Development of a Method for the In Vivo Generation of Allogeneic Hearts in Chimeric Mouse Embryos
Abstract
:1. Introduction
2. Results
2.1. Generation of “Donor” Cells
2.2. Study of the Activity of Nkx2.5 AR1 Cardiac Enhancer in Hipp11
2.2.1. AR1 Upregulates EGFP Expression in Differentiating Cardiac Cells
2.2.2. AR1 Upregulates Flp Expression in Differentiating Cardiac Cells
2.3. Generation of “Host” Cells
2.4. Generation of Chimeric Embryos
3. Discussion
4. Materials and Methods
4.1. mESC Culture
4.2. mESC Transfection
4.3. mESC Differentiation
4.4. Immunofluorescence
4.5. Imaging
4.6. Real-Time RT-PCR
4.7. Generation of Aggregation Chimeras
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bamoulid, J.; Staeck, O.; Halleck, F.; Khadzhynov, D.; Brakemeier, S.; Dürr, M.; Budde, K. The Need for Minimization Strategies: Current Problems of Immunosuppression. Transpl. Int. 2015, 28, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vegas, A.J.; Veiseh, O.; Gürtler, M.; Millman, J.R.; Pagliuca, F.W.; Bader, A.R.; Doloff, J.C.; Li, J.; Chen, M.; Olejnik, K.; et al. Long-Term Glycemic Control Using Polymer-Encapsulated Human Stem Cell–Derived Beta Cells in Immune-Competent Mice. Nat. Med. 2016, 22, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, L.; Caron, J.; Hannoun, Z.; Antoni, M.; López, S.; Burks, D.; Castell, J.V.; Weber, A.; Gomez-Lechon, M.-J.; Dubart-Kupperschmitt, A. Transplantation of HESC-Derived Hepatocytes Protects Mice from Liver Injury. Stem Cell Res. Ther. 2015, 6, 246. [Google Scholar] [CrossRef] [Green Version]
- Bellamy, V.; Vanneaux, V.; Bel, A.; Nemetalla, H.; Emmanuelle Boitard, S.; Farouz, Y.; Joanne, P.; Perier, M.-C.; Robidel, E.; Mandet, C.; et al. Long-Term Functional Benefits of Human Embryonic Stem Cell-Derived Cardiac Progenitors Embedded into a Fibrin Scaffold. J. Heart Lung Transplant. 2015, 34, 1198–1207. [Google Scholar] [CrossRef] [Green Version]
- Kriks, S.; Shim, J.-W.; Piao, J.; Ganat, Y.M.; Wakeman, D.R.; Xie, Z.; Carrillo-Reid, L.; Auyeung, G.; Antonacci, C.; Buch, A.; et al. Dopamine Neurons Derived from Human ES Cells Efficiently Engraft in Animal Models of Parkinson’s Disease. Nature 2011, 480, 547–551. [Google Scholar] [CrossRef] [Green Version]
- Boroumand, S.; Asadpour, S.; Akbarzadeh, A.; Faridi-Majidi, R.; Ghanbari, H. Heart Valve Tissue Engineering: An Overview of Heart Valve Decellularization Processes. Regen. Med. 2018, 13, 41–54. [Google Scholar] [CrossRef]
- Gomes, M.E.; Rodrigues, M.T.; Domingues, R.M.A.; Reis, R.L. Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Eng. Part B Rev. 2017, 23, 211–224. [Google Scholar] [CrossRef]
- Chen, J.; Lansford, R.; Stewart, V.; Young, F.; Alt, F.W. RAG-2-Deficient Blastocyst Complementation: An Assay of Gene Function in Lymphocyte Development. Proc. Natl. Acad. Sci. USA 1993, 90, 4528–4532. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamaguchi, T.; Hamanaka, S.; Kato-Itoh, M.; Yamazaki, Y.; Ibata, M.; Sato, H.; Lee, Y.-S.; Usui, J.; Knisely, A.S.; et al. Generation of Rat Pancreas in Mouse by Interspecific Blastocyst Injection of Pluripotent Stem Cells. Cell 2010, 142, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Matsunari, H.; Nagashima, H.; Watanabe, M.; Umeyama, K.; Nakano, K.; Nagaya, M.; Kobayashi, T.; Yamaguchi, T.; Sumazaki, R.; Herzenberg, L.A.; et al. Blastocyst Complementation Generates Exogenic Pancreas in Vivo in Apancreatic Cloned Pigs. Proc. Natl. Acad. Sci. USA 2013, 110, 4557–4562. [Google Scholar] [CrossRef] [Green Version]
- Ran, Q.; Zhou, Q.; Oda, K.; Yasue, A.; Abe, M.; Ye, X.; Li, Y.; Sasaoka, T.; Sakimura, K.; Ajioka, Y.; et al. Generation of Thyroid Tissues From Embryonic Stem Cells via Blastocyst Complementation In Vivo. Front. Endocrinol. 2020, 11, 609697. [Google Scholar] [CrossRef]
- Wen, B.; Li, E.; Ustiyan, V.; Wang, G.; Guo, M.; Na, C.-L.; Kalin, G.T.; Galvan, V.; Xu, Y.; Weaver, T.E.; et al. In Vivo Generation of Lung and Thyroid Tissues from Embryonic Stem Cells Using Blastocyst Complementation. Am. J. Respir. Crit. Care Med. 2021, 203, 471–483. [Google Scholar] [CrossRef]
- Mori, M.; Furuhashi, K.; Danielsson, J.A.; Hirata, Y.; Kakiuchi, M.; Lin, C.-S.; Ohta, M.; Riccio, P.; Takahashi, Y.; Xu, X.; et al. Generation of Functional Lungs via Conditional Blastocyst Complementation Using Pluripotent Stem Cells. Nat. Med. 2019, 25, 1691–1698. [Google Scholar] [CrossRef]
- Kitahara, A.; Ran, Q.; Oda, K.; Yasue, A.; Abe, M.; Ye, X.; Sasaoka, T.; Tsuchida, M.; Sakimura, K.; Ajioka, Y.; et al. Generation of Lungs by Blastocyst Complementation in Apneumic Fgf10-Deficient Mice. Cell Rep. 2020, 31, 107626. [Google Scholar] [CrossRef]
- Wang, G.; Wen, B.; Ren, X.; Li, E.; Zhang, Y.; Guo, M.; Xu, Y.; Whitsett, J.A.; Kalin, T.V.; Kalinichenko, V.V. Generation of Pulmonary Endothelial Progenitor Cells for Cell-Based Therapy Using Interspecies Mouse–Rat Chimeras. Am. J. Respir. Crit. Care Med. 2021, 204, 326–338. [Google Scholar] [CrossRef]
- Usui, J.; Kobayashi, T.; Yamaguchi, T.; Knisely, A.S.; Nishinakamura, R.; Nakauchi, H. Generation of Kidney from Pluripotent Stem Cells via Blastocyst Complementation. Am. J. Pathol. 2012, 180, 2417–2426. [Google Scholar] [CrossRef]
- Yamanaka, S.; Tajiri, S.; Fujimoto, T.; Matsumoto, K.; Fukunaga, S.; Kim, B.S.; Okano, H.J.; Yokoo, T. Generation of Interspecies Limited Chimeric Nephrons Using a Conditional Nephron Progenitor Cell Replacement System. Nat. Commun. 2017, 8, 1719. [Google Scholar] [CrossRef] [Green Version]
- Goto, T.; Hara, H.; Sanbo, M.; Masaki, H.; Sato, H.; Yamaguchi, T.; Hochi, S.; Kobayashi, T.; Nakauchi, H.; Hirabayashi, M. Generation of Pluripotent Stem Cell-Derived Mouse Kidneys in Sall1-Targeted Anephric Rats. Nat. Commun. 2019, 10, 451. [Google Scholar] [CrossRef]
- Watanabe, M.; Nakano, K.; Uchikura, A.; Matsunari, H.; Yashima, S.; Umeyama, K.; Takayanagi, S.; Sakuma, T.; Yamamoto, T.; Morita, S.; et al. Anephrogenic Phenotype Induced by SALL1 Gene Knockout in Pigs. Sci. Rep. 2019, 9, 8016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Estevez, M.; Crane, A.T.; Rodriguez-Villamil, P.; Ongaratto, F.L.; You, Y.; Steevens, A.R.; Hill, C.; Goldsmith, T.; Webster, D.A.; Sherry, L.; et al. Liver Development Is Restored by Blastocyst Complementation of HHEX Knockout in Mice and Pigs. Stem Cell Res. Ther. 2021, 12, 292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Huang, J.; Li, Z.; Qin, G.; Zhang, N.; Hai, T.; Hong, Q.; Zheng, Q.; Zhang, Y.; Song, R.; et al. Rescuing Ocular Development in an Anophthalmic Pig by Blastocyst Complementation. EMBO Mol. Med. 2018, 10, e8861. [Google Scholar] [CrossRef] [PubMed]
- Steevens, A.R.; Griesbach, M.W.; You, Y.; Dutton, J.R.; Low, W.C.; Santi, P.A. Generation of Inner Ear Sensory Neurons Using Blastocyst Complementation in a Neurog1+/−−deficient Mouse. Stem Cell Res. Ther. 2021, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Goto, T.; Oikawa, M.; Sanbo, M.; Yoshida, F.; Terada, R.; Niizeki, N.; Kajitani, N.; Kazuki, K.; Kazuki, Y.; et al. Blastocyst Complementation Using Prdm14-Deficient Rats Enables Efficient Germline Transmission and Generation of Functional Mouse Spermatids in Rats. Nat. Commun. 2021, 12, 1328. [Google Scholar] [CrossRef]
- Wu, J.; Platero-Luengo, A.; Sakurai, M.; Sugawara, A.; Gil, M.A.; Yamauchi, T.; Suzuki, K.; Bogliotti, Y.S.; Cuello, C.; Morales Valencia, M.; et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell 2017, 168, 473–486.e15. [Google Scholar] [CrossRef] [Green Version]
- Lyons, I.; Parsons, L.M.; Hartley, L.; Li, R.; Andrews, J.E.; Robb, L.; Harvey, R.P. Myogenic and Morphogenetic Defects in the Heart Tubes of Murine Embryos Lacking the Homeo Box Gene Nkx2-5. Genes Dev. 1995, 9, 1654–1666. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Chen, Z.; Bartunkova, S.; Yamasaki, N.; Izumo, S. The Cardiac Homeobox Gene Csx/Nkx2.5 Lies Genetically Upstream of Multiple Genes Essential for Heart Development. Development 1999, 126, 1269–1280. [Google Scholar] [CrossRef]
- Komuro, I.; Izumo, S. Csx: A Murine Homeobox-Containing Gene Specifically Expressed in the Developing Heart. Proc. Natl. Acad. Sci. USA 1993, 90, 8145–8149. [Google Scholar] [CrossRef] [Green Version]
- Lints, T.J.; Parsons, L.M.; Hartley, L.; Lyons, I.; Harvey, R.P. Nkx-2.5: A Novel Murine Homeobox Gene Expressed in Early Heart Progenitor Cells and Their Myogenic Descendants. Development 1993, 119, 419–431. [Google Scholar] [CrossRef]
- Lien, C.L.; Wu, C.; Mercer, B.; Webb, R.; Richardson, J.A.; Olson, E.N. Control of Early Cardiac-Specific Transcription of Nkx2-5 by a GATA-Dependent Enhancer. Development 1999, 126, 75–84. [Google Scholar] [CrossRef]
- Hippenmeyer, S.; Youn, Y.H.; Moon, H.M.; Miyamichi, K.; Zong, H.; Wynshaw-Boris, A.; Luo, L. Genetic Mosaic Dissection of Lis1 and Ndel1 in Neuronal Migration. Neuron 2010, 68, 695–709. [Google Scholar] [CrossRef] [Green Version]
- Tasic, B.; Hippenmeyer, S.; Wang, C.; Gamboa, M.; Zong, H.; Chen-Tsai, Y.; Luo, L. Site-Specific Integrase-Mediated Transgenesis in Mice via Pronuclear Injection. Proc. Natl. Acad. Sci. USA 2011, 108, 7902–7907. [Google Scholar] [CrossRef] [Green Version]
- Browning, J.; Rooney, M.; Hams, E.; Takahashi, S.; Mizuno, S.; Sugiyama, F.; Fallon, P.G.; Kelly, V.P. Highly Efficient CRISPR-Targeting of the Murine Hipp11 Intergenic Region Supports Inducible Human Transgene Expression. Mol. Biol. Rep. 2020, 47, 1491–1498. [Google Scholar] [CrossRef]
- Eakin, G.S.; Hadjantonakis, A.-K. Production of Chimeras by Aggregation of Embryonic Stem Cells with Diploid or Tetraploid Mouse Embryos. Nat. Protoc. 2006, 1, 1145–1153. [Google Scholar] [CrossRef]
- Scheer, N.; Campos-Ortega, J.A. Use of the Gal4-UAS Technique for Targeted Gene Expression in the Zebrafish. Mech. Dev. 1999, 80, 153–158. [Google Scholar] [CrossRef]
- Founta, K.-M.; Papanayotou, C. In Vivo Generation of Organs by Blastocyst Complementation: Advances and Challenges. Int. J. Stem Cells 2022, 15, 113–121. [Google Scholar] [CrossRef]
- Kitajima, S.; Takagi, A.; Inoue, T.; Saga, Y. MesP1 and MesP2 Are Essential for the Development of Cardiac Mesoderm. Development 2000, 127, 3215–3226. [Google Scholar] [CrossRef]
- Kattman, S.J.; Huber, T.L.; Keller, G.M. Multipotent Flk-1+ Cardiovascular Progenitor Cells Give Rise to the Cardiomyocyte, Endothelial, and Vascular Smooth Muscle Lineages. Dev. Cell 2006, 11, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Moretti, A.; Caron, L.; Nakano, A.; Lam, J.T.; Bernshausen, A.; Chen, Y.; Qyang, Y.; Bu, L.; Sasaki, M.; Martin-Puig, S.; et al. Multipotent Embryonic Isl1+ Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell Diversification. Cell 2006, 127, 1151–1165. [Google Scholar] [CrossRef]
- Wu, S.M.; Fujiwara, Y.; Cibulsky, S.M.; Clapham, D.E.; Lien, C.; Schultheiss, T.M.; Orkin, S.H. Developmental Origin of a Bipotential Myocardial and Smooth Muscle Cell Precursor in the Mammalian Heart. Cell 2006, 127, 1137–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lescroart, F.; Kelly, R.G.; Le Garrec, J.-F.; Nicolas, J.-F.; Meilhac, S.M.; Buckingham, M. Clonal Analysis Reveals Common Lineage Relationships between Head Muscles and Second Heart Field Derivatives in the Mouse Embryo. Development 2010, 137, 3269–3279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lescroart, F.; Hamou, W.; Francou, A.; Théveniau-Ruissy, M.; Kelly, R.G.; Buckingham, M. Clonal Analysis Reveals a Common Origin between Nonsomite-Derived Neck Muscles and Heart Myocardium. Proc. Natl. Acad. Sci. USA 2015, 112, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Founta, K.-M.; Tourkodimitri, M.-I.; Kanaki, Z.; Bisti, S.; Papanayotou, C. Development of a Method for the In Vivo Generation of Allogeneic Hearts in Chimeric Mouse Embryos. Int. J. Mol. Sci. 2023, 24, 1163. https://doi.org/10.3390/ijms24021163
Founta K-M, Tourkodimitri M-I, Kanaki Z, Bisti S, Papanayotou C. Development of a Method for the In Vivo Generation of Allogeneic Hearts in Chimeric Mouse Embryos. International Journal of Molecular Sciences. 2023; 24(2):1163. https://doi.org/10.3390/ijms24021163
Chicago/Turabian StyleFounta, Konstantina-Maria, Magdalini-Ioanna Tourkodimitri, Zoi Kanaki, Sylvia Bisti, and Costis Papanayotou. 2023. "Development of a Method for the In Vivo Generation of Allogeneic Hearts in Chimeric Mouse Embryos" International Journal of Molecular Sciences 24, no. 2: 1163. https://doi.org/10.3390/ijms24021163
APA StyleFounta, K. -M., Tourkodimitri, M. -I., Kanaki, Z., Bisti, S., & Papanayotou, C. (2023). Development of a Method for the In Vivo Generation of Allogeneic Hearts in Chimeric Mouse Embryos. International Journal of Molecular Sciences, 24(2), 1163. https://doi.org/10.3390/ijms24021163