The Glioblastoma CircularRNAome
Abstract
:1. Introduction
2. Circular RNAs: Biological Considerations
3. Overview of CircRNAs in Glioblastoma
3.1. Mechanism of Action of circRNAs in Glioblastoma
3.2. Circular RNAs Are Implicated in GBM Cancer Cell Proliferation, Survival, Migration, Invasion and Metastasis
3.3. Circular RNAs as Regulators of GBM Neoangiogenesis
3.4. Circular RNAs Are Implicated in Metabolic Reprogramming and Therapeutic Resistance
4. Perspectives on circRNAs in Translational Medicine
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L.; et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin. 2021, 71, 381–406. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Brada, M.; van den Bent, M.J.; Tonn, J.C.; Pentheroudakis, G.; Group, E.G.W. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25 (Suppl. S3), iii93–iii101. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Martin, B.; Medina, M.A. Advances in the Knowledge of the Molecular Biology of Glioblastoma and Its Impact in Patient Diagnosis, Stratification, and Treatment. Adv. Sci. 2020, 7, 1902971. [Google Scholar] [CrossRef] [PubMed]
- Vital, A.L.; Tabernero, M.D.; Crespo, I.; Rebelo, O.; Tao, H.; Gomes, F.; Lopes, M.C.; Orfao, A. Intratumoral patterns of clonal evolution in gliomas. Neurogenetics 2010, 11, 227–239. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research, Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455, 1061–1068. [Google Scholar] [CrossRef]
- Mansouri, A.; Karamchandani, J.; Das, S. Molecular Genetics of Secondary Glioblastoma. In Glioblastoma; De Vleeschouwer, S., Ed.; Codon Publications: Brisbane, Australia, 2017. [Google Scholar]
- Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef]
- Pirlog, R.; Susman, S.; Iuga, C.A.; Florian, S.I. Proteomic Advances in Glial Tumors through Mass Spectrometry Approaches. Medicina 2019, 55, 412. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Cai, Z.R.; Liu, J.; Wang, D.S.; Ju, H.Q.; Xu, R.H. Circular RNA: Metabolism, functions and interactions with proteins. Mol. Cancer 2020, 19, 172. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Cocquerelle, C.; Mascrez, B.; Hetuin, D.; Bailleul, B. Mis-splicing yields circular RNA molecules. FASEB J. 1993, 7, 155–160. [Google Scholar] [CrossRef]
- Perriman, R.; Ares, M., Jr. Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo. RNA 1998, 4, 1047–1054. [Google Scholar] [CrossRef]
- Ebbesen, K.K.; Hansen, T.B.; Kjems, J. Insights into circular RNA biology. RNA Biol. 2017, 14, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef] [PubMed]
- Jeck, W.R.; Sharpless, N.E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014, 32, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Zhou, Y. Insights into circular RNAs: Biogenesis, function and their regulatory roles in cardiovascular disease. J. Cell. Mol. Med. 2023, 27, 1299–1314. [Google Scholar] [CrossRef] [PubMed]
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013, 19, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.O.; Chen, T.; Xiang, J.F.; Yin, Q.F.; Xing, Y.H.; Zhu, S.; Yang, L.; Chen, L.L. Circular intronic long noncoding RNAs. Mol. Cell 2013, 51, 792–806. [Google Scholar] [CrossRef]
- Ashwal-Fluss, R.; Meyer, M.; Pamudurti, N.R.; Ivanov, A.; Bartok, O.; Hanan, M.; Evantal, N.; Memczak, S.; Rajewsky, N.; Kadener, S. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 2014, 56, 55–66. [Google Scholar] [CrossRef]
- Kramer, M.C.; Liang, D.; Tatomer, D.C.; Gold, B.; March, Z.M.; Cherry, S.; Wilusz, J.E. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes. Dev. 2015, 29, 2168–2182. [Google Scholar] [CrossRef]
- Lu, Z.; Filonov, G.S.; Noto, J.J.; Schmidt, C.A.; Hatkevich, T.L.; Wen, Y.; Jaffrey, S.R.; Matera, A.G. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 2015, 21, 1554–1565. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.A.; Giusto, J.D.; Bao, A.; Hopper, A.K.; Matera, A.G. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res. 2019, 47, 6452–6465. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.Y.; Kuo, H.C. The emerging roles and functions of circular RNAs and their generation. J. Biomed. Sci. 2019, 26, 29. [Google Scholar] [CrossRef] [PubMed]
- Conn, V.M.; Hugouvieux, V.; Nayak, A.; Conos, S.A.; Capovilla, G.; Cildir, G.; Jourdain, A.; Tergaonkar, V.; Schmid, M.; Zubieta, C.; et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat. Plants 2017, 3, 17053. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Hann, S.S. Biological Roles and Mechanisms of Circular RNA in Human Cancers. OncoTargets Ther. 2020, 13, 2067–2092. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cai, Y.; Xu, J. Circular RNAs: Biogenesis, Mechanism, and Function in Human Cancers. Int. J. Mol. Sci. 2019, 20, 3926. [Google Scholar] [CrossRef]
- Rybak-Wolf, A.; Stottmeister, C.; Glazar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell 2015, 58, 870–885. [Google Scholar] [CrossRef]
- Pirlog, B.O.; Ilut, S.; Pirlog, R.; Chiroi, P.; Nutu, A.; Radutiu, D.I.; Cuc, G.D.; Berindan-Neagoe, I.; Nabavi, S.F.; Filosa, R.; et al. New perspective on DNA response pathway (DDR) in glioblastoma, focus on classic biomarkers and emerging roles of ncRNAs. Expert Rev. Mol. Med. 2023, 25, e18. [Google Scholar] [CrossRef]
- Tatla, A.S.; Justin, A.W.; Watts, C.; Markaki, A.E. A vascularized tumoroid model for human glioblastoma angiogenesis. Sci. Rep. 2021, 11, 19550. [Google Scholar] [CrossRef]
- He, J.; Huang, Z.; He, M.; Liao, J.; Zhang, Q.; Wang, S.; Xie, L.; Ouyang, L.; Koeffler, H.P.; Yin, D.; et al. Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Mol. Cancer 2020, 19, 17. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, W. CircABCC3 knockdown inhibits glioblastoma cell malignancy by regulating miR-770-5p/SOX2 axis through PI3K/AKT signaling pathway. Brain Res. 2021, 1764, 147465. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Zhang, H.; Lu, K.; Tang, X.; Li, J.; Zhang, E.; Zhang, J.; Huang, Y.; Yang, Z.; Lu, Z.; et al. Circular RNA circRNA_0067934 promotes glioma development by modulating the microRNA miR-7/ Wnt/beta-catenin axis. Bioengineered 2022, 13, 5792–5802. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lage, M.; Lynch, T.M.; Bi, Y.; Cocito, C.; Way, G.P.; Pal, S.; Haller, J.; Yan, R.E.; Ziober, A.; Nguyen, A.; et al. Immune landscapes associated with different glioblastoma molecular subtypes. Acta Neuropathol. Commun. 2019, 7, 203. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Aaroe, A.; Liang, J.; Puduvalli, V.K. Tumor microenvironment in glioblastoma: Current and emerging concepts. Neurooncol. Adv. 2023, 5, vdad009. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Zhao, L.; Liu, X.; Zheng, J.; Liu, Y.; Liu, L.; Ma, J.; Cai, H.; Li, Z.; Xue, Y. MOV10 binding circ-DICER1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change. J. Exp. Clin. Cancer Res. 2019, 38, 9. [Google Scholar] [CrossRef]
- Tirpe, A.A.; Gulei, D.; Ciortea, S.M.; Crivii, C.; Berindan-Neagoe, I. Hypoxia: Overview on Hypoxia-Mediated Mechanisms with a Focus on the Role of HIF Genes. Int. J. Mol. Sci. 2019, 20, 6140. [Google Scholar] [CrossRef]
- Su, H.; Zou, D.; Sun, Y.; Dai, Y. Hypoxia-associated circDENND2A promotes glioma aggressiveness by sponging miR-625-5p. Cell. Mol. Biol. Lett. 2019, 24, 24. [Google Scholar] [CrossRef]
- Hu, T.; Lei, D.; Zhou, J.; Zhang, B.O. circRNA derived from CLSPN (circCLSPN) is an oncogene in human glioblastoma multiforme by regulating cell growth, migration and invasion via ceRNA pathway. J. Biosci. 2021, 46, 66. [Google Scholar] [CrossRef]
- Kacso, T.P.; Zahu, R.; Tirpe, A.; Paslari, E.V.; Nutu, A.; Berindan-Neagoe, I. Reactive Oxygen Species and Long Non-Coding RNAs, an Unexpected Crossroad in Cancer Cells. Int. J. Mol. Sci. 2022, 23, 10133. [Google Scholar] [CrossRef]
- Olivier, C.; Oliver, L.; Lalier, L.; Vallette, F.M. Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress. Front. Mol. Biosci. 2020, 7, 620677. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Wang, S.; Wu, W.; Shan, P.; Chen, Y.; Meng, J.; Xing, L.; Yun, J.; Hao, L.; Wang, X.; et al. Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research. Biomed. Pharmacother. 2023, 162, 114672. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Zheng, H.; Wu, Z.; Chen, M.; Huang, Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics 2020, 10, 3503–3517. [Google Scholar] [CrossRef] [PubMed]
- Conlon, E.G.; Manley, J.L. RNA-binding proteins in neurodegeneration: Mechanisms in aggregate. Genes Dev. 2017, 31, 1509–1528. [Google Scholar] [CrossRef] [PubMed]
- Holdt, L.M.; Stahringer, A.; Sass, K.; Pichler, G.; Kulak, N.A.; Wilfert, W.; Kohlmaier, A.; Herbst, A.; Northoff, B.H.; Nicolaou, A.; et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 2016, 7, 12429. [Google Scholar] [CrossRef]
- Yang, Z.G.; Awan, F.M.; Du, W.W.; Zeng, Y.; Lyu, J.; Wu, D.; Gupta, S.; Yang, W.; Yang, B.B. The Circular RNA Interacts with STAT3, Increasing Its Nuclear Translocation and Wound Repair by Modulating Dnmt3a and miR-17 Function. Mol. Ther. 2017, 25, 2062–2074. [Google Scholar] [CrossRef]
- Yang, Q.; Du, W.W.; Wu, N.; Yang, W.; Awan, F.M.; Fang, L.; Ma, J.; Li, X.; Zeng, Y.; Yang, Z.; et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017, 24, 1609–1620. [Google Scholar] [CrossRef]
- Zhou, M.; Li, H.; Chen, K.; Ding, W.; Yang, C.; Wang, X. CircSKA3 Downregulates miR-1 Through Methylation in Glioblastoma to Promote Cancer Cell Proliferation. Cancer Manag. Res. 2021, 13, 509–514. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; An, Z.; Yang, A.; Qiu, M.; Tan, Z. CircXPO1 Promotes Glioblastoma Malignancy by Sponging miR-7-5p. Cells 2023, 12, 831. [Google Scholar] [CrossRef]
- Bayat, H.; Pourgholami, M.H.; Rahmani, S.; Pournajaf, S.; Mowla, S.J. Synthetic miR-21 decoy circularized by tRNA splicing mechanism inhibited tumorigenesis in glioblastoma in vitro and in vivo models. Mol. Ther. Nucleic Acids 2023, 32, 432–444. [Google Scholar] [CrossRef]
- Chen, W.; Wang, N.; Lian, M. CircRNA circPTK2 Might Suppress Cancer Cell Invasion and Migration of Glioblastoma by Inhibiting miR-23a Maturation. Neuropsychiatr. Dis. Treat. 2021, 17, 2767–2774. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Cheng, C.; Qin, H.; Wang, H.; Yu, H. A novel circular RNA circENTPD7 contributes to glioblastoma progression by targeting ROS1. Cancer Cell Int. 2020, 20, 118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, H.; Hong, F.; Hu, S.; Su, X.; Chen, J.; Chu, J. CircularRNA circPARP4 promotes glioblastoma progression through sponging miR-125a-5p and regulating FUT4. Am. J. Cancer Res. 2021, 11, 138–156. [Google Scholar] [PubMed]
- Chen, B.; Wang, M.; Huang, R.; Liao, K.; Wang, T.; Yang, R.; Zhang, W.; Shi, Z.; Ren, L.; Lv, Q.; et al. Circular RNA circLGMN facilitates glioblastoma progression by targeting miR-127-3p/LGMN axis. Cancer Lett. 2021, 522, 225–237. [Google Scholar] [CrossRef]
- Hou, D.; Wang, Z.; Li, H.; Liu, J.; Liu, Y.; Jiang, Y.; Lou, M. Circular RNA circASPM promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-130b-3p/E2F1 axis. J. Cancer 2022, 13, 1664–1678. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Zhou, F.; Lv, K.; Xu, X.; Cao, W. CircNDC80 promotes glioblastoma multiforme tumorigenesis via the miR-139-5p/ECE1 pathway. J. Transl. Med. 2023, 21, 22. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, G.; Xiang, H.; Wang, X.; Wang, H.; Zhang, Y.; Qie, F.; Li, C. circFLNA promotes glioblastoma proliferation and invasion by negatively regulating miR-199-3p expression. Mol. Med. Rep. 2021, 24, 786. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, D.; Li, Y.; Zhang, Y.; Sui, R.; Chen, Y.; Liang, H.; Shi, J.; Pan, R.; Xu, X.; et al. Circular RNA circ_0001588 sponges miR-211-5p to facilitate the progression of glioblastoma via up-regulating YY1 expression. J. Gene Med. 2021, 23, e3371. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, S.; Zhen, Y.; Gao, P.; Zhang, Z.; Guo, H.; Wang, Y. Circular RNA circFGFR1 Functions as an Oncogene in Glioblastoma Cells through Sponging to hsa-miR-224-5p. J. Immunol. Res. 2022, 2022, 7990251. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Shan, B.; Cheng, X.; He, H.; Qin, J.; Tang, Y.; Zhao, H.; Tian, M.; Zhang, X.; et al. CircHECTD1 Regulates Cell Proliferation and Migration by the miR-320-5p/SLC2A1 Axis in Glioblastoma Multiform. Front. Oncol. 2021, 11, 666391. [Google Scholar] [CrossRef]
- Li, D.; Li, L.; Chen, X.; Yang, W.; Cao, Y. Circular RNA SERPINE2 promotes development of glioblastoma by regulating the miR-361-3p/miR-324-5p/BCL2 signaling pathway. Mol. Ther. Oncolytics 2021, 22, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Xia, L.; Zhang, S.; Jin, K.; Li, L.; Sun, C.; Xia, T.; Chen, G. circRNA-SMO upregulates CEP85 to promote proliferation and migration of glioblastoma via sponging miR-326. Histol. Histopathol. 2023, 18587. [Google Scholar] [CrossRef]
- Feng, J.; Ren, X.; Fu, H.; Li, D.; Chen, X.; Zu, X.; Liu, Q.; Wu, M. LRRC4 mediates the formation of circular RNA CD44 to inhibitGBM cell proliferation. Mol. Ther. Nucleic Acids 2021, 26, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, Y.; Gao, Y.; Zhu, Z.; Zeng, X.; Liang, W.; Sun, S.; Chen, X.; Wang, H. Radiated glioblastoma cell-derived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis. J. Transl. Med. 2022, 20, 388. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, J.; Wu, Y.; Luo, H.; Ke, Y. Decrease of circARID1A retards glioblastoma invasion by modulating miR-370-3p/TGFBR2 pathway. Int. J. Biol. Sci. 2022, 18, 5123–5135. [Google Scholar] [CrossRef]
- Meng, L.; Wang, Y.; Tu, Q.; Zhu, Y.; Dai, X.; Yang, J. Circular RNA circ_0000741/miR-379-5p/TRIM14 signaling axis promotes HDAC inhibitor (SAHA) tolerance in glioblastoma. Metab. Brain Dis. 2023, 38, 1351–1364. [Google Scholar] [CrossRef]
- Zhou, Q.; Shaya, M.; Kugeluke, Y.; Fu, Q.; Li, S.; Dilimulati, Y. A circular RNA derived from GLIS3 accelerates the proliferation of glioblastoma cells through competitively binding with miR-449c-5p to upregulate CAPG and GLIS3. BMC Neurosci. 2022, 23, 53. [Google Scholar] [CrossRef]
- Liu, R.; Dai, W.; Wu, A.; Li, Y. CircCDC45 promotes the malignant progression of glioblastoma by modulating the miR-485-5p/CSF-1 axis. BMC Cancer 2021, 21, 1090. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, S.; Wang, Y.; Zhu, Z.; Cao, Y.; Yang, S.; Mai, R.; Zheng, Y. Identification of a novel circular RNA circZNF652/miR-486-5p/SERPINE1 signaling cascade that regulates cancer aggressiveness in glioblastoma (GBM). Bioengineered 2022, 13, 1411–1423. [Google Scholar] [CrossRef]
- Li, C.; Guan, X.; Jing, H.; Xiao, X.; Jin, H.; Xiong, J.; Ai, S.; Wang, Y.; Su, T.; Sun, G.; et al. Circular RNA circBFAR promotes glioblastoma progression by regulating a miR-548b/FoxM1 axis. FASEB J. 2022, 36, e22183. [Google Scholar] [CrossRef]
- Li, T.; Xu, J.; Liu, Y. A Novel Circular RNA CircRFX3 Serves as a Sponge for MicroRNA-587 in Promoting Glioblastoma Progression via Regulating PDIA3. Front. Cell Dev. Biol. 2021, 9, 757260. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Wang, B.; Wang, H.; Hu, L.; Zhang, J.; Yu, T.; Xu, X.; Tian, W.; Zhao, C.; Zhu, H.; et al. circMELK promotes glioblastoma multiforme cell tumorigenesis through the miR-593/EphB2 axis. Mol. Ther. Nucleic Acids 2021, 25, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Mao, P.; Feng, Y.; Cui, B.; Zhang, B.; Chen, C.; Xu, M.; Gao, K. Blocking hsa_circ_0006168 suppresses cell proliferation and motility of human glioblastoma cells by regulating hsa_circ_0006168/miR-628-5p/IGF1R ceRNA axis. Cell Cycle 2021, 20, 1181–1194. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zheng, M.; Zhang, Y.; Xie, M.; Tian, S.; Ding, T.; Li, L.; Guan, Q. Hsa_circ_0043278 functions as competitive endogenous RNA to enhance glioblastoma multiforme progression by sponging miR-638. Aging 2020, 12, 21114–21128. [Google Scholar] [CrossRef]
- Yang, J.; Tian, S.; Wang, B.; Wang, J.; Cao, L.; Wang, Q.; Xie, W.; Liang, Z.; Zhao, H.; Zhao, Y.; et al. CircPIK3C2A Facilitates the Progression of Glioblastoma via Targeting miR-877-5p/FOXM1 Axis. Front. Oncol. 2021, 11, 801776. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, C.; Liu, Y.; Cui, D.; Wang, Z.; Jiang, Y.; Gao, L. Circular RNA circPTPRF promotes the progression of GBM via sponging miR-1208 to up-regulate YY1. Cancer Cell Int. 2022, 22, 359. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, X.; Wang, J.; Sun, M.; Li, D.; Wang, Z.; Li, J.; Li, Y.; Liu, Y. Exosomal circ-AHCY promotes glioblastoma cell growth via Wnt/beta-catenin signaling pathway. Ann. Clin. Transl. Neurol. 2023, 10, 865–878. [Google Scholar] [CrossRef]
- Chen, Z.; Mai, Q.; Wang, Q.; Gou, Q.; Shi, F.; Mo, Z.; Cui, W.; Zhuang, W.; Li, W.; Xu, R.; et al. CircPOLR2A Promotes Proliferation and Impedes Apoptosis of Glioblastoma Multiforme Cells by Up-regulating POU3F2 to Facilitate SOX9 Transcription. Neuroscience 2022, 503, 118–130. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Q.; Shi, Y.; Wu, X.; Mi, Y.; Liu, K.; Kan, Q.; Fan, R.; Liu, Z.; Zhang, M. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRalpha pathway as a key regulatory mechanism in Glioblastoma progression and radioresistance: Functional validation and clinical theranostic significance. Int. J. Biol. Sci. 2021, 17, 1061–1078. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Zhou, X.; Chen, K.; Xu, J.; Xu, S. Circular RNA 0010117 promotes aggressive glioblastoma behavior by regulating the miRNA-6779-5p/SPEN axis. Transl. Oncol. 2022, 25, 101515. [Google Scholar] [CrossRef]
- Zhao, S.; Li, B.; Zhao, R.; Pan, Z.; Zhang, S.; Qiu, W.; Guo, Q.; Qi, Y.; Gao, Z.; Fan, Y.; et al. Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/ NF-kappaB pathway. Oncogene 2023, 42, 138–153. [Google Scholar] [CrossRef]
- Xue, L.; Chen, H.; Wang, X.; Han, L.; Liu, Y.; Ding, X. circRPPH1_025 Overexpression Promotes Migration and Invasion of Glioblastoma Multiforme. Dis. Markers 2022, 2022, 4764028. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, G.; Hu, J.; Li, H.; Zhao, J.; Zong, S.; Guo, Z.; Jiang, Y.; Jing, Z. UPF1/circRPPH1/ATF3 feedback loop promotes the malignant phenotype and stemness of GSCs. Cell Death Dis. 2022, 13, 645. [Google Scholar] [CrossRef]
- Gao, X.; Xia, X.; Li, F.; Zhang, M.; Zhou, H.; Wu, X.; Zhong, J.; Zhao, Z.; Zhao, K.; Liu, D.; et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat. Cell Biol. 2021, 23, 278–291. [Google Scholar] [CrossRef]
- Xu, S.; Luo, C.; Chen, D.; Tang, L.; Cheng, Q.; Chen, L.; Liu, Z. circMMD reduction following tumor treating fields inhibits glioblastoma progression through FUBP1/FIR/DVL1 and miR-15b-5p/FZD6 signaling. J. Exp. Clin. Cancer Res. 2023, 42, 64. [Google Scholar] [CrossRef]
- Saunders, J.T.; Kumar, S.; Benavides-Serrato, A.; Holmes, B.; Benavides, K.E.; Bashir, M.T.; Nishimura, R.N.; Gera, J. Translation of circHGF RNA encodes an HGF protein variant promoting glioblastoma growth through stimulation of c-MET. J. Neurooncol. 2023, 163, 207–218. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, Z.; Chen, S.; Shen, S.; Tu, S.; Yang, J.; Qiu, Y.; Lin, Y.; Dai, X. Circular RNA hsa_circ_0075323 promotes glioblastoma cells proliferation and invasion via regulation of autophagy. Cell Div. 2023, 18, 1. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, J.; Li, R.; Liu, Y.; Zhou, L.; Wang, C.; Lv, C.; Gao, L.; Cui, D. CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. J. Exp. Clin. Cancer Res. 2022, 41, 307. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, S.; Zhang, M.; Yang, L.; Zhong, J.; Li, B.; Li, F.; Xia, X.; Li, X.; Zhou, H.; et al. A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity. Genome Biol. 2021, 22, 33. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, J.; Liu, Y.; Hu, J.; Gao, L.; Wang, H.; Cui, D. CircKPNB1 mediates a positive feedback loop and promotes the malignant phenotypes of GSCs via TNF-alpha/NF-kappaB signaling. Cell Death Dis. 2022, 13, 697. [Google Scholar] [CrossRef]
- Stella, M.; Falzone, L.; Caponnetto, A.; Gattuso, G.; Barbagallo, C.; Battaglia, R.; Mirabella, F.; Broggi, G.; Altieri, R.; Certo, F.; et al. Serum Extracellular Vesicle-Derived circHIPK3 and circSMARCA5 Are Two Novel Diagnostic Biomarkers for Glioblastoma Multiforme. Pharmaceuticals 2021, 14, 618. [Google Scholar] [CrossRef]
- Bica, C.; Tirpe, A.; Nutu, A.; Ciocan, C.; Chira, S.; Gurzau, E.S.; Braicu, C.; Berindan-Neagoe, I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci. 2023, 318, 121499. [Google Scholar] [CrossRef]
- Tirpe, A.; Gulei, D.; Tirpe, G.R.; Nutu, A.; Irimie, A.; Campomenosi, P.; Pop, L.A.; Berindan-Neagoe, I. Beyond Conventional: The New Horizon of Anti-Angiogenic microRNAs in Non-Small Cell Lung Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 8002. [Google Scholar] [CrossRef]
- Merulla, A.E.; Stella, M.; Barbagallo, C.; Battaglia, R.; Caponnetto, A.; Broggi, G.; Altieri, R.; Certo, F.; Caltabiano, R.; Ragusa, M.; et al. circSMARCA5 Is an Upstream Regulator of the Expression of miR-126-3p, miR-515-5p, and Their mRNA Targets, Insulin-like Growth Factor Binding Protein 2 (IGFBP2) and NRAS Proto-Oncogene, GTPase (NRAS) in Glioblastoma. Int. J. Mol. Sci. 2022, 23, 13676. [Google Scholar] [CrossRef]
- Long, N.; Xu, X.; Lin, H.; Lv, Y.; Zou, S.; Cao, H.; Chen, X.; Zhao, Y.; Qi, X.; Yang, H.; et al. Circular RNA circPOSTN promotes neovascularization by regulating miR-219a-2-3p/STC1 axis and stimulating the secretion of VEGFA in glioblastoma. Cell Death Discov. 2022, 8, 349. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, F.; Chen, Y.; Wang, Y.; Song, H.; Long, J. CircPITX1 Regulates Proliferation, Angiogenesis, Migration, Invasion, and Cell Cycle of Human Glioblastoma Cells by Targeting miR-584-5p/KPNB1 Axis. J. Mol. Neurosci. 2021, 71, 1683–1695. [Google Scholar] [CrossRef]
- Huang, Q.; Li, W.; Huang, Y.; Chen, Q.; Wei, W. Circular RNA VPS18 Promotes Glioblastoma Progression by Regulating miR-1229-3p/BCAT1 Axis. Neurotox. Res. 2022, 40, 1138–1151. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, J.; Xu, J.; Zhang, H.; Zhou, J.; Li, H.; Zhang, G.; Xu, K.; Jing, Z. Glioblastoma-associated microglia-derived exosomal circKIF18A promotes angiogenesis by targeting FOXC2. Oncogene 2022, 41, 3461–3473. [Google Scholar] [CrossRef]
- Song, J.; Zheng, J.; Liu, X.; Dong, W.; Yang, C.; Wang, D.; Ruan, X.; Zhao, Y.; Liu, L.; Wang, P.; et al. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5. J. Exp. Clin. Cancer Res. 2022, 41, 171. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Leng, H.; Yuan, H.; Xu, L. Hsa_circ_0043949 reinforces temozolomide resistance via upregulating oncogene ITGA1 axis in glioblastoma. Metab. Brain Dis. 2022, 37, 2979–2993. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, Y.; Guo, R.; Li, H.; Yang, B. Microarray expression profiles and bioinformatics analysis of mRNAs, lncRNAs, and circRNAs in the secondary temozolomide-resistant glioblastoma. Investig. New Drugs 2020, 38, 1227–1235. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, Z.; Liu, J.; Fan, R. Circ_0060055 Promotes the Growth, Invasion, and Radioresistance of Glioblastoma by Targeting MiR-197-3p/API5 Axis. Neurotox. Res. 2022, 40, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Li, X.; Li, F.; Wu, X.; Zhang, M.; Zhou, H.; Huang, N.; Yang, X.; Xiao, F.; Liu, D.; et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol. Cancer 2019, 18, 131. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Zhang, S.; Sun, Q.; Ye, L.; Xu, Y.; Xu, Z.; Deng, G.; Zhang, S.; Liu, B.; Chen, Q. Hsa_circ_0072309 enhances autophagy and TMZ sensitivity in glioblastoma. CNS Neurosci. Ther. 2022, 28, 897–912. [Google Scholar] [CrossRef]
- Yuan, F.; Sun, Q.; Xu, Y.; Zhang, H.; Deng, G.; Yang, J.; Zhang, S.; Liu, J.; Liu, B.; Chen, Q. Hsa_circ_0072309 inhibits proliferation and invasion of glioblastoma. Pathol. Res. Pract. 2021, 222, 153433. [Google Scholar] [CrossRef]
- Luo, H.; Yi, T.; Huang, D.; Chen, X.; Li, X.; Wan, Q.; Huang, H.; Huang, H.; Wei, H.; Song, Y.; et al. circ_PTN contributes to -cisplatin resistance in glioblastoma via PI3K/AKT signaling through the miR-542-3p/PIK3R3 pathway. Mol. Ther. Nucleic Acids 2021, 26, 1255–1269. [Google Scholar] [CrossRef]
- Wei, Y.; Lu, C.; Zhou, P.; Zhao, L.; Lyu, X.; Yin, J.; Shi, Z.; You, Y. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling. Neuro Oncol. 2021, 23, 611–624. [Google Scholar] [CrossRef]
- Long, F.; Lin, Z.; Li, L.; Ma, M.; Lu, Z.; Jing, L.; Li, X.; Lin, C. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol. Cancer 2021, 20, 26. [Google Scholar] [CrossRef]
- Wang, M.; Xie, F.; Lin, J.; Zhao, Y.; Zhang, Q.; Liao, Z.; Wei, P. Diagnostic and Prognostic Value of Circulating CircRNAs in Cancer. Front. Med. 2021, 8, 649383. [Google Scholar] [CrossRef]
- Pisignano, G.; Michael, D.C.; Visal, T.H.; Pirlog, R.; Ladomery, M.; Calin, G.A. Going circular: History, present, and future of circRNAs in cancer. Oncogene 2023, 42, 2783–2800. [Google Scholar] [CrossRef]
- He, A.T.; Liu, J.; Li, F.; Yang, B.B. Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct. Target. Ther. 2021, 6, 185. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhong, Y.; Wang, X.; Shen, J.; An, W. Advances in Circular RNA and Its Applications. Int. J. Med. Sci. 2022, 19, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Meganck, R.M.; Borchardt, E.K.; Castellanos Rivera, R.M.; Scalabrino, M.L.; Wilusz, J.E.; Marzluff, W.F.; Asokan, A. Tissue-Dependent Expression and Translation of Circular RNAs with Recombinant AAV Vectors In Vivo. Mol. Ther. Nucleic Acids 2018, 13, 89–98. [Google Scholar] [CrossRef] [PubMed]
circRNA | Target | Proposed Function | Mechanism of Action | Ref. |
---|---|---|---|---|
circSKA3 | miR-1 | oncogenic | CircSKA3 increased miR-1 gene methylation and thus silenced miR-1, reducing its inhibitory roles upon cell proliferation. | [49] |
CircXPO1 | miR-7-5p | oncogenic | CircXPO1 is significantly upregulated in GBM. In vitro circXPO1 knockdown inhibited cell proliferation and migration. In contrast, overexpression of circXPO1 increased the malignant traits of GBM. CircXPO1 inhibits the tumor suppressive miR-7-5p, which negatively regulated RAF1, thus promoting malignant traits. | [50] |
CM21D | miR-21 | tumor suppressive | CM21D is a synthetic miRNA decoy created by tRNA splicing in vitro with inhibitory effects upon cell proliferation, migration, and cell cycle and an inductor of apoptosis. | [51] |
circPTK2 | miR-23a | tumor suppressive | CircPTK2 may inhibit GBM cancer cell invasion and migration via miR-23a maturation inhibition. | [52] |
circENTPD7 | miR-101-3p | oncogenic | CircENTPD7 sponged miR-101-3p and regulated ROS1 expression, promoting proliferation and glioblastoma cancer cell motility. | [53] |
circPARP4 | miR-125a-5p | oncogenic | CircPARP4 may promote GBM cell proliferation, migration, invasion, and EMT through the circPARP4/miR-125a-5p/FUT4 axis. | [54] |
circLGMN | miR-127-3p | oncogenic | In the Chen study, circLGMN sponged miR-127-3p and hampered miR-127-3p-mediated LGMN mRNA degradation, thus increasing LGMN expression; circLGMN overexpression stimulated GBM malignancy in vivo. | [55] |
circASPM | miR-130b-3p | oncogenic | CircASPM levels are increased in GBM. In the Hou study, circASPM stimulated both tumorigenesis and GSCs proliferation in vitro and in vivo via miR-130b-3p sponging. Via miR-130b-3p sponging, circASPM upregulated E2F1 expression and acted on GSCs’ proliferation. | [56] |
CircNDC80 | miR-139-5p | oncogenic | CircNDC80 expression was increased in GBM tissues. CircNDC80 sponges miR-139-5p and affects ECE1 expression, thus presenting as a pro-oncogenic entity. This circRNA sustains stemness and promotes cell proliferation, migration, and invasion. | [57] |
circFLNA | miR-199-3p | oncogenic | CircFLNA was upregulated in GBM tissues and cells, which were associated with a poorer prognosis. CircFLNA/miR-199-3p axis may play a role in the proliferative and invasive features of GBM. | [58] |
circ_0001588 | miR-211-5p | oncogenic | Circ_0001588 is upregulated in GBM tissues and human glioma cells and correlated with poor survival. Circ_0001588 sponged miR-211-5p and positively regulated YY1, stimulating GBM proliferation, migration, and invasion. | [59] |
CircFGFR1 | miR-224-5p | oncogenic | CircFGFR1 sponges miR-244-5p and thus increases CXCR4 expression, promoting glioma growth. | [60] |
CircHECTD1 | miR-320-5p | oncogenic | CircHECTD1 functioned as a ceRNA and interacted with miR-320-5p with SLC2A1 as a target. CircHECTD1 expression promoted proliferation and migration in vitro and tumor growth in vivo. | [61] |
circSERPINE2 | miR-324-5p miR-361-3p | tumor suppressive | CircSERPINE2 may sponge miR-324-5p and miR-361-3p, thus promoting BCL2 expression. As such, circSERPINE2 may act as an inhibitor of GBM cell proliferation. | [62] |
CircRNA-SMO | miR-326 | oncogenic | In the Wu study, circRNA-SMO was found to be upregulated in GBM tissues and cells. CircRNA-SMO has a sponging effect upon miR-326, thus upregulating CEP85 expression, leading to increased proliferation and migration. | [63] |
circCD44 | miR-326 miR-330-5p | tumor suppressive | LRRC4 promoted circCD44 generation by inhibiting SAM68-CD44 pre-mRNA interaction. CircCD44 was found to be downregulated in GBM tissues. CircCD44 may sponge miR-326 and miR-330-5p and thus regulate SMAD6, with an effect on tumor growth. | [64] |
Circ_0012381 | miR-340-5p | oncogenic | Circ_0012381 expression was found to be increased in irradiated GBM cancer cells, whilst exosomes derived from these cells significantly induced M2 polarization of microglia. Mechanistically, circ_0012381 functions as a miR-340-5p sponge, thus increasing ARG1 expression; these M2-polarized microglia promote GBM cancer cell growth via CCL2/CCR2 axis. | [65] |
circARID1A | miR-370-3p | oncogenic | CircARID1A stimulates GBM cancer cell migration and invasion via the miR-370-3p/TGFBR2 axis. | [66] |
Circ_0000741 | miR-379-5p | oncogenic | In SAHA-tolerant GBM cells, circ_0000741 silencing reduced HDAC inhibitor tolerance, inhibited invasion and proliferation, and induced apoptosis. Concomitantly, circ_0000741 absence enhanced drug sensitivity in vivo in GBM. Circ_0000741 may sponge miR-379-5p and thus affect TRIM14. | [67] |
CircGLIS3 | miR-449c-5p | oncogenic | CircGLIS3 positively regulates GLIS3 and CAPG via miR-449c-5p sponging to promote proliferation and inhibit apoptosis. | [68] |
circCDC45 | miR-485-5p | oncogenic | CircCDC45 targeted miR-485-5p and thus positively regulated CSF-1 expression, affecting GBM cell proliferation, migration, and invasion. | [69] |
circZNF652 | miR-486-5p | oncogenic | circZNF652 acts as a miR-486-5p sponge and thus upregulates SERPINE1 expression in GBM cells. In the Liu study, circZNF652 knockdown reversed the malignant phenotypes in GBM cells; the authors suggested that the circZNF652/miR-486-5p/SERPINE1 axis may play a role in tumorigenesis, cell growth, migration, invasion, and EMT. | [70] |
CircBFAR | miR-548b | oncogenic | The circBFAR/miR-548b/FoxM1 axis regulates GBM proliferation and invasion. | [71] |
CircRFX3 | miR-587 | oncogenic | CircRFX3 functions as a ceRNA by sponging miR-587 and alters PDIA3, which, in turn, regulates the Wnt/β-catenin pathway. | [72] |
circMELK | miR-593 | oncogenic | CircMELK was upregulated in GBM and sponged miR-593, thus controlling GSC maintenance and GBM mesenchymal transition. | [73] |
hsa_circ_0006168 | miR-628-5p | oncogenic | Hsa_circ_0006168 was upregulated in GBM tissues and cells. Hsa_circ_0006168 sponged miR-628-5p; Hsa_circ_0006168 knockdown delayed xenograft tumor growth in vivo and lowered Ras and pERK1/2 expression both in vitro and in vivo. | [74] |
hsa_circRNA_0043278 | miR-638 | oncogenic | Hsa_circRNA_0043278 knockdown inhibited GBM cancer cell in vitro migration, proliferation and invasion, as well as in vivo tumorigenesis. hsa_circRNA_0043278 sponged miR-638 in GBM and upregulated HOXA9, thus activating Wnt/β-catenin signaling. | [75] |
circABCC3 | miR-770-5p | oncogenic | Interestingly, in the Zhang study, circABCC3 expression was lower in stage I + II GBM and higher in stage III GBM tissues. CircABCC3 sponged miR-770-5p, while its absence inhibited the PI3K/AKT pathway, along with cell proliferation, migration, invasion, and tube formation and induced cell apoptosis. | [32] |
CircPIK3C2A | miR-877-5p | oncogenic | CircPIK3C2A expression promoted GBM cell proliferation and invasion. Mechanistically, circPIK3C2A sponged miR-877-5p, functioning as a competitive endogenous RNA (ceRNA) and modulating FOXM1 expression. | [76] |
CircPTPRF | miR-1208 | oncogenic | In the combined in vitro and in vivo Zhou study, circPTPRF functions as a miR-1208 sponge and thus upregulates YY1 expression. This promotes GBM cancer cell proliferation, invasion, and neurosphere formation. | [77] |
Circ-AHCY | miR-1294 | oncogenic | Circ-AHCY silencing inhibited GBM cell proliferation in both in vitro and in vivo experiments. Mechanistically, circ-AHCY activates the Wnt/β-catenin pathway by miR-1294 sequestration and MYC upregulation. EIF4A3 recruitment by circ-AHCY stabilizes TCF4 mRNA leading to increased TCF4/β-catenin stability, which increases circ-AHCY transcriptional activity. | [78] |
CircPOLR2A | miR-2113 | oncogenic | CircPOLR2A is upregulated in GBM cells. Mechanistically, circPOLR2A functioned as a miR-2113 sponge, thus positively regulating POU3F2 expression. In turn, POU3F2 activated SOX9 transcription and modulated GBM cancer cell proliferation and apoptosis. | [79] |
circ-METRN | miR-4709-3p | oncogenic | Low-dose-radiation-induced exosome-derived circ-METRN acted via miR-4709-3p/GRB14/PDGFRα pathway to promote glioblastoma progression and radioresistance. | [80] |
Circ-0010117 | miR-6779-5p | oncogenic | In the combined in vitro and in vivo Yang study, circ-0010117 was downregulated in GBM tissues. Circ-0010117 acts via miR-6779-5p/SPEN to modulate-promote GBM cancer cell aggressiveness; circ-0010117 overexpression suppresses tumorigenesis in nude mice. | [81] |
CircADAMTS6 (hsa-circ-0072688) | ANXA2 | oncogenic | CircADAMTS6 is upregulated in hypoxic microenvironments; the hypoxic TME upregulates circADAMTS6 expression through AP-1 and TDP43. Next, circADAMTS6 recruits and stabilizes ANXA2, thus accelerating GBM progression. | [82] |
circ_0000512 (circRPPH1_025, circRPPH1) | Not mentioned | oncogenic | In the in vitro Xue experiment on U87 cells, circRPPH1_025 promoted GBM cancer cell proliferation, migration, and invasion—EMT. | [83] |
ATF3 | oncogenic | In the combined in vitro and in vivo Xu study, circRPPH1 was upregulated in GSCs. UPF1 stabilizes circRPPH1, which modulates ATF3 to further transcribe UPF1 and Nestin in a loop. This axis maintains GSC self-renewal via TGF-β activation. | [84] | |
circ-E-Cad | EGFR through C-E-Cad | oncogenic | C-E-Cad is a protein encoded by circ-E-Cad and activated EGFR by CR2 domain association, independent of EGF. The authors found that C-E-Cad inhibition enhanced anti-EGFR therapeutic strategies in GBM. | [85] |
CircMMD | FUBP1 | oncogenic | CircMMD had high expression levels in GBM and indicated a poor prognosis. In the Xu study, circMMD levels were reduced by tumor treating fields (TTF), with a concomitant increase in TTF-induced apoptosis. Low circMMD levels stimulated FUBP1–FIR interaction with decreased DVL1 transcription. Low circMMD levels may promote miR-15b-5p activity and degrade FZD6. Low DVL1 and FZD6 expression suppressed Wnt/β-catenin activation. | [86] |
circHGF | HGF/c-MET | oncogenic | CircHGF RNA encodes C-HGF, and this protein variant is highly expressed in GBM compared to normal brain tissue and is secreted by GBM cells; C-HGF activates c-MET receptor in vitro in PDX GBM cell lines; C-HGF knockdown leads to inhibitory effects upon cell growth, motility, and cancer cell invasiveness. | [87] |
CircSQSTM1 (hsa_circ_0075323) | p62-mediated autophagy | oncogenic | CircSQSTM1 depletion in GBM cells impairs autophagy, leading to increased p62 and decreased LC3B levels. CircSQSTM1 inhibition in vitro led to a significant inhibition of cancer cell proliferation and invasion. | [88] |
CircLRFN5 | PRRX2 | tumor suppressive | CircLRFN5 is downregulated in GBM. CircLRFN5 binds PRRX2; PRRX2 upregulates GCH1 which suppresses ferroptosis via BH4. CircLRFN5 overexpression has inhibitory effects upon tumorigenesis, cell viability, stemness, proliferation, and neurosphere formation through a ferroptosis-dependent mechanism. | [89] |
circ-SMO | SHH signaling via SMO-193aa | oncogenic | SMO-193aa attenuates SHH signaling intensity in brain cancer stem cells, as well as proliferation in vitro and tumorigenicity in vivo. | [90] |
CircKPNB1 | SPI1 | oncogenic | CircKPNB1 was found to be overexpressed in GBM and functions to regulate SPI1 stability and SPI1 nuclear translocation; SPI1 acts via TNFα/NFκB to stimulate malignant phenotype. Thus, circKPNB1 overexpression stimulates GBM cancer cell viability, proliferation, stemness, invasion, and neurosphere formation. | [91] |
circSMARCA5 | N/A | N/A | CircSMARCA5 and circHIPK3 were less abundant in serum extracellular vesicles (sEV) from GBM patients compared to controls. GBM may be differentiated from controls via circSMARCA5 and circHIPK3 sEV (accuracy data within cited article). Combining preoperative NLR, PLR and LMR ratios with expression of sEV-derived circSMARCA5 and circHIPK3 improved GBM diagnostic accuracy of these markers with AUC 0.901 [95% CI, 0.7912–1.000]. | [92] |
circHIPK3 | N/A |
circRNA | Target | Proposed Function | Mechanism of Action | Ref. |
---|---|---|---|---|
circSMARCA5 | miR-126-3p miR-515-5p | tumor suppressive | CircSMARCA5 targets miR-126-3p, which regulates cancer cell migration and invasion, as well as angiogenesis. CircSMARCA5 may also regulate angiogenesis via regulating VEGFA pre-mRNA alternative splicing through SRSF1 tethering. | [95] |
circPOSTN | miR-219a-2-3p | oncogenic | CircPOSTN is overexpressed in GBM. In the combined in vitro and in vivo Long study, the authors identified a new circPOSTN/miR-219a-2-3p/STC1 axis that stimulated VEGFA secretion and thus neovascularization. CircPOSTN may also play a role in GBM cancer cell proliferation and migration. | [96] |
circPITX1 | miR-584-5p | oncogenic | CircPITX1 knockdown in functional experiment suppressed GBM angiogenesis, proliferation, migration, and tumor growth in vivo. The circPITX1/miR-584-5p/KPNB1 axis may regulate GBM progression processes. | [97] |
circVPS18 | miR-1229-3p | oncogenic | In the combined in vitro and in vivo Huang study, circVPS18 knockdown inhibited GBM progression, including cancer cell proliferation, migration, invasion, and even angiogenesis. CircVPS18 promoted GBM progression via miR-1229-3p/BCAT1 axis. | [98] |
circKIF18A | FOXC2 | oncogenic | In the Jiang experiment, transportation of exosomal circKIF18A into human brain microvessel endothelial cells (hBMECs) promoted GBM angiogenesis through a M2-GAM-dependent mechanism. CircKIF18A can stabilize and promote nuclear translocation of FOXC2 in hBMECs and modulate ITGB3, CXCR4, and DLL4 via FOXC2. Concomitantly, FOXC2 can activate PI3K/AKT and thus stimulate GBM angiogenesis. | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirpe, A.; Streianu, C.; Tirpe, S.M.; Kocijancic, A.; Pirlog, R.; Pirlog, B.; Busuioc, C.; Pop, O.-L.; Berindan-Neagoe, I. The Glioblastoma CircularRNAome. Int. J. Mol. Sci. 2023, 24, 14545. https://doi.org/10.3390/ijms241914545
Tirpe A, Streianu C, Tirpe SM, Kocijancic A, Pirlog R, Pirlog B, Busuioc C, Pop O-L, Berindan-Neagoe I. The Glioblastoma CircularRNAome. International Journal of Molecular Sciences. 2023; 24(19):14545. https://doi.org/10.3390/ijms241914545
Chicago/Turabian StyleTirpe, Alexandru, Cristian Streianu, Stefana Maria Tirpe, Anja Kocijancic, Radu Pirlog, Bianca Pirlog, Constantin Busuioc, Ovidiu-Laurean Pop, and Ioana Berindan-Neagoe. 2023. "The Glioblastoma CircularRNAome" International Journal of Molecular Sciences 24, no. 19: 14545. https://doi.org/10.3390/ijms241914545
APA StyleTirpe, A., Streianu, C., Tirpe, S. M., Kocijancic, A., Pirlog, R., Pirlog, B., Busuioc, C., Pop, O.-L., & Berindan-Neagoe, I. (2023). The Glioblastoma CircularRNAome. International Journal of Molecular Sciences, 24(19), 14545. https://doi.org/10.3390/ijms241914545