Potential Neuroprotective Role of Calretinin-N18 and Calbindin-D28k in the Retina of Adult Zebrafish Exposed to Different Wavelength Lights
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. White Light Experimental Group versus Control
3.2. White–Blue Light Experimental Group versus Control
3.3. Blue Light Experimental Group versus Control
3.4. Darkness Experimental Group versus Control
3.5. Comparison between the Distinct Experimental Groups
4. Materials and Methods
4.1. Experimental Protocol
4.2. Confocal Immunofluorescence
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bourne, R.; Steinmetz, J.D.; Flaxman, S.; Briant, P.S.; Taylor, H.R.; Resnikoff, S.; Casson, R.J.; Abdoli, A.; Abu-Gharbieh, E.; Afshin, A.; et al. Trends in prevalence of blindness and distance and near vision impairment over 30 years: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e130–e143. [Google Scholar] [CrossRef] [PubMed]
- Executive, B. Draft Action Plan for the Prevention of AVOIDABLE blindness and Visual Impairment 2014–2019: Universal Eye Health: A Global Action Plan 2014–2019: Report by the Secretariat; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Mainster, M.A.; Turner, P.L. Blue-blocking IOLs Decrease Photoreception without Providing Significant Photoprotection. Surv. Ophthalmol. 2010, 55, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Mainster, M.A.; Turner, P.L. Ultraviolet-B Phototoxicity and Hypothetical Photomelanomagenesis: Intraocular and Crystalline Lens Photoprotection. Am. J. Ophthalmol. 2010, 149, 543–549. [Google Scholar] [CrossRef]
- Arjmandi, N.; Mortazavi, G.; Zarei, S.; Faraz, M.; Mortazavi, S.A.R. Can Light Emitted from Smartphone Screens and Taking Selfies Cause Premature Aging and Wrinkles? J. Biomed. Phys. Eng. 2018, 8, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, K.; Payton, J.L.; Lakmal, O.H.; Karunarathne, A. Blue light excited retinal intercepts cellular signaling. Sci. Rep. 2018, 8, 10207. [Google Scholar] [CrossRef] [Green Version]
- Tosini, G.; Ferguson, I.; Tsubota, K. Effects of blue light on the circadian system and eye physiology. Mol. Vis. 2016, 22, 61–72. [Google Scholar]
- D’Orlando, C.; Celio, M.R.; Schwaller, B. Calretinin and calbindin D-28k, but not parvalbumin protect against glutamate-induced delayed excitotoxicity in transfected N18–RE 105 neuroblastoma–retina hybrid cells. Brain Res. 2002, 945, 181–190. [Google Scholar] [CrossRef]
- García-Crespo, D.; Vecino, E. Differential expression of calretinin in the developing and regenerating zebrafish visual system. Histol. Histopathol. 2004, 19, 1193–1199. [Google Scholar]
- Greer, P.L.; Greenberg, M.E. From Synapse to Nucleus: Calcium-Dependent Gene Transcription in the Control of Synapse Development and Function. Neuron 2008, 59, 846–860. [Google Scholar] [CrossRef] [Green Version]
- Raju, C.S.; Spatazza, J.; Stanco, A.; Larimer, P.; Sorrells, S.F.; Kelley, K.W.; Nicholas, C.R.; Paredes, M.F.; Lui, J.H.; Hasenstaub, A.R.; et al. Secretagogin is Expressed by Developing Neocortical GABAergic Neurons in Humans but not Mice and Increases Neurite Arbor Size and Complexity. Cereb. Cortex 2018, 28, 1946–1958. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Becerra, M.; Manso, M.J.; Anadón, R. Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: Distribution and comparison with some neuropeptides and neurotransmitter-synthesizing enzymes. I. Olfactory organ and forebrain. J. Comp. Neurol. 2006, 494, 435–459. [Google Scholar] [CrossRef] [PubMed]
- Germanà, A.; Paruta, S.; Germanà, G.P.; Ochoa-Erena, F.J.; Montalbano, G.; Cobo, J.; Vega, J.A. Differential distribution of S100 protein and calretinin in mechanosensory and chemosensory cells of adult zebrafish (Danio rerio). Brain Res. 2007, 1162, 48–55. [Google Scholar] [CrossRef]
- Castro, A.; Becerra, M.; Anadón, R.; Manso, M.J. Distribution of calretinin during development of the olfactory system in the brown trout, Salmo trutta fario: Comparison with other immunohistochemical markers. J. Chem. Neuroanat. 2008, 35, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Levanti, M.B.; Montalbano, G.; Laurà, R.; Ciriaco, E.; Cobo, T.; García-Suarez, O.; Germanà, A.; Vega, J.A. Calretinin in the peripheral nervous system of the adult zebrafish. J. Anat. 2008, 212, 67–71. [Google Scholar] [CrossRef]
- Chin, D.; Means, A.R. Calmodulin: A prototypical calcium sensor. Trends Cell Biol. 2000, 10, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Germana, A.; González-Martínez, T.; Catania, S.; Laura, R.; Cobo, J.; Ciriaco, E.; Vega, J. Neurotrophin receptors in taste buds of adult zebrafish (Danio rerio). Neurosci. Lett. 2004, 354, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Germanà, A.; Marino, F.; Guerrera, M.C.; Campo, S.; de Girolamo, P.; Montalbano, G.; Germanà, G.P.; Ochoa-Erena, F.J.; Ciriaco, E.; Vega, J.A. Expression and distribution of S100 protein in the nervous system of the adult zebrafish (Danio rerio). Microsc. Res. Tech. 2008, 71, 248–255. [Google Scholar] [CrossRef]
- Parisi, V.; Guerrera, M.C.; Abbate, F.; Garcia-Suarez, O.; Viña, E.; Vega, J.A.; Germanà, A. Immunohistochemical characterization of the crypt neurons in the olfactory epithelium of adult zebrafish. Ann. Anat.-Anat. Anz. 2014, 196, 178–182. [Google Scholar] [CrossRef]
- Kántor, O.; Mezey, S.; Adeghate, J.; Naumann, A.; Nitschke, R.; Énzsöly, A.; Szabó, A.; Lukáts, Á.; Németh, J.; Somogyvári, Z.; et al. Calcium buffer proteins are specific markers of human retinal neurons. Cell Tissue Res. 2016, 365, 29–50. [Google Scholar] [CrossRef]
- Andressen, C.; Blümcke, I.; Celio, M.R. Calcium-binding proteins: Selective markers of nerve cells. Cell Tissue Res. 1993, 271, 181–208. [Google Scholar] [CrossRef]
- Schwaller, B. The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells. Biochim. et Biophys. Acta (BBA)—Gen. Subj. 2012, 1820, 1294–1303. [Google Scholar] [CrossRef]
- Airaksinen, M.S.; Thoenen, H.; Meyer, M. Vulnerability of Midbrain Dopaminergic Neurons in Calbindin-D28k-deficient Mice: Lack of Evidence for a Neuroprotective Role of Endogenous Calbindin in MPTPtreated and Weaver Mice. Eur. J. Neurosci. 1997, 9, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Camp, A.J.; Wijesinghe, R. Calretinin: Modulator of neuronal excitability. Int. J. Biochem. Cell Biol. 2009, 41, 2118–2121. [Google Scholar] [CrossRef] [PubMed]
- Kovács-Öller, T.; Szarka, G.; Ganczer, A.; Tengölics, Á.; Balogh, B.; Völgyi, B. Expression of Ca(2+)-Binding Buffer Proteins in the Human and Mouse Retinal Neurons. Int. J. Mol. Sci. 2019, 20, 2229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, E.-M.; An, B.-S.; Choi, K.-C.; Jeung, E.-B. Apoptosis- and endoplasmic reticulum stress-related genes were regulated by estrogen and progesterone in the uteri of calbindin-D9k and -D28k knockout mice. J. Cell. Biochem. 2012, 113, 194–203. [Google Scholar] [CrossRef]
- Fosser, N.S.; Ronco, L.; Bejarano, A.; Paganelli, A.R.; Ríos, H. Calbindin-D28k and calretinin in chicken inner retina during postnatal development and neuroplasticity by dim red light. Dev. Neurobiol. 2013, 73, 530–542. [Google Scholar] [CrossRef] [Green Version]
- Van Hook, M.J.; Thoreson, W.B. Molecular Mechanisms of Photoreceptor Synaptic Transmission. In Vertebrate Photoreceptors: Functional Molecular Bases; Furukawa, T., Hurley, J.B., Kawamura, S., Eds.; Springer: Tokyo, Japan, 2014; pp. 167–198. [Google Scholar] [CrossRef]
- van Kuyck, K.; Gabriëls, L.; Nuttin, B. Chapter 55—Electrical Brain Stimulation in Treatment-Resistant Obsessive–Compulsive Disorder: Parcellation, and Cyto- and Chemoarchitecture of the Bed Nucleus of the Stria Terminalis—A Review. In Neuromodulation; Krames, E.S., Peckham, P.H., Rezai, A.R., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 677–687. [Google Scholar] [CrossRef]
- Miller, R.J. Regulation of calcium homoeostasis in neurons: The role of calcium-binding proteins. Biochem. Soc. Trans. 1995, 23, 629–632. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, C.; Friauf, E. Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J. Comp. Neurol. 1996, 367, 90–109. [Google Scholar] [CrossRef]
- Lukas, W.; Jones, K.A. Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro. Neuroscience 1994, 61, 307–316. [Google Scholar] [CrossRef]
- Pike, C.J.; Cotman, C.W. Calretinin-immunoreactive neurons are resistant to β-amyloid toxicity in vitro. Brain Res. 1995, 671, 293–298. [Google Scholar] [CrossRef]
- D’Orlando, C.; Fellay, B.t.; Schwaller, B.; Salicio, V.; Bloc, A.; Gotzos, V.; Celio, M.R. Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res. 2001, 909, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Jung, C.K.; Kang, T.-H.; Jeon, J.H.; Cha, J.; Kim, I.-B.; Chun, M.-H. Synaptic connections of calbindin-immunoreactive cone bipolar cells in the inner plexiform layer of rabbit retina. Cell Tissue Res. 2010, 339, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-S.; Park, S.-J.; Park, S.-H.; Chun, M.-H.; Oh, S.-J. Shifting of parvalbumin expression in the rat retina in experimentally induced diabetes. Acta Neuropathol. 2008, 115, 241–248. [Google Scholar] [CrossRef]
- Hernandez, M.; Rodriguez, F.D.; Sharma, S.C.; Vecino, E. Immunohistochemical changes in rat retinas at various time periods of elevated intraocular pressure. Mol. Vis. 2009, 15, 2696–2709. [Google Scholar] [PubMed]
- Gunn, D.J.; Gole, G.A.; Barnett, N.L. Specific amacrine cell changes in an induced mouse model of glaucoma. Clin. Exp. Ophthalmol. 2011, 39, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-F.; Shang, L.; Zhang, M.-Q.; Wang, H.; Chen, D.; Tong, J.-B.; Huang, H.; Yan, X.-X.; Zeng, L.-P.; Xiong, K. Differential neuronal expression of receptor interacting protein 3 in rat retina: Involvement in ischemic stress response. BMC Neurosci. 2013, 14, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasteels, B.; Rogers, J.; Blachier, F.; Pochet, R. Calbindin and calretinin localization in retina from different species. Vis. Neurosci. 1990, 5, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Massey, S.C.; Mills, S.L. A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. J. Comp. Neurol. 1996, 366, 15–33. [Google Scholar] [CrossRef]
- Kim, D.-J.; Seok, S.-H.; Baek, M.-W.; Lee, H.-Y.; Na, Y.-R.; Park, S.-H.; Lee, H.-K.; Dutta, N.K.; Kawakami, K.; Park, J.-H. Developmental toxicity and brain aromatase induction by high genistein concentrations in zebrafish embryos. Toxicol. Mech. Methods 2009, 19, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Schwaller, B. Cytosolic Ca2+ buffers. Cold Spring Harb. Lab. 2010, 2, a004051. [Google Scholar] [CrossRef] [Green Version]
- Kántor, O.; Benkő, Z.; Énzsöly, A.; Dávid, C.; Naumann, A.; Nitschke, R.; Szabó, A.; Pálfi, E.; Orbán, J.; Nyitrai, M.; et al. Characterization of connexin36 gap junctions in the human outer retina. Brain Struct. Funct. 2016, 221, 2963–2984. [Google Scholar] [CrossRef] [PubMed]
- Kovács-Öller, T.; Debertin, G.; Balogh, M.; Ganczer, A.; Orbán, J.; Nyitrai, M.; Balogh, L.; Kántor, O.; Völgyi, B. Connexin36 expression in the mammalian retina: A multiple-species comparison. Front. Cell. Neurosci. 2017, 11, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldsmith, P.; Harris, W.A. The zebrafish as a tool for understanding the biology of visual disorders. Semin. Cell Dev. Biol. 2003, 14, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Collery, R.F.; Cederlund, M.L.; Smyth, V.A.; Kennedy, B.N. Applying Transgenic Zebrafish Technology to Study the Retina. Adv. Exp. Med. Biol. 2006, 572, 201–207. [Google Scholar] [PubMed]
- Gross, J.M.; Perkins, B.D. Zebrafish mutants as models for congenital ocular disorders in humans. Mol. Reprod. Dev. Inc. Gamete Res. 2008, 75, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Germana, A.; Catania, S.; Cavallaro, M.; González-Martínez, T.; Ciriaco, E.; Hannestad, J.; Vega, J. Immunohistochemical localization of BDNF-, TrkB-and TrkA-like proteins in the teleost lateral line system. J. Anat. 2002, 200, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Eichenbaum, J.W.; Cinaroglu, A.; Eichenbaum, K.D.; Sadler, K.C. A zebrafish retinal graded photochemical stress model. J. Pharmacol. Toxicol. Methods 2009, 59, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; He, X.; Xing, Y.; Yang, N. Differential susceptibility of retinal ganglion cell subtypes against neurodegenerative diseases. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 1807–1821. [Google Scholar] [CrossRef]
- Núñez-Álvarez, C.; Osborne, N.N. Blue light exacerbates and red light counteracts negative insults to retinal ganglion cells in situ and R28 cells in vitro. Neurochem. Int. 2019, 125, 187–196. [Google Scholar] [CrossRef]
- Núñez-Álvarez, C.; Suárez-Barrio, C.; del Olmo Aguado, S.; Osborne, N.N. Blue light negatively affects the survival of ARPE19 cells through an action on their mitochondria and blunted by red light. Acta Ophthalmol. 2019, 97, e103–e115. [Google Scholar] [CrossRef]
- Sánchez-Ramos, C.; Bonnin-Arias, C.; Guerrera, M.C.; Calavia, M.; Chamorro, E.; Montalbano, G.; López-Velasco, S.; López-Muñiz, A.; Germanà, A.; Vega, J.A. Light regulates the expression of the BDNF/TrkB system in the adult zebrafish retina. Microsc. Res. Tech. 2013, 76, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Bilotta, J.; Saszik, S. The zebrafish as a model visual system. Int. J. Dev. Neurosci. 2001, 19, 621–629. [Google Scholar] [CrossRef]
- Ganzen, L.; Venkatraman, P.; Pang, C.P.; Leung, Y.F.; Zhang, M. Utilizing Zebrafish Visual Behaviors in Drug Screening for Retinal Degeneration. Int. J. Mol. Sci. 2017, 18, 1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montalbano, G.; Levanti, M.; Mhalhel, K.; Abbate, F.; Laurà, R.; Guerrera, M.C.; Aragona, M.; Germanà, A. Acid-Sensing Ion Channels in Zebrafish. Animals 2021, 11, 2471. [Google Scholar] [CrossRef] [PubMed]
- Germanà, A.; Sánchez-Ramos, C.; Guerrera, M.C.; Calavia, M.; Navarro, M.; Zichichi, R.; García-Suárez, O.; Pérez-Piñera, P.; Vega, J.A. Expression and cell localization of brain-derived neurotrophic factor and TrkB during zebrafish retinal development. J. Anat. 2010, 217, 214–222. [Google Scholar] [CrossRef]
- Thomas, J.L.; Nelson, C.M.; Luo, X.; Hyde, D.R.; Thummel, R. Characterization of multiple light damage paradigms reveals regional differences in photoreceptor loss. Exp. Eye Res. 2012, 97, 105–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thummel, R.; Enright, J.M.; Kassen, S.C.; Montgomery, J.E.; Bailey, T.J.; Hyde, D.R. Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration. Exp. Eye Res. 2010, 90, 572–582. [Google Scholar] [CrossRef] [Green Version]
- Thummel, R.; Kassen, S.C.; Enright, J.M.; Nelson, C.M.; Montgomery, J.E.; Hyde, D.R. Characterization of Müller glia and neuronal progenitors during adult zebrafish retinal regeneration. Exp. Eye Res. 2008, 87, 433–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thummel, R.; Kassen, S.C.; Montgomery, J.E.; Enright, J.M.; Hyde, D.R. Inhibition of Müller glial cell division blocks regeneration of the light-damaged zebrafish retina. Dev. Neurobiol. 2008, 68, 392–408. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Teraoka, H.; Kondo, S.; Hiraga, T. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin induces apoptosis in the dorsal midbrain of zebrafish embryos by activation of arylhydrocarbon receptor. Neurosci. Lett. 2001, 303, 169–172. [Google Scholar] [CrossRef]
- Ross, M.H.; Pawlina, W.; Barnash, T.; Calligaro, A.; Di Renzo, M.F. Atlante di Istologia e Anatomia Microscopica; CEA: Singapore, 2010. [Google Scholar]
- Haley, T.L.; Pochet, R.; Baizer, L.; Burton, M.D.; Crabb, J.W.; Parmentier, M.; Polans, A.S. Calbindin D-28K immunoreactivity of human cone cells varies with retinal position. Vis. Neurosci. 1995, 12, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Chiquet, C.; Dkhissi-Benyahya, O.; Cooper, H.M. Calcium-binding protein distribution in the retina of strepsirhine and haplorhine primates. Brain Res. Bull. 2005, 68, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Celio, M.R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 1990, 35, 375–475. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.K.; Yoo, K.Y.; Kim, D.S.; Jung, J.Y.; Shin, M.C.; Seo, K.; Kim, K.S.; Kang, T.C.; Won, M.H. Comparative Study on Calretinin Immunoreactivity in Gerbil and Rat Retina. Anat. Histol. Embryol. 2005, 34, 129–131. [Google Scholar] [CrossRef]
- Nag, T.C.; Wadhwa, S. Developmental expression of calretinin immunoreactivity in the human retina and a comparison with two other EF-hand calcium-binding proteins. Neuroscience 1999, 91, 41–50. [Google Scholar] [CrossRef]
- Nag, T.C.; Wadhwa, S. Calbindin and parvalbumin immunoreactivity in the developing and adult human retina. Dev. Brain Res. 1996, 93, 23–32. [Google Scholar] [CrossRef]
- Lee, E.-S.; Lee, J.-Y.; Kim, G.H.; Jeon, C.-J. Identification of calretinin-expressing retinal ganglion cells projecting to the mouse superior colliculus. Cell Tissue Res. 2019, 376, 153–163. [Google Scholar] [CrossRef]
- del Olmo-Aguado, S.; Núñez-Álvarez, C.; Osborne, N.N. Red light of the visual spectrum attenuates cell death in culture and retinal ganglion cell death in situ. Acta Ophthalmol. 2016, 94, e481–e491. [Google Scholar] [CrossRef] [Green Version]
- Hamano, K.; Kiyama, H.; Emson, P.C.; Manabe, R.; Nakauchi, M.; Tohyama, M. Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. J. Comp. Neurol. 1990, 302, 417–424. [Google Scholar] [CrossRef]
- Pochet, R.; Pasteels, B.; Seto-ohshima, A.; Bastianelli, E.; Kitajima, S.; Van Eldik, L.J. Calmodulin and calbindin localization in retina from six vertebrate species. J. Comp. Neurol. 1991, 314, 750–762. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Zhou, A.; Ye, Q.; Feng, Y.; Wang, Z.; Wang, S.; Xu, G.; Zou, J. Species-specific effect of microplastics on fish embryos and observation of toxicity kinetics in larvae. J. Hazard. Mater. 2021, 403, 123948. [Google Scholar] [CrossRef] [PubMed]
- Pöstyéni, E.; Szabadfi, K.; Sétáló, G.; Gabriel, R. A Promising Combination: PACAP and PARP Inhibitor Have Therapeutic Potential in Models of Diabetic and Hypertensive Retinopathies. Cells 2021, 10, 3470. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; O’Leary, T.E.; Fields, C.M.; Johnson, D.A. Development of the outer retina in the mouse. Dev. Brain Res. 2003, 145, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, X.; Hu, F.; Wu, J. Fine structure of the human retina defined by confocal microscopic immunohistochemistry. Br. J. Biomed. Sci. 2021, 78, 28–34. [Google Scholar] [CrossRef]
- Kovács-Öller, T.; Raics, K.; Orbán, J.; Nyitrai, M.; Völgyi, B. Developmental changes in the expression level of connexin36 in the rat retina. Cell Tissue Res. 2014, 358, 289–302. [Google Scholar] [CrossRef]
- Nivison-Smith, L.; Khoo, P.; Acosta, M.L.; Kalloniatis, M. Pre-treatment with vinpocetine protects against retinal ischemia. Exp. Eye Res. 2017, 154, 126–138. [Google Scholar] [CrossRef]
- Fu, Z.; Nian, S.; Li, S.-Y.; Wong, D.; Chung, S.K.; Lo, A.C.Y. Deficiency of aldose reductase attenuates inner retinal neuronal changes in a mouse model of retinopathy of prematurity. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 1503–1513. [Google Scholar] [CrossRef]
- Gábriel, R.; Erdélyi, F.; Szabó, G.; Lawrence, J.J.; Wilhelm, M. Ectopic transgene expression in the retina of four transgenic mouse lines. Brain Struct. Funct. 2016, 221, 3729–3741. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.C.S.; Weltzien, F.; Madigan, M.C.; Martin, P.R.; Grünert, U. Identification of AⅡ amacrine, displaced amacrine, and bistratified ganglion cell types in human retina with antibodies against calretinin. J. Comp. Neurol. 2016, 524, 39–53. [Google Scholar] [CrossRef]
- Uesugi, R.; Yamada, M.; Mizuguchi, M.; Baimbridge, K.G.; Kim, S.U. Calbindin D-28k and parvalbumin immunohistochemistry in developing rat retina. Exp. Eye Res. 1992, 54, 491–499. [Google Scholar] [CrossRef]
- Trost, A.; Schroedl, F.; Marschallinger, J.; Rivera, F.J.; Bogner, B.; Runge, C.; Couillard-Despres, S.; Aigner, L.; Reitsamer, H.A. Characterization of dsRed2-positive cells in the doublecortin-dsRed2 transgenic adult rat retina. Histochem. Cell Biol. 2014, 142, 601–617. [Google Scholar] [CrossRef] [PubMed]
- Kovács-Valasek, A.; Pöstyéni, E.; Dénes, V.; Mester, A.; Sétáló Jr, G.; Gábriel, R. Age-Related Alterations of Proteins in Albino Wistar Rat Retina. Cells Tissues Organs 2021, 210, 135–150. [Google Scholar] [CrossRef]
- Ho, T.; Vessey, K.A.; Fletcher, E.L. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience 2014, 277, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, C.; Guo, M. Use of ecofriendly alternatives for the control of bacterial infection in aquaculture of sea cucumber Apostichopus japonicus. Aquaculture 2021, 545, 737185. [Google Scholar] [CrossRef]
- Vistamehr, S.; Tian, N. Light deprivation suppresses the light response of inner retina in both young and adult mouse. Vis. Neurosci. 2004, 21, 23–37. [Google Scholar] [CrossRef]
- Emran, F.; Rihel, J.; Adolph, A.R.; Dowling, J.E. Zebrafish larvae lose vision at night. Proc. Natl. Acad. Sci. USA 2010, 107, 6034–6039. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Zhu, Q.; Liu, S.; Dai, X.; Zhang, B.; Gao, C.; Gao, L.; Liu, J.; Cui, Y. Calretinin Participates in Regulating Steroidogenesis by PLC-Ca2+-PKC Pathway in Leydig Cells. Sci. Rep. 2018, 8, 7403. [Google Scholar] [CrossRef]
- Osborne, N.N.; Larsen, A.K. Antigens Associated with Specific Retinal Cells are Affected by Ischaemia Caused by Raised Intraocular Pressure: Effect of Glutamate Antagonists **Part of the work reported in this original communication was presented at the symposium entitled Excitatory Amino Acid Signaling, which was held in Kyoto, Japan, 15–18 July 1995 (organised by Y. Yoneda and M. Toru). Dr Yoneda also acted as executive editor in the processing of this manuscript. Neurochem. Int. 1996, 29, 263–270. [Google Scholar] [CrossRef]
- Chun, M.-H.; Kim, I.-B.; Ju, W.-K.; Kim, K.-Y.; Lee, M.-Y.; Joo, C.-K.; Chung, J.-W. Horizontal cells of the rat retina are resistant to degenerative processes induced by ischemia-reperfusion. Neurosci. Lett. 1999, 260, 125–128. [Google Scholar] [CrossRef]
- García-Suárez, O.; Pérez-Pérez, M.; Germanà, A.; Esteban, I.; Germanà, G. Involvement of growth factors in thymic involution. Microsc. Res. Tech. 2003, 62, 514–523. [Google Scholar] [CrossRef]
- Germanà, A.; Guerrera, M.C.; Laurà, R.; Levanti, M.; Aragona, M.; Mhalhel, K.; Germanà, G.; Montalbano, G.; Abbate, F. Expression and Localization of BDNF/TrkB System in the Zebrafish Inner Ear. Int. J. Mol. Sci. 2020, 21, 5787. [Google Scholar] [CrossRef] [PubMed]
- García-Suárez, O.; Germanà, A.; Hannestad, J.; Pérez-Pérez, M.; Esteban, I.; Naves, F.J.; Vega, J.A. Changes in the expression of the nerve growth factor receptors TrkA and p75LNGR in the rat thymus with ageing and increased nerve growth factor plasma levels. Cell Tissue Res. 2000, 301, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Abbate, F.; Guerrera, M.C.; Montalbano, G.; De Carlos, F.; Suárez, A.Á.; Ciriaco, E.; Germanà, A. Morphology of the european sea bass (Dicentrarchus labrax) tongue. Microsc. Res. Tech. 2012, 75, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Lauriano, E.; Guerrera, M.; Laurà, R.; Capillo, G.; Pergolizzi, S.; Aragona, M.; Abbate, F.; Germanà, A. Effect of light on the calretinin and calbindin expression in skin club cells of adult zebrafish. Histochem. Cell Biol. 2020, 154, 495–505. [Google Scholar] [CrossRef]
- Aragona, M.; Porcino, C.; Guerrera, M.C.; Montalbano, G.; Laurà, R.; Levanti, M.; Abbate, F.; Cobo, T.; Capitelli, G.; Calapai, F.; et al. Localization of BDNF and Calretinin in Olfactory Epithelium and Taste Buds of Zebrafish (Danio rerio). Int. J. Mol. Sci. 2022, 23, 4696. [Google Scholar] [CrossRef]
- Alesci, A.; Capillo, G.; Fumia, A.; Messina, E.; Albano, M.; Aragona, M.; Lo Cascio, P.; Spanò, N.; Pergolizzi, S.; Lauriano, E.R. Confocal Characterization of Intestinal Dendritic Cells from Myxines to Teleosts. Biology 2022, 11, 1045. [Google Scholar] [CrossRef]
Zebrafish * | Rat | Refs. | Mouse | Ref. | Human | Refs. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
CaB-D28K | CaR-N18 | CaB-D28K | CaR-N18 | CaB-D28K | CaR-N18 | CaB-D28K | CaR-N18 | ||||
RPE | + | − | + | [68] | + | [69,70] | |||||
PRL | + | − | − | + | [68,73] | − | [74] | + | − | [25,65,67,73,75] | |
OPL | − | + | + | + | [73,76] | + | [77] | + | − | [73,78] | |
INL | + | + | [68,73,76,79,80] | + | + | [81,82] | + | + | [20,83] | ||
Bipolar cells | − | + | + | − | [68,84] | − | − | [25] | + | + | [25,73,83] |
Amacrine cells | − | + | + | + | [67,73,79,85,86] | + | + | [25,87] | + | + | [25,67,73,83] |
IPL | − | + | + | + | [68,73,76,79,80] | − | + | [74,81,82,87] | + | + | [70,83,88] |
GCL | − | + | + | + | [67,68,73,76,80,85,86] | + | + | [25,82,87] | + | + | [25,67,73,75,83] |
Treatment | Mean ± ∆σ in RPE | Mean ± ∆σ in PRL | Mean ± ∆σ in OPL | Mean ± ∆σ of Amacrine Cells | Mean ± ∆σ of Bipolar Cells | Mean ± ∆σ in IPL | Mean ± ∆σ of Ganglial Cells | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CaB-D28K | CaR-N18 | CaB-D28K | CaR-N18 | CaB-D28K | CaR-N18 | CaB-D28K | CaR-N18 | CaB-D28K | CaR-N18 | CaB-D28K | CaR-N18 | CaB-D28K | CaR-N18 | |
Control | 3.503 ± 0.45 | - | 3.663 ± 0.73 | - | - | 3.403 ± 0.54 | - | 5.076 ± 0.66 | - | 3.503 ± 0.45 | - | 3.713 ± 0.58 | - | 3.553 ± 0.47 |
White | 3.743 ± 0.30 ** | - | 5.810 ± 1.33 *** | 5.910 ± 1.39 *** | 4.946 ± 2.11 *** | 4.986 ± 2.15 *** | - | - | 4.602 ± 0.85 *** | - | 4.876 ± 1.74 *** | 4.876 ± 1.74 * | 4.855 ± 1.73 *** | 4.894 ± 1.52 ** |
White–Blue | 3.786 ± 0.41 * | - | 5.944 ± 1.42 *** | 5.844 ± 1.34 *** | 4.833 ± 1.37 *** | 4.824 ± 1.36 *** | - | 4.303 ± 0.66 *** | 4.782 ± 0.62 *** | 4.513 ± 0.58 *** | 4.924 ± 1.51 *** | 4.915 ± 1.26 ** | - | 4.888 ± 0.88 *** |
Blue | - | - | 5.755 ± 0.95 *** | 5.515 ± 0.95 *** | 3.758 ± 0.29 *** | - | 1.668 ± 0.40 *** | 1.746 ± 0.39 *** | 4.855 ± 1.73 *** | - | - | - | 4.874 ± 0.48 *** | 4.838 ± 0.65 *** |
Dark | - | - | 2.500 ± 1.06 *** | 2.485 ± 0.42 *** | - | - | - | - | - | - | - | - | - | - |
White Light | White–Blue Light | Blue Light | |
---|---|---|---|
Source | Philips MASTER TL-D Reflex 18W/840 | RADIUM NL 18W/965 Biosun | Philips TL 20W/03 RS 1SL |
Light | 4.000 °K | 6.500 °K | TL 20W/03 RS 1SL |
Manufacturer | Philips, Consumer Lifestyle, Spain | Radium Lampenwerk GmbH, Germany | Philips, Consumer Lifestyle, Spain |
Emission | 34.8% of 400–500 nm | 54.6% of 400–500 nm | 84.3% of 400–500 nm |
Irradiation | 28.57 W/m2 | 93.46 W/m2 | 27.85 W/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porcino, C.; Briglia, M.; Aragona, M.; Mhalhel, K.; Laurà, R.; Levanti, M.; Abbate, F.; Montalbano, G.; Germanà, G.; Lauriano, E.R.; et al. Potential Neuroprotective Role of Calretinin-N18 and Calbindin-D28k in the Retina of Adult Zebrafish Exposed to Different Wavelength Lights. Int. J. Mol. Sci. 2023, 24, 1087. https://doi.org/10.3390/ijms24021087
Porcino C, Briglia M, Aragona M, Mhalhel K, Laurà R, Levanti M, Abbate F, Montalbano G, Germanà G, Lauriano ER, et al. Potential Neuroprotective Role of Calretinin-N18 and Calbindin-D28k in the Retina of Adult Zebrafish Exposed to Different Wavelength Lights. International Journal of Molecular Sciences. 2023; 24(2):1087. https://doi.org/10.3390/ijms24021087
Chicago/Turabian StylePorcino, Caterina, Marilena Briglia, Marialuisa Aragona, Kamel Mhalhel, Rosaria Laurà, Maria Levanti, Francesco Abbate, Giuseppe Montalbano, Germana Germanà, Eugenia Rita Lauriano, and et al. 2023. "Potential Neuroprotective Role of Calretinin-N18 and Calbindin-D28k in the Retina of Adult Zebrafish Exposed to Different Wavelength Lights" International Journal of Molecular Sciences 24, no. 2: 1087. https://doi.org/10.3390/ijms24021087
APA StylePorcino, C., Briglia, M., Aragona, M., Mhalhel, K., Laurà, R., Levanti, M., Abbate, F., Montalbano, G., Germanà, G., Lauriano, E. R., Meduri, A., Vega, J. A., Germanà, A., & Guerrera, M. C. (2023). Potential Neuroprotective Role of Calretinin-N18 and Calbindin-D28k in the Retina of Adult Zebrafish Exposed to Different Wavelength Lights. International Journal of Molecular Sciences, 24(2), 1087. https://doi.org/10.3390/ijms24021087