Proteomic Analysis of Dupuytren’s Contracture-Derived Sweat Glands Revealed the Synthesis of Connective Tissue Growth Factor and Initiation of Epithelial-Mesenchymal Transition as Major Pathogenetic Events
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Collection of Tissue Sample and Sweat Glands
4.2. Proteomic Analysis
4.3. Immunofluorescence Analysis
4.4. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dobie, R.; West, C.C.; Henderson, B.E.P.; Wilson-Kanamori, J.R.; Markose, D.; Kitto, L.J.; Portman, J.R.; Beltran, M.; Sohrabi, S.; Akram, A.R.; et al. Deciphering Mesenchymal Drivers of Human Dupuytren’s Disease at Single-Cell Level. J. Investig. Dermatol. 2022, 142, 114–123.e118. [Google Scholar] [CrossRef] [PubMed]
- Samulenas, G.; Insodaite, R.; Kunceviciene, E.; Poceviciute, R.; Masionyte, L.; Zitkeviciute, U.; Pilipaityte, L.; Smalinskiene, A. The Role of Functional Polymorphisms in the Extracellular Matrix Modulation-Related Genes on Dupuytren’s Contracture. Genes 2022, 13, 743. [Google Scholar] [CrossRef] [PubMed]
- Rydberg, M.; Zimmerman, M.; Löfgren, J.P.; Gottsäter, A.; Nilsson, P.M.; Melander, O.; Dahlin, L.B. Metabolic factors and the risk of Dupuytren’s disease: Data from 30,000 individuals followed for over 20 years. Sci. Rep. 2021, 11, 14669. [Google Scholar] [CrossRef] [PubMed]
- Lanting, R.; van den Heuvel, E.R.; Westerink, B.; Werker, P.M.N. Prevalence of Dupuytren disease in The Netherlands. Plast. Reconstr. Surg. 2013, 132, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Tinschert, S.; Lienert, A.; Bleuler, P.E.; Staub, F.; Meinel, A.; Rößler, J.; Wach, W.; Hoffmann, R.; Kühnel, F.; et al. The importance of genetic susceptibility in Dupuytren’s disease. Clin. Genet. 2015, 87, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.M.; McCann, F.E.; Cabrita, M.A.; Layton, T.; Cribbs, A.; Knezevic, B.; Fang, H.; Knight, J.; Zhang, M.; Fischer, R.; et al. Identifying collagen VI as a target of fibrotic diseases regulated by CREBBP/EP300. Proc. Natl. Acad. Sci. USA 2020, 117, 20753–20763. [Google Scholar] [CrossRef]
- Viil, J.; Maasalu, K.; Mäemets-Allas, K.; Tamming, L.; Lõhmussaar, K.; Tooming, M.; Ingerpuu, S.; Märtson, A.; Jaks, V. Laminin-rich blood vessels display activated growth factor signaling and act as the proliferation centers in Dupuytren’s contracture. Arthritis Res. Ther. 2015, 17, 144. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Li, M.; Zhang, X.; Bai, T.; Chi, G.; Liu, J.Y.; Li, Y. Isolation, culture and phenotypic characterization of human sweat gland epithelial cells. Int. J. Mol. Med. 2014, 34, 997–1003. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Sun, Q.; Davis, F.; Mao, J.; Zhao, H.; Ma, D. Epithelial-mesenchymal transition in organ fibrosis development: Current understanding and treatment strategies. Burns Trauma 2022, 10, tkac011. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Zeng, S.; Li, X.; Zhang, B.; Chen, L.; Lin, C.; Zhang, M.; Tang, S.; Fu, X. Combination of keratins and alpha-smooth muscle actin distinguishes secretory coils from ducts of eccrine sweat glands. Acta Histochem. 2015, 117, 275–278. [Google Scholar] [CrossRef]
- Tripoli, M.; Cordova, A.; Moschella, F. Update on the role of molecular factors and fibroblasts in the pathogenesis of Dupuytren’s disease. J. Cell Commun. Signal. 2016, 10, 315–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puerta Cavanzo, N.; Riesmeijer, S.A.; Holt-Kedde, I.L.; Werker, P.M.N.; Piersma, B.; Olinga, P.; Bank, R.A. Verteporfin ameliorates fibrotic aspects of Dupuytren’s disease nodular fibroblasts irrespective the activation state of the cells. Sci. Rep. 2022, 12, 13940. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, L.; Zhang, M.; Xie, S.; Du, L.; Zhang, X.; Li, H. Eccrine Sweat Gland and Its Regeneration: Current Status and Future Directions. Front. Cell Dev. Biol. 2021, 9, 667765. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.; Liu, J.; Wang, S.; Chang, M.; Wang, X.; Guo, B.; Yu, Q.; Yan, F.; Su, Y.; Wang, Y. Sweat gland organoids contribute to cutaneous wound healing and sweat gland regeneration. Cell Death. Dis. 2019, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Leung, Y.; Kandyba, E.; Chen, Y.B.; Ruffins, S.; Kobielak, K. Label retaining cells (LRCs) with myoepithelial characteristic from the proximal acinar region define stem cells in the sweat gland. PLoS ONE 2013, 8, e74174. [Google Scholar] [CrossRef] [Green Version]
- Sonnylal, S.; Xu, S.; Jones, H.; Tam, A.; Sreeram, V.R.; Ponticos, M.; Norman, J.; Agrawal, P.; Abraham, D.; de Crombrugghe, B. Connective tissue growth factor causes EMT-like cell fate changes in vivo and in vitro. J. Cell Sci. 2013, 126, 2164–2175. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.Y.; Jin, G.N.; Liang, H.F.; Wang, W.; Chen, W.X.; Datta, P.K.; Zhang, M.Z.; Zhang, B.; Chen, X.P. Transforming growth factor β induces expression of connective tissue growth factor in hepatic progenitor cells through Smad independent signaling. Cell. Signal. 2013, 25, 1981–1992. [Google Scholar] [CrossRef]
- Cheng, J.C.; Chang, H.M.; Fang, L.; Sun, Y.P.; Leung, P.C. TGF-β1 Up-Regulates Connective Tissue Growth Factor Expression in Human Granulosa Cells through Smad and ERK1/2 Signaling Pathways. PLoS ONE 2015, 10, e0126532. [Google Scholar] [CrossRef]
- Tran, C.M.; Markova, D.; Smith, H.E.; Susarla, B.; Ponnappan, R.K.; Anderson, D.G.; Symes, A.; Shapiro, I.M.; Risbud, M.V. Regulation of CCN2/connective tissue growth factor expression in the nucleus pulposus of the intervertebral disc: Role of Smad and activator protein 1 signaling. Arthritis Rheum. 2010, 62, 1983–1992. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, H.; Meyer, C.; Li, J.; Nadalin, S.; Königsrainer, A.; Weng, H.; Dooley, S.; Ten Dijke, P. Transforming growth factor-β (TGF-β)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires Stat3 signaling activation. J. Biol. Chem. 2013, 288, 30708–30719. [Google Scholar] [CrossRef]
- Chen, Y.; Blom, I.E.; Sa, S.; Goldschmeding, R.; Abraham, D.J.; Leask, A. CTGF expression in mesangial cells: Involvement of SMADs, MAP kinase, and PKC. Kidney Int. 2002, 62, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Loh, C.Y.; Chai, J.Y.; Tang, T.F.; Wong, W.F.; Sethi, G.; Shanmugam, M.K.; Chong, P.P.; Looi, C.Y. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019, 8, 1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knights, A.J.; Funnell, A.P.; Crossley, M.; Pearson, R.C. Holding Tight: Cell Junctions and Cancer Spread. Trends Cancer Res. 2012, 8, 61–69. [Google Scholar] [PubMed]
- Kallakury, B.V.; Sheehan, C.E.; Ross, J.S. Co-downregulation of cell adhesion proteins alpha- and beta-catenins, p120CTN, E-cadherin, and CD44 in prostatic adenocarcinomas. Hum. Pathol. 2001, 32, 849–855. [Google Scholar] [CrossRef]
- Nikou, S.; Arbi, M.; Dimitrakopoulos, F.D.; Kalogeropoulou, A.; Geramoutsou, C.; Zolota, V.; Kalofonos, H.P.; Taraviras, S.; Lygerou, Z.; Bravou, V. Ras suppressor-1 (RSU1) exerts a tumor suppressive role with prognostic significance in lung adenocarcinoma. Clin. Exp. Med. 2022, 2022, 1–15. [Google Scholar] [CrossRef]
- Mamuya, F.A.; Duncan, M.K. aV integrins and TGF-β-induced EMT: A circle of regulation. J. Cell. Mol. Med. 2012, 16, 445–455. [Google Scholar] [CrossRef]
- Zhu, J.; Nguyen, D.; Ouyang, H.; Zhang, X.H.; Chen, X.M.; Zhang, K. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-β in ARPE-19. Int. J. Ophthalmol. 2013, 6, 8–14. [Google Scholar] [CrossRef]
- Takahashi, M.; Akamatsu, H.; Yagami, A.; Hasegawa, S.; Ohgo, S.; Abe, M.; Iwata, Y.; Arima, M.; Mizutani, H.; Nakata, S.; et al. Epithelial-mesenchymal transition of the eccrine glands is involved in skin fibrosis in morphea. J. Dermatol. 2013, 40, 720–725. [Google Scholar] [CrossRef]
- McGaugh, S.; Kallis, P.; de Benedetto, A.; Thomas, R.M. Janus kinase inhibitors for treatment of morphea and systemic sclerosis: A literature review. Dermatol. Ther. 2022, 35, e15437. [Google Scholar] [CrossRef]
- Kuwahara, H.; Tosa, M.; Egawa, S.; Murakami, M.; Mohammad, G.; Ogawa, R. Examination of Epithelial Mesenchymal Transition in Keloid Tissues and Possibility of Keloid Therapy Target. Plast. Reconstr. Surg. Glob. Open 2016, 4, e1138. [Google Scholar] [CrossRef]
- Di Gregorio, J.; Robuffo, I.; Spalletta, S.; Giambuzzi, G.; de Iuliis, V.; Toniato, E.; Martinotti, S.; Conti, P.; Flati, V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front. Cell Dev. Biol. 2020, 8, 607483. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.P.; On, N.; Brasch, H.D.; Chibnall, A.M.; Armstrong, J.R.; Davis, P.F.; Tan, S.T.; Itinteang, T. Embryonic Stem Cell-like Population in Dupuytren’s Disease. Plast. Reconstr. Surg. Glob. Open 2016, 4, e1064. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Rodríguez, C.A.; Garzón, I.; Garrido-Gómez, J.; Oliveira, A.C.; Martín-Piedra, M.; Scionti, G.; Carriel, V.; Hernández-Cortés, P.; Campos, A.; Alaminos, M. Identification of histological patterns in clinically affected and unaffected palm regions in dupuytren’s disease. PLoS ONE 2014, 9, e112457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skonier, J.; Neubauer, M.; Madisen, L.; Bennett, K.; Plowman, G.D.; Purchio, A.F. cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta. DNA Cell Biol. 1992, 11, 511–522. [Google Scholar] [CrossRef]
- Mamuya, F.A.; Xie, D.; Lei, L.; Huang, M.; Tsuji, K.; Capen, D.E.; Yang, B.; Weissleder, R.; Păunescu, T.G.; Lu, H.A.J. Deletion of β1-integrin in collecting duct principal cells leads to tubular injury and renal medullary fibrosis. Am. J. Physiol. Renal. Physiol. 2017, 313, F1026–F1037. [Google Scholar] [CrossRef] [Green Version]
- Schwanekamp, J.A.; Lorts, A.; Sargent, M.A.; York, A.J.; Grimes, K.M.; Fischesser, D.M.; Gokey, J.J.; Whitsett, J.A.; Conway, S.J.; Molkentin, J.D. TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS ONE 2017, 12, e0181945. [Google Scholar] [CrossRef] [Green Version]
- Ouanouki, A.; Lamy, S.; Annabi, B. Periostin, a signal transduction intermediate in TGF-β-induced EMT in U-87MG human glioblastoma cells, and its inhibition by anthocyanidins. Oncotarget 2018, 9, 22023–22037. [Google Scholar] [CrossRef] [Green Version]
- Ratajczak-Wielgomas, K.; Gosk, J.; Rabczyński, J.; Augoff, K.; Podhorska-Okołów, M.; Gamian, A.; Rutowski, R. Expression of MMP-2, TIMP-2, TGF-β1, and decorin in Dupuytren’s contracture. Connect. Tissue Res. 2012, 53, 469–477. [Google Scholar] [CrossRef]
- Badalamente, M.A.; Sampson, S.P.; Hurst, L.C.; Dowd, A.; Miyasaka, K. The role of transforming growth factor beta in Dupuytren’s disease. J. Hand Surg. 1996, 21, 210–215. [Google Scholar] [CrossRef]
- Welzel, J.; Grüdl, S.; Banowski, B.; Stark, H.; Sättler, A.; Welss, T. A novel cell line from human eccrine sweat gland duct cells for investigating sweating physiology. Int. J. Cosmet. Sci. 2022, 44, 216–231. [Google Scholar] [CrossRef]
- Cárdenas-León, C.G.; Klaas, M.; Mäemets-Allas, K.; Arak, T.; Eller, M.; Jaks, V. Olfactomedin 4 regulates migration and proliferation of immortalized non-transformed keratinocytes through modulation of the cell cycle machinery and actin cytoskeleton remodelling. Exp. Cell Res. 2022, 415, 113111. [Google Scholar] [CrossRef] [PubMed]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas-León, C.G.; Mäemets-Allas, K.; Klaas, M.; Maasalu, K.; Jaks, V. Proteomic Analysis of Dupuytren’s Contracture-Derived Sweat Glands Revealed the Synthesis of Connective Tissue Growth Factor and Initiation of Epithelial-Mesenchymal Transition as Major Pathogenetic Events. Int. J. Mol. Sci. 2023, 24, 1081. https://doi.org/10.3390/ijms24021081
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Maasalu K, Jaks V. Proteomic Analysis of Dupuytren’s Contracture-Derived Sweat Glands Revealed the Synthesis of Connective Tissue Growth Factor and Initiation of Epithelial-Mesenchymal Transition as Major Pathogenetic Events. International Journal of Molecular Sciences. 2023; 24(2):1081. https://doi.org/10.3390/ijms24021081
Chicago/Turabian StyleCárdenas-León, Claudia Griselda, Kristina Mäemets-Allas, Mariliis Klaas, Katre Maasalu, and Viljar Jaks. 2023. "Proteomic Analysis of Dupuytren’s Contracture-Derived Sweat Glands Revealed the Synthesis of Connective Tissue Growth Factor and Initiation of Epithelial-Mesenchymal Transition as Major Pathogenetic Events" International Journal of Molecular Sciences 24, no. 2: 1081. https://doi.org/10.3390/ijms24021081
APA StyleCárdenas-León, C. G., Mäemets-Allas, K., Klaas, M., Maasalu, K., & Jaks, V. (2023). Proteomic Analysis of Dupuytren’s Contracture-Derived Sweat Glands Revealed the Synthesis of Connective Tissue Growth Factor and Initiation of Epithelial-Mesenchymal Transition as Major Pathogenetic Events. International Journal of Molecular Sciences, 24(2), 1081. https://doi.org/10.3390/ijms24021081