The Human Pre-miRNA Distance Distribution for Exploring Disease Association
Abstract
:1. Introduction
2. Results
2.1. Approximate Distance Distributions
2.2. The Percentiles of the Pre-miRNA Distance
2.3. Applications
3. Materials and Methods
3.1. Distance Method
3.2. Model Selection
3.3. Kolmogorov–Smirnov Test
3.4. Flowchart
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, H.; Suzuki, H.I. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int. J. Mol. Sci. 2019, 21, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.C.; Liu, M.X.; Cao, Y. New Insight into microRNA Functions in Cancer: Oncogene-microRNA-Tumor Suppressor Gene Network. Front. Mol. Biosci. 2017, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- Svoronos, A.A.; Engelman, D.M.; Slack, F.J. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Res. 2016, 76, 3666–3670. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J.M.; Parker, J.S.; Hammond, S.M. Microarray analysis of miRNA gene expression. Methods Enzymol. 2007, 427, 107–122. [Google Scholar]
- Wang, H. Predicting Cancer-Related MiRNAs Using Expression Profiles in Tumor Tissue. Curr. Pharm. Biotechnol. 2014, 15, 438–444. [Google Scholar] [CrossRef]
- Mei, J.; Xu, R.; Hao, L.; Zhang, Y. MicroRNA-613: A novel tumor suppressor in human cancers. Biomed. Pharmacother. 2020, 123, 109799. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, P.; Chen, Y.; Qu, H.; Lu, K.; Xia, J. MicroRNA-149: A review of its role in digestive system cancers. Pathol. Res. Pract. 2020, 216, 153266. [Google Scholar] [CrossRef]
- Pahlavan, Y.; Mohammadi Nasr, M.; Dalir Abdolahinia, E.; Pirdel, Z.; Razi Soofiyani, S.; Siahpoush, S.; Nejati, K. Prominent roles of microRNA-142 in cancer. Pathol. Res. Pract. 2020, 216, 153220. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Wang, H. The Association between Depression and Gastroesophageal Reflux based on Phylogenetic Analysis of miRNA Biomarkers. Curr. Med. Chem. 2020, 27, 6536–6547. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. MicroRNAs, Parkinson’s Disease, and Diabetes Mellitus. Int. J. Mol. Sci. 2021, 22, 2953. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. COVID-19, Anti-NMDA Receptor Encephalitis and MicroRNA. Front. Immunol. 2022, 13, 825103. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. Anti-NMDA Receptor Encephalitis: Efficacy of Treatment for Male Patients and miRNA Biomarker. Curr. Med. Chem. 2020, 27, 4138–4151. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.F. Stem-loop RT-qPCR for miRNAs. Curr. Protoc. Mol. Biol. 2011, 95. [Google Scholar] [CrossRef]
- Graur, D.; Li, W.-H. Fundamentals of Molecular Evolution, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2000; p. xiv. 481p. [Google Scholar]
- Wang, H. Predicting MicroRNA Biomarkers for Cancer Using Phylogenetic Tree and Microarray Analysis. Int. J. Mol. Sci. 2016, 17, 773. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.S.; Wang, H. Phylogenetic Tree Selection by Testing Substitution Number in Clade. Diversity 2022, 14, 543. [Google Scholar] [CrossRef]
- Wang, H.Y.; Hung, S.L. Phylogenetic tree selection by the adjusted k-means approach. J. Appl. Stat. 2012, 39, 643–655. [Google Scholar] [CrossRef]
- Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 2002, 51, 492–508. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. The distance distribution of human microRNAs in MirGeneDB database. Sci. Rep. 2022, 12, 17696. [Google Scholar] [CrossRef] [PubMed]
- Fromm, B.; Domanska, D.; Høye, E.; Ovchinnikov, V.; Kang, W.; Aparicio-Puerta, E.; Johansen, M.; Flatmark, K.; Mathelier, A.; Hovig, E. MirGeneDB 2.0: The metazoan microRNA complement. Nucleic Acids Res. 2020, 48, D132–D141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H. Anti-NMDA Receptor Encephalitis and Vaccination. Int. J. Mol. Sci. 2017, 18, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H. Phylogenetic Analysis to Explore the Association Between Anti-NMDA Receptor Encephalitis and Tumors Based on microRNA Biomarkers. Biomolecules 2019, 9, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.H.; Wang, H. The Association between Migraine and Depression based on miRNA Biomarkers and Cohort Studies. Curr. Med. Chem. 2021, 28, 5648–5656. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, S.; Huang, X.; Tang, Y.; Wu, J. Clinical Study of Autonomic Dysfunction in Patients with Anti-NMDA Receptor Encephalitis. Front. Neurol. 2021, 12, 609750. [Google Scholar] [CrossRef]
- Wang, H. Efficacies of treatments for anti-NMDA receptor encephalitis. Front. Biosci. (Landmark Ed.) 2016, 21, 651–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H. Anti-NMDA Receptor Encephalitis, Vaccination and Virus. Curr. Pharm. Des. 2019, 25, 4579–4588. [Google Scholar] [CrossRef]
- Ding, Y.; Gu, X.Y.; Xu, F.; Shi, X.Y.; Yang, D.Z.; Zhong, J.; Wang, S.M. MicroRNA expression profiling of mature ovarian teratomas. Oncol. Lett. 2012, 3, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liu, C.; Lin, F.; Liu, L. Anti-N-methyl-D-aspartate receptor encephalitis associated with mediastinal teratoma: A rare case report and literature review. J. Thorac. Dis. 2017, 9, E1118–E1121. [Google Scholar] [CrossRef] [PubMed]
- Sheather, S.J. Density estimation. Stat. Sci. 2004, 19, 588–597. [Google Scholar] [CrossRef]
q | The qth Percentile | q | The qth Percentile |
---|---|---|---|
5 | 0.7321 | 55 | 0.9799 |
10 | 0.7781 | 60 | 1.0022 |
15 | 0.8093 | 65 | 1.0262 |
20 | 0.8358 | 70 | 1.0528 |
25 | 0.8583 | 75 | 1.0833 |
30 | 0.8792 | 80 | 1.1196 |
35 | 0.8993 | 85 | 1.1656 |
40 | 0.9190 | 90 | 1.2311 |
45 | 0.9388 | 95 | 1.3470 |
50 | 0.9589 | 100 | 27.0327 |
miRNA biomarkers | miR-323, miR-491, miR-654, miR-10a, miR-31,miR-29a, miR-148a, miR-146a, miR-202, miR-342, miR-206, miR-487b, miR-576, miR-555, miR-145, miR-101, miR-19b, miR-33a, miR-155, miR-29b, let-7a, let-7b, let-7c, let-7d, let-7f |
Pairwise distance range | (0.27452, 1.35758) |
The mean of the 300 distances | 0.86574 |
The percentile of this mean in the kernel density distribution | 27th percentile |
miRNA biomarkers | mir-371, miR-372, miR-373, miR-129, miR-103, miR-107, miR-29b, miR-19a, miR-142, miR-26b, miR-421, miR-934, miR-22, miR-34a, miR-214, miR-196a, miR-629, miR-555, miR-657, miR-27a let-7b, let-7f, let-7a, let-7d, miR-492, miR-150, miR-620 |
Pairwise distance range | (0.16505, 1.56450) |
The mean of the 351 distances | 0.90627 |
The percentile of this mean in the kernel density distribution | 36th percentile |
miRNA biomarkers | miR-590, miR-34a, miR-382, miR-30a, miR-375, mir-27a, miR-181a, let-7b, miR-22, miR-155, miR-126, let-7g |
Pairwise distance range | (0.4067432, 1.429901) |
The mean of the 66 distances | 0.8910118 |
The percentile of this mean in the kernel density distribution | 34th percentile |
Model | Parameter | p-Value |
---|---|---|
Normal distribution | = 0.995292 = 0.44501 | <0.00001 |
Exponential distribution | = 0.995292 | <0.00001 |
Empirical cumulative distribution | Piecewise linear approximation | 0.4404 |
Kernel density estimation | Kernel = normal distribution Bandwidth = 0.00973513 Support = unbounded | 0.4824 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Ho, C. The Human Pre-miRNA Distance Distribution for Exploring Disease Association. Int. J. Mol. Sci. 2023, 24, 1009. https://doi.org/10.3390/ijms24021009
Wang H, Ho C. The Human Pre-miRNA Distance Distribution for Exploring Disease Association. International Journal of Molecular Sciences. 2023; 24(2):1009. https://doi.org/10.3390/ijms24021009
Chicago/Turabian StyleWang, Hsiuying, and Ching Ho. 2023. "The Human Pre-miRNA Distance Distribution for Exploring Disease Association" International Journal of Molecular Sciences 24, no. 2: 1009. https://doi.org/10.3390/ijms24021009
APA StyleWang, H., & Ho, C. (2023). The Human Pre-miRNA Distance Distribution for Exploring Disease Association. International Journal of Molecular Sciences, 24(2), 1009. https://doi.org/10.3390/ijms24021009