Using the Colloidal Method to Prepare Au Catalysts for the Alkylation of Aniline by Benzyl Alcohol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Preparation
2.2. Catalyst Activity
3. Materials and Methods
3.1. General
3.2. Preparation of Catalysts
3.3. Catalyst Screening
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Podyacheva, E.; Afanasyev, O.I.; Vasilyev, D.V.; Chusov, D. Borrowing Hydrogen Amination Reactions: A Complex Analysis of Trends and Correlations of the Various Reaction Parameters. ACS Catal. 2022, 12, 7142–7198. [Google Scholar] [CrossRef]
- Wang, X.Z.; Wang, H.L.; Shi, F. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts. Prog. Chem. 2020, 32, 162–178. [Google Scholar] [CrossRef]
- Hameury, S.; Bensalem, H.; Vigier, K.D. Sustainable Amination of Bio-Based Alcohols by Hydrogen Borrowing Catalysis. Catalysts 2022, 12, 1306. [Google Scholar] [CrossRef]
- Corma, A.; Navas, J.; Sabater, M.J. Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis. Chem. Rev. 2018, 118, 1410–1459. [Google Scholar] [CrossRef] [PubMed]
- Reed-Berendt, B.G.; Polidano, K.; Morrill, L.C. Recent advances in homogeneous borrowing hydrogen catalysis using earth-abundant first row transition metals. Org. Biomol. Chem. 2019, 17, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.S.; Afanasyev, O.I.; Chusov, D. Borrowing hydrogen amination: Whether a catalyst is required? J. Catal. 2022, 413, 1070–1076. [Google Scholar] [CrossRef]
- Porcheddu, A.; Chelucci, G. Base-Mediated Transition-Metal-Free Dehydrative C-C and C-N Bond-Forming Reactions from Alcohols. Chem. Rec. 2019, 19, 2398–2435. [Google Scholar] [CrossRef] [PubMed]
- Zotova, N.; Roberts, F.J.; Kelsall, G.H.; Jessiman, A.S.; Hellgardt, K.; Hii, K.K. Catalysis in flow: Au-catalysed alkylation of amines by alcohols. Green Chem. 2012, 14, 226–232. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Supported Gold Nanoparticles as Catalysts for Organic Reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. [Google Scholar] [CrossRef]
- Pu, T.; Zhang, W.; Zhu, M. Engineering Heterogeneous Catalysis with Strong Metal–Support Interactions: Characterization, Theory and Manipulation. Angew. Chem. Int. Ed. 2023, 62, e202212278. [Google Scholar] [CrossRef]
- Ishida, T.; Takamura, R.; Takei, T.; Akita, T.; Haruta, M. Support effects of metal oxides on gold-catalyzed one-pot N-alkylation of amine with alcohol. Appl. Catal. 2012, 413–414, 261–266. [Google Scholar] [CrossRef]
- Quinson, J.; Kunz, S.; Arenz, M. Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catal. 2023, 13, 4903–4937. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.A.; Dimitratos, N.; Hammond, C.; Brett, G.L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R.L.; Carley, A.F.; et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Menegazzo, F.; Signoretto, M.; Fantinel, T.; Manzoli, M. Sol-immobilized vs deposited-precipitated Au nanoparticles supported on CeO2 for furfural oxidative esterification. J. Chem. Technol. Biotechnol. 2017, 92, 2196–2205. [Google Scholar] [CrossRef]
- Karpenko, A.; Leppelt, R.; Plzak, V.; Cai, J.; Chuvilin, A.; Schumacher, B.; Kaiser, U.; Behm, R.J. Influence of the catalyst surface area on the activity and stability of Au/CeO2 catalysts for the low-temperature water gas shift reaction. Top. Catal. 2007, 44, 183–198. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Yalamaç, E.; Trapani, A.; Akkurt, S. Sintering and microstructural investigation of gamma-alpha alumina powders. Eng. Sci. Technol. Int. J. 2014, 17, 2–7. [Google Scholar] [CrossRef]
- Trueba, M.; Trasatti, S.P. γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects. Eur. J. Inorg. Chem. 2005, 2005, 3393–3403. [Google Scholar] [CrossRef]
- Nijkamp, M.G.; Raaymakers, J.E.M.J.; van Dillen, A.J.; de Jong, K.P. Hydrogen storage using physisorption—Materials demands. Appl. Phys. A 2001, 72, 619–623. [Google Scholar] [CrossRef]
Entry | Catalyst | Au Loading [a]/wt% | Av. Part. Size [b]/nm | Surface Area [c]/m2g−1 | Carbon/wt% |
---|---|---|---|---|---|
1 | Au/TiO2 | 0.9 | 2.9 | 55 (±0.20) | <0.1 |
2 | Au/γ-Al2O3 | 0.6 | 2.6 | 141 (±0.20) | <0.1 |
3 | Au/α-Al2O3 | 0.3 | 6.5 | 13 (±0.01) | <0.1 |
4 | Au/C | 0.9 | 3.4 | 689 (±7.00) | n.d. |
5 | Au/HFeO2 | 1.0 | 3.7 | 16 (±0.03) | 0.4 |
6 | Au/CeO2 | 0.8 | n.d.[d] | 242 (±1.25) | 0.5 |
7 | Au/SiO2 | 0.0 | - | - | n.d. |
Entry | Catalyst | Thermal Treatment | %Conversion 1 | TOF 2/h−1 | Selectivity 3:4:5:6 (%) |
---|---|---|---|---|---|
1 | 0.9% Au/TiO2 | ‘as-prepared’ | 80 | 172 | 96:3:0:1 |
2 | 0.6% Au/γ-Al2O3 | ‘as-prepared’ | 84 | 181 | 95:4:1:1 |
3 | 0.3% Au/α-Al2O3 | ‘as-prepared’ | 6 | 13 | 24:0:1:1 4 |
4 | 0.9% Au/C | ‘as-prepared’ | 1 | 2 | 8:64:1:1 4 |
5 | 1% Au/HFeO2 | ‘as-prepared’ | 41 3 | 88 | 79:16:2:3 |
6 | 0.8% Au/CeO2 | ‘as-prepared’ | 42 3 | 90 | 96:2:2:0 |
7 | 0.9% Au/TiO2 | 5% H2-N2, 200 °C | 66 | 142 | 95:3:0:1 |
8 | 1% Au/HFeO2 | 5% H2-N2, 200 °C | 54 | 116 | 81:12:0:6 |
9 | 0.8% Au/CeO2 | 5% H2-N2, 200 °C | 28 | 60 | 82:13:1:4 |
Catalyst | Binding Energy [a] (μV K−1) | Selectivity of Amine/% |
---|---|---|
Au/C (COL) | 0 | 8 |
Au/α-Al2O3 (COL) | 928 | 74 |
Au/HFeO2 (COL) | 4108 | 79 |
Au/CeO2 (COL) | 11,231 | 96 |
Au/γ-Al2O3 (COL) | 29,610 | 95 |
Au/TiO2 (COL) | 36,136 | 96 |
Entry | Catalyst | ‘as-prepared’/nm | Recovered/nm | Change/% |
---|---|---|---|---|
1 | 0.9% Au/TiO2 | 2.9 | 3.4 | +17 |
2 | 0.6% Au/γ-Al2O3 | 2.6 | 3.2 | +23 |
3 | 0.3% Au/α-Al2O3 | 6.5 | 8.4 | +29 |
4 | 0.9% Au/C | 3.4 | 8.7 | +155 |
5 | 1% Au/HFeO2 | 3.7 | 4.3 | +16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hare, L.V.; Parveen, F.; Cookson, J.; Ellis, P.R.; Hellgardt, K.; Hii, K.K. Using the Colloidal Method to Prepare Au Catalysts for the Alkylation of Aniline by Benzyl Alcohol. Int. J. Mol. Sci. 2023, 24, 14779. https://doi.org/10.3390/ijms241914779
Hare LV, Parveen F, Cookson J, Ellis PR, Hellgardt K, Hii KK. Using the Colloidal Method to Prepare Au Catalysts for the Alkylation of Aniline by Benzyl Alcohol. International Journal of Molecular Sciences. 2023; 24(19):14779. https://doi.org/10.3390/ijms241914779
Chicago/Turabian StyleHare, Luka V., Firdaus Parveen, James Cookson, Peter R. Ellis, Klaus Hellgardt, and King Kuok (Mimi) Hii. 2023. "Using the Colloidal Method to Prepare Au Catalysts for the Alkylation of Aniline by Benzyl Alcohol" International Journal of Molecular Sciences 24, no. 19: 14779. https://doi.org/10.3390/ijms241914779
APA StyleHare, L. V., Parveen, F., Cookson, J., Ellis, P. R., Hellgardt, K., & Hii, K. K. (2023). Using the Colloidal Method to Prepare Au Catalysts for the Alkylation of Aniline by Benzyl Alcohol. International Journal of Molecular Sciences, 24(19), 14779. https://doi.org/10.3390/ijms241914779