oligomers on Dendritic Spine Dynamics and Arborization in Hippocampal Neurons. Front. Synaptic Neurosci. 2020, 12, 2. [Google Scholar] [CrossRef]
- Quintela-López, T.; Ortiz-Sanz, C.; Serrano-Regal, M.P.; Gaminde-Blasco, A.; Valero, J.; Baleriola, J.; Sánchez-Gómez, M.V.; Matute, C.; Alberdi, E. Aβ Oligomers Promote Oligodendrocyte Differentiation and Maturation via Integrin Β1 and Fyn Kinase Signaling. Cell Death Dis. 2019, 10, 445. [Google Scholar] [CrossRef]
- Mannix, R.C.; Zhang, J.; Park, J.; Lee, C.; Whalen, M.J. Detrimental Effect of Genetic Inhibition of B-Site APP-Cleaving Enzyme 1 on Functional Outcome after Controlled Cortical Impact in Young Adult Mice. J. Neurotrauma 2011, 28, 1855–1861. [Google Scholar] [CrossRef]
- Pajoohesh-Ganji, A.; Burns, M.P.; Pal-Ghosh, S.; Tadvalkar, G.; Hokenbury, N.G.; Stepp, M.A.; Faden, A.I. Inhibition of Amyloid Precursor Protein Secretases Reduces Recovery after Spinal Cord Injury. Brain Res. 2014, 1560, 73–82. [Google Scholar] [CrossRef]
- Rottkamp, C.A.; Atwood, C.S.; Joseph, J.A.; Nunomura, A.; Perry, G.; Smith, M.A. The State versus Amyloid-β: The Trial of the Most Wanted Criminal in Alzheimer Disease. Peptides 2002, 23, 1333–1341. [Google Scholar] [CrossRef]
- Smith, M.A.; Casadesus, G.; Joseph, J.A.; Perry, G. Amyloid-β and τ Serve Antioxidant Functions in the Aging and Alzheimer Brain. Free Radic. Biol. Med. 2002, 33, 1194–1199. [Google Scholar] [CrossRef]
- Lanni, C.; Fagiani, F.; Racchi, M.; Preda, S.; Pascale, A.; Grilli, M.; Allegri, N.; Govoni, S. Beta-Amyloid Short- and Long-Term Synaptic Entanglement. Pharmacol. Res. 2019, 139, 243–260. [Google Scholar] [CrossRef]
- Fagiani, F.; Lanni, C.; Racchi, M.; Govoni, S. (Dys)Regulation of Synaptic Activity and Neurotransmitter Release by β-Amyloid: A Look Beyond Alzheimer’s Disease Pathogenesis. Front. Mol. Neurosci. 2021, 14, 635880. [Google Scholar] [CrossRef]
- Wu, J.; Anwyl, R.; Rowan, M.J. β-Amyloid-(1–40) Increases Long-Term Potentiation in Rat Hippocampus in Vitro. Eur. J. Pharmacol. 1995, 284, R1–R3. [Google Scholar] [CrossRef] [PubMed]
- Puzzo, D.; Privitera, L.; Leznik, E.; Fà, M.; Staniszewski, A.; Palmeri, A.; Arancio, O. Picomolar Amyloid-β Positively Modulates Synaptic Plasticity and Memory in Hippocampus. J. Neurosci. 2008, 28, 14537–14545. [Google Scholar] [CrossRef]
- Garcia-Osta, A.; Alberini, C.M. Amyloid Beta Mediates Memory Formation. Learn. Mem. 2009, 16, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Farr, S.A.; Banks, W.A.; Johnson, S.N.; Yamada, K.A.; Xu, L. A Physiological Role for Amyloid-Beta Protein:Enhancement of Learning and Memory. J. Alzheimers Dis. 2010, 19, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Puzzo, D.; Privitera, L.; Fa’, M.; Staniszewski, A.; Hashimoto, G.; Aziz, F.; Sakurai, M.; Ribe, E.M.; Troy, C.M.; Mercken, M.; et al. Endogenous Amyloid-β Is Necessary for Hippocampal Synaptic Plasticity and Memory. Ann. Neurol. 2011, 69, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Canepa, E.; Domenicotti, C.; Marengo, B.; Passalacqua, M.; Marinari, U.M.; Pronzato, M.A.; Fedele, E.; Ricciarelli, R. Cyclic Adenosine Monophosphate as an Endogenous Modulator of the Amyloid-β Precursor Protein Metabolism. IUBMB Life 2013, 65, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Ricciarelli, R.; Puzzo, D.; Bruno, O.; Canepa, E.; Gardella, E.; Rivera, D.; Privitera, L.; Domenicotti, C.; Marengo, B.; Marinari, U.M.; et al. A Novel Mechanism for Cyclic Adenosine Monophosphate-Mediated Memory Formation: Role of Amyloid Beta. Ann. Neurol. 2014, 75, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Calcagno, E.; Caudano, F.; Passalacqua, M.; Pronzato, M.A.; Fedele, E.; Ricciarelli, R. Investigating the Amyloid-Beta Enhancing Effect of CGMP in Neuro2a Cells. Mech. Ageing Dev. 2017, 166, 1–5. [Google Scholar] [CrossRef]
- Palmeri, A.; Ricciarelli, R.; Gulisano, W.; Rivera, D.; Rebosio, C.; Calcagno, E.; Tropea, M.R.; Conti, S.; Das, U.; Roy, S.; et al. Amyloid-β Peptide Is Needed for CGMP-Induced Long-Term Potentiation and Memory. J. Neurosci. 2017, 37, 6926–6937. [Google Scholar] [CrossRef] [PubMed]
- Laird, F.M.; Cai, H.; Savonenko, A.V.; Farah, M.H.; He, K.; Melnikova, T.; Wen, H.; Chiang, H.-C.; Xu, G.; Koliatsos, V.E.; et al. BACE1, a Major Determinant of Selective Vulnerability of the Brain to Amyloid-β Amyloidogenesis, Is Essential for Cognitive, Emotional, and Synaptic Functions. J. Neurosci. 2005, 25, 11693–11709. [Google Scholar] [CrossRef]
- Filser, S.; Ovsepian, S.V.; Masana, M.; Blazquez-Llorca, L.; Brandt Elvang, A.; Volbracht, C.; Müller, M.B.; Jung, C.K.E.; Herms, J. Pharmacological Inhibition of BACE1 Impairs Synaptic Plasticity and Cognitive Functions. Biol. Psychiatry 2015, 77, 729–739. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, R.; Yang, G.; Shi, Y. Analysis of 138 Pathogenic Mutations in Presenilin-1 on the in Vitro Production of Aβ42 and Aβ40 Peptides by γ-Secretase. Proc. Natl. Acad. Sci. USA 2017, 114, E476–E485. [Google Scholar] [CrossRef] [PubMed]
- Winklhofer, K.F.; Tatzelt, J.; Haass, C. The Two Faces of Protein Misfolding: Gain- and Loss-of-Function in Neurodegenerative Diseases. EMBO J. 2008, 27, 336–349. [Google Scholar] [CrossRef]
- Giuffrida, M.L.; Caraci, F.; De Bona, P.; Pappalardo, G.; Nicoletti, F.; Rizzarelli, E.; Copani, A. The Monomer State of Beta-Amyloid: Where the Alzheimer’s Disease Protein Meets Physiology. Rev. Neurosci. 2010, 21, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Fedele, E.; Rivera, D.; Marengo, B.; Pronzato, M.A.; Ricciarelli, R. Amyloid β: Walking on the Dark Side of the Moon. Mech. Ageing Dev. 2015, 152, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Kepp, K.P. Alzheimer’s Disease Due to Loss of Function: A New Synthesis of the Available Data. Prog. Neurobiol. 2016, 143, 36–60. [Google Scholar] [CrossRef]
- Copani, A. The Underexplored Question of β-Amyloid Monomers. Eur. J. Pharmacol. 2017, 817, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Ricciarelli, R.; Fedele, E. CAMP, CGMP and Amyloid β: Three Ideal Partners for Memory Formation. Trends Neurosci. 2018, 41, 255–266. [Google Scholar] [CrossRef]
- Espay, A.J.; Sturchio, A.; Schneider, L.S.; Ezzat, K. Soluble Amyloid-β Consumption in Alzheimer’s Disease. J. Alzheimer’s Dis. 2021, 82, 1403–1415. [Google Scholar] [CrossRef]
- Forest, K.H.; Taketa, R.; Arora, K.; Todorovic, C.; Nichols, R.A. The Neuroprotective Beta Amyloid Hexapeptide Core Reverses Deficits in Synaptic Plasticity in the 5xFAD APP/PS1 Mouse Model. Front. Mol. Neurosci. 2021, 14, 576038. [Google Scholar] [CrossRef]
- Lantz, M.J.; Roberts, A.M.; Delgado, D.D.; Nichols, R.A. The Neuroprotective N-Terminal Amyloid-β Core Hexapeptide Reverses Reactive Gliosis and Gliotoxicity in Alzheimer’s Disease Pathology Models. J. Neuroinflamm. 2023, 20, 129. [Google Scholar] [CrossRef]
- Duan, Y.; Lv, J.; Zhang, Z.; Chen, Z.; Wu, H.; Chen, J.; Chen, Z.; Yang, J.; Wang, D.; Liu, Y.; et al. Exogenous Aβ1-42 Monomers Improve Synaptic and Cognitive Function in Alzheimer’s Disease Model Mice. Neuropharmacology 2022, 209, 109002. [Google Scholar] [CrossRef]
- Gulisano, W.; Melone, M.; Ripoli, C.; Tropea, M.R.; Li Puma, D.D.; Giunta, S.; Cocco, S.; Marcotulli, D.; Origlia, N.; Palmeri, A.; et al. Neuromodulatory Action of Picomolar Extracellular Aβ42 Oligomers on Presynaptic and Postsynaptic Mechanisms Underlying Synaptic Function and Memory. J. Neurosci. 2019, 39, 5986–6000. [Google Scholar] [CrossRef]
- Puzzo, D. Aβ Oligomers: Role at the Synapse. Aging 2019, 11, 1077–1078. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Shin, H.; Hong, S.; Kim, Y. Physiological Roles of Monomeric Amyloid-β and Implications for Alzheimer’s Disease Therapeutics. Exp. Neurobiol. 2022, 31, 65–88. [Google Scholar] [CrossRef] [PubMed]
- Sturchio, A.; Dwivedi, A.K.; Young, C.B.; Malm, T.; Marsili, L.; Sharma, J.S.; Mahajan, A.; Hill, E.J.; Andaloussi, S.E.; Poston, K.L.; et al. High Cerebrospinal Amyloid-β 42 Is Associated with Normal Cognition in Individuals with Brain Amyloidosis. EClinicalMedicine 2021, 38, 100988. [Google Scholar] [CrossRef] [PubMed]
- Sturchio, A.; Dwivedi, A.K.; Malm, T.; Wood, M.J.A.; Cilia, R.; Sharma, J.S.; Hill, E.J.; Schneider, L.S.; Graff-Radford, N.R.; Mori, H.; et al. High Soluble Amyloid-Β42 Predicts Normal Cognition in Amyloid-Positive Individuals with Alzheimer’s Disease-Causing Mutations. J. Alzheimer’s Dis. 2022, 90, 333–348. [Google Scholar] [CrossRef] [PubMed]
- Pimplikar, S.W.; Nixon, R.A.; Robakis, N.K.; Shen, J.; Tsai, L.-H. Amyloid-Independent Mechanisms in Alzheimer’s Disease Pathogenesis. J. Neurosci. 2010, 30, 14946–14954. [Google Scholar] [CrossRef]
- Drachman, D.A. The Amyloid Hypothesis, Time to Move on: Amyloid Is the Downstream Result, Not Cause, of Alzheimer’s Disease. Alzheimer’s Dement. 2014, 10, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.-X.; Dai, C.-L.; Liu, F.; Iqbal, K. Multi-Targets: An Unconventional Drug Development Strategy for Alzheimer’s Disease. Front. Aging Neurosci. 2022, 14, 837649. [Google Scholar] [CrossRef]
- Ferrer, I. Hypothesis Review: Alzheimer’s Overture Guidelines. Brain Pathol. 2023, 33, e13122. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.V.; Subramaniam, K.G.; Gregory, J.; Bredesen, A.L.; Coward, C.; Okada, S.; Kelly, L.; Bredesen, D.E. Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer’s Disease and MCI: A Review. Int. J. Mol. Sci. 2023, 24, 1659. [Google Scholar] [CrossRef]
- Castello, M.A.; Soriano, S. On the Origin of Alzheimer’s Disease. Trials and Tribulations of the Amyloid Hypothesis. Ageing Res. Rev. 2014, 13, 10–12. [Google Scholar] [CrossRef]
- Herrup, K. The Case for Rejecting the Amyloid Cascade Hypothesis. Nat. Neurosci. 2015, 18, 794–799. [Google Scholar] [CrossRef]
- Ricciarelli, R.; Fedele, E. The Amyloid Cascade Hypothesis in Alzheimer’s Disease: It’s Time to Change Our Mind. Curr. Neuropharmacol. 2017, 15, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.P.; Clark, I.A.; Vissel, B. Questions Concerning the Role of Amyloid-β in the Definition, Aetiology and Diagnosis of Alzheimer’s Disease. Acta Neuropathol. 2018, 136, 663–689. [Google Scholar] [CrossRef]
- Imbimbo, B.P.; Ippati, S.; Watling, M. Should Drug Discovery Scientists Still Embrace the Amyloid Hypothesis for Alzheimer’s Disease or Should They Be Looking Elsewhere? Expert. Opin. Drug Discov. 2020, 15, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Jagust, W.J.; Teunissen, C.E.; DeCarli, C. The Complex Pathway between Amyloid β and Cognition: Implications for Therapy. Lancet Neurol. 2023, 22, 847–857. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedele, E. Anti-Amyloid Therapies for Alzheimer’s Disease and the Amyloid Cascade Hypothesis. Int. J. Mol. Sci. 2023, 24, 14499. https://doi.org/10.3390/ijms241914499
Fedele E. Anti-Amyloid Therapies for Alzheimer’s Disease and the Amyloid Cascade Hypothesis. International Journal of Molecular Sciences. 2023; 24(19):14499. https://doi.org/10.3390/ijms241914499
Chicago/Turabian StyleFedele, Ernesto. 2023. "Anti-Amyloid Therapies for Alzheimer’s Disease and the Amyloid Cascade Hypothesis" International Journal of Molecular Sciences 24, no. 19: 14499. https://doi.org/10.3390/ijms241914499
APA StyleFedele, E. (2023). Anti-Amyloid Therapies for Alzheimer’s Disease and the Amyloid Cascade Hypothesis. International Journal of Molecular Sciences, 24(19), 14499. https://doi.org/10.3390/ijms241914499