Role of Inflammatory/Immune Response and Cytokine Polymorphisms in the Severity of Chronic Hepatitis C (CHC) before and after Direct Acting Antiviral (DAAs) Treatment
Abstract
:1. Introduction
2. Results
2.1. Association of Biochemical and Cellular Parameters and Cytokines with Fibrosis Stage before and after DAA Treatment
2.2. Fibrosis Stage before and after Treatment and Comparison of Biochemical and Cellular Parameters
2.3. Association of Baseline Biochemical and Cellular Parameters and Cytokines with the Improvement of Fibrosis Stage after DAA Treatment
2.4. Association of Cytokine Genetic Polymorphisms with Fibrosis Stage before and after DAA Treatment
2.5. Association of Cytokine Genetic Polymorphisms with the Improvement of Fibrosis Stage after DAA Treatment
3. Discussion
4. Materials and Methods
4.1. Liver Fibrosis Evaluation
4.2. Biochemical Evaluation
4.3. Cytokine Evaluation
4.4. DNA Extraction
4.5. Genetic Polymorphism Identification
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Desmet, V.; Gerber, M.; Hoofnagle, J.; Manns, M.; Scheuer, P. Classification of chronic hepatitis: Diagnosis, grading, and staging. Hepatology 1994, 19, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Blach, S.; Zeuzem, S.; Manns, M.; Altraif, I.; Duberg, A.; Muljono, D.; Waked, I.; Alavian, S.; Lee, M.-H.; Negro, F.; et al. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: A modeling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [Green Version]
- WHO. Hepatitis C. Available online: http://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed on 28 August 2018).
- Aroucha, D.; Carmo, R.; Vasconcelos, L.; Lima, R.; Mendonça, T.; Arnez, L.; Cavalcanti, M.; Muniz, M.; Aroucha, M.; Siqueira, E.; et al. TNF-α and IL-10 polymorphisms increase the risk to hepatocellular carcinoma in HCV infected individuals. J. Med. Virol. 2016, 88, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Lingala, S.; Ghany, M. Natural History of Hepatitis C. Gastroenterol. Clin. N. Am. 2015, 44, 717–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskic, D.; Vukovic, V.; Mijailovic, Z. Chronic hepatitis c: Conspectus of immunological events in course of fibrosis evolution. PLoS ONE 2019, 14, e0219508. [Google Scholar]
- Ramezani, K. Serum profile of T helper 1 and T helper 2 cytokines in hepatitis C virus infected patients. Hepat. Mon. 2012, 12, e6156. [Google Scholar]
- Han, Z.; Huang, T.; Deng, Y.; Zhu, G. Expression profile and kinetics of cytokines and chemokines in patients with chronic hepatitis C. Int. J. Clin. Exp. Med. 2015, 8, 17995–18003. [Google Scholar]
- Abayli, B.; Canataroğlu, A.; Akkiz, H. Serum profile of T helper 1 and T helper 2 cytokines in patients with chronic hepatitis C virus infection, Turk. J. Gastroenterol. 2003, 14, 7–11. [Google Scholar]
- Jacobson, P. Immunopathogenesis of hepatitis c viral infection: Th1/th2 responses. Clin. Biochem. 2001, 34, 167–171. [Google Scholar] [CrossRef]
- Lucey, D.; Clerici, M.; Shearer, G. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin. Microbiol. Rev. 1996, 9, 532–562. [Google Scholar] [CrossRef]
- Cacciarelli, T.; Martinez, O.; Gish, R.; Villanueva, J.; Krams, S. Immunoregulatory cytokines in chronic hepatitis C virus infection: Pre-and posttreatment with interferon alfa. Hepatology 1996, 24, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Reiser, M.; Marousis, C.; Nelson, D.; Lauer, G.; González-Peralta, R.; Davis, G.; Lau, J. Serum interleukin 4 and interleukin 10 levels in patients with chronic hepatitis C virus infection. J. Hepatol. 1997, 26, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Sobue, S.; Nomura, T.; Ishikawa, T.; Ito, S.; Saso, K.; Ohara, H.; Joh, T.; Itoh, M.; Kakumu, S. Th1/Th2 cytokine profiles and their relationship to clinical features in patients with chronic hepatitis C virus infection. J. Gastroenterol. 2001, 36, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Tarragô, A.; da Costa, A.; Pimentel, J.; Gomes, S.; Freitas, F.; Lalwani, P.; de Araújo, A.; da Silva Victória, F.; Victória, M.; Vallinoto, A.; et al. Combined impact of hepatitis C virus genotype 1 and interleukin-6 and tumor necrosis factor-α polymorphisms on serum levels of pro-inflammatory cytokines in Brazilian HCV-infected patients. Hum. Immunol. 2014, 75, 1075–1083. [Google Scholar] [CrossRef]
- AASLD—IDSA Hepatitis C Guidance Panel. Hepatitis C Guidance 2019 Update: American Association for the Study of Liver Diseases–Infectious Diseases Society of America Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection. Hepatology 2020, 71, 686–721. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- Kim, W.; Flamm, S.; Di Bisceglie, A.; Bodenheimer, H. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 2008, 47, 1363–1370. [Google Scholar] [CrossRef]
- Huynh, T.; Zhang, J.; Hu, K. Hepatitis C Virus Clearance by Direct-acting Antiviral Results in Rapid Resolution of Hepatocytic Injury as Indicated by Both Alanine Aminotransferase and Aspartate Aminotransferase Normalization. J. Clin. Transl. Hepatol. 2018, 6, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Saldarriaga, O.; Dye, B.; Pham, J.; Wanninger, T.; Millian, D.; Kueht, M.; Freiberg, B.; Utay, N.; Stevenson, H. Comparison of liver biopsies before and after direct-acting antiviral therapy for hepatitis C and correlation with clinical outcome. Sci. Rep. 2021, 11, 14506. [Google Scholar] [CrossRef]
- Eminler, A.; Irak, K.; Ayyildiz, T.; Keskin, M.; Kiyici, M.; Gurel, S.; Gulten, M.; Dolar, E.; Nak, S. The relation between liver histopathology and GGT levels in viral hepatitis: More important in hepatitis B. Turk. J. Gastroenterol. 2014, 25, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Everhart, J.; Wright, E. Association of γ-glutamyl transferase (GGT) activity with treatment and clinical outcomes in chronic hepatitis C (HCV). Hepatology 2013, 57, 1725–1733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlovic, N.; Rani, B.; Gerwins, P.; Heindryckx, F. Platelets as Key Factors in Hepatocellular Carcinoma. Cancers 2019, 11, 1022. [Google Scholar] [CrossRef] [Green Version]
- Pereboom, I.; Lisman, T.; Porte, R. Platelets in liver transplantation: Friend or foe? Liver Transplant. 2008, 14, 923–931. [Google Scholar] [CrossRef]
- Tomohiro, K.; Nobuhiro, O. Platelets in liver disease, cancer and regeneration. World J. Gastroenterol. 2017, 23, 3228–3239. [Google Scholar]
- Aroucha, D.C.B.L.; do Carmo, R.F.; Moura, P.; Silva, J.L.A.; Vasconcelos, L.R.S.; Cavalcanti, M.S.M.; Muniz, M.T.C.; Aroucha, M.L.; Siqueira, E.R.F.; Cahú, G.G.O.M.; et al. High tumor necrosis factor-α/interleukin-10 ratio is associated with hepatocellular carcinoma in patients with chronic hepatitis C. Cytokine 2013, 62, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-Y.; Hsieh, Y.-S.; Wu, T.-T.; Yang, S.-F.; Wu, C.-J.; Tsay, G.J.; Chiou, H.-L. Impact of serum levels and gene polymorphism of cytokines on chronic hepatitis C infection. Transl. Res. 2007, 150, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Crespo, J.; Rivero, M.; Fábrega, E.; Cayón, A.; Amado, J.A.; García-Unzeta, M.; Romero, F. Plasma leptin and TNF-α levels in chronic hepatitis C patients and their relationship to hepatic fibrosis. Dig. Dis. Sci. 2002, 47, 1604–1610. [Google Scholar] [CrossRef]
- Guo, P.; Liu, S.; Sun, X.; Xu, L. Association of TGF-ß1 polymorphisms and chronic hepatitis C infection: A Meta-analysis. BMC Infect. Dis. 2019, 19, 758. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Hu, C.; Lai, P.; Song, Y.; Xiu, M.; Zhang, H.; Zhang, Y.; Huang, P. Association between TGF-β1 rs1982073/rs1800469 polymorphism and lung cancer susceptibility. Medicine 2019, 98, e18028. [Google Scholar] [CrossRef]
- Gressner, A.; Weiskirchen, R.; Breitkopf, K.; Dooley, S. Roles of TGF-beta in hepatic fibrosis. Front. Biosci. 2002, 7, d793–d807. [Google Scholar] [CrossRef] [Green Version]
- Schulze-Krebs, A.; Preimel, D.; Popov, Y.; Bartenschlager, R.; Lohmann, V.; Pinzani, M.; Schuppan, D. Hepatitis C Virus-Replicating Hepatocytes Induce Fibrogenic Activation of Hepatic Stellate Cells. Gastroenterology 2005, 129, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Dooley, S.; ten Dijke, P. TGF-β in progression of liver disease. Cell Tissue Res. 2012, 347, 245–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chimenti, I.; Sattler, S.; del Monte-Nieto, G.; Forte, E. Editorial: Fibrosis and inflammation in tissue pathophysiology. Front. Physiol. 2022, 14, 830683. [Google Scholar] [CrossRef]
- Joseph, J. Serum Marker Panels for Predicting Liver Fibrosis—An Update. Clin. Biochem. Rev. 2020, 41, 67–73. [Google Scholar] [PubMed]
- Persico, M.; Capasso, M.; Persico, E.; Masarone, M.; Renzo A de Spano, D.; Bruno, S.; Iolascon, A. Interleukin-10-1082 GG polymorphism influences the occurrence and the clinical characteristics of hepatitis C virus infection. J. Hepatol. 2006, 45, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Świątek-Kościelna, B.; Kałużna, E.; Strauss, E.; Januszkiewicz-Lewandowska, D.; Bereszyńska, I.; Wysocki, J.; Rembowska, J.; Barcińska, D.; Antosik, D.; Mozer-Lisewska, I.; et al. Interleukin 10 gene single nucleotide polymorphisms in Polish patients with chronic hepatitis C: Analysis of association with severity of disease and treatment outcome. Hum. Immunol. 2017, 78, 192–200. [Google Scholar] [CrossRef]
- Guo, P.; Li, G.; Sun, X.; Wu, D. Influence of IL10 Gene polymorphisms on the sustained virologic response of patients with chronic hepatitis C to PEG-interferon/ribavirin therapy. Infect. Genet. Evol. 2016, 45, 48–55. [Google Scholar] [CrossRef]
- Khan, A.; Saraswat, V.; Choudhuri, G.; Parmar, D.; Negi, T.; Mohindra, S. Association of interleukin-10 polymorphisms with chronic hepatitis C virus infection in a case-control study and its effect on the response to combined pegylated interferon/ribavirin therapy. Epidemiol. Infect. 2015, 143, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Ait-Goughoulte, M.; Truscott, S.M.; Meyer, K.; Blazevic, A.; Abate, G.; Ray, R.; Hoft, D.; Ray, R. Hepatitis C virus inhibits cell surface expression of HLA-DR, prevents dendritic cell maturation, and induces interleukin-10 production. J. Virol. 2008, 82, 3320–3328. [Google Scholar] [CrossRef] [Green Version]
- Niesen, E.; Schmidt, J.; Flecken, T.; Thimme, R. Suppressive Effect of Interleukin 10 on Priming of Naive Hepatitis C Virus—Specific CD8+ T Cells. J. Infect. Dis. 2015, 10, 821–826. [Google Scholar] [CrossRef] [Green Version]
- Flynn, J.; Dore, G.; Hellard, M.; Yeung, B.; Rawlinson, W.; White, P.; Kaldor, J.; Lloyd, A.; Ffrench, R.; ATAHC Study Group. Early IL-10 predominant responses are associated with progression to chronic hepatitis C virus infection in injecting drug users. J. Viral Hepat. 2011, 18, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Rushbrook, S.; Hoare, M.; Alexander, G. T-regulatory lymphocytes and chronic viral hepatitis. Expert Opin. Biol. Ther. 2007, 7, 1689–1703. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.; Lauwers, G.; Lau, J. Interleukin 10 treatment reduces fibrosis in patients with chronic hepatitis C: A pilot trial of interferon nonresponders. Gastroenterology 2000, 118, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Priimagi, L.; Tefanoval, V.; Tallo, T.; Schmidt, E. The role of serum Th1 and Th2 cytokines in patients with chronic hepatitis B and hepatitis Cvirus infection. Acta Med. Litu. 2005, 12, 28–31. [Google Scholar]
- Hoffmann, K.; Cheever, A.; Wynn, T. IL-10, and the dangers of immune polarization: Excessive type 1, and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J. Immunol. 2000, 164, 6406–6416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- rs1800629 | SelfDecode | Análise do genoma. Available online: https://www.selfdecode.com/snp/rs1800629/ (accessed on 14 May 2019).
- Yang, Y.; Luo, C.; Feng, R.; Bi, S. The TNF-α, IL-1B and IL-10 polymorphisms and risk for hepatocellular carcinoma: A meta-analysis. J. Cancer Res. Clin. Oncol. 2011, 137, 947–952. [Google Scholar] [CrossRef]
- Bader El Din, N.; Farouk, S.; El-Shenawy, R.; Ibrahim, M.; Dawood, R.; Elhady, M.; Salem, A.; Zayed, N.; Khairy, A.; Awady, M. Tumor necrosis factor-α-G308A polymorphism is associated with liver pathological changes in hepatitis C virus patients. World J. Gastroenterol. 2016, 22, 7767–7777. [Google Scholar] [CrossRef]
- Zhou, P.; Lv, G.-Q.; Wang, J.-Z.; Li, C.-W.; Du, L.-F.; Zhang, C.; Li, J.-P. The TNF-α-238 Polymorphism and Cancer Risk: A Meta-Analysis. PLoS ONE 2011, 6, e22092. [Google Scholar] [CrossRef] [Green Version]
- Rs1800629—SNPedia 2015. Available online: https://www.snpedia.com/index.php/Rs1800629 (accessed on 14 May 2019).
- rs361525 | SelfDecode | Genome Analysis. Available online: https://www.selfdecode.com/snp/rs361525/ (accessed on 14 May 2019).
- Guo, Y.; Yu, W.; Shen, X. Tumor necrosis factor rs361525 (-238G>A) polymorphism contributes to hepatocellular carcinoma susceptibility. Saudi Med. J. 2010, 31, 1101–1105. [Google Scholar]
- Corchado, S.; López-Cortés, L.; Rivero-Juárez, A.; Torres-Cornejo, A.; Rivero, A.; Márquez-Coello, M.; Girón-González, J. Liver fibrosis, host genetic and hepatitis C virus related parameters as predictive factors of response to therapy against hepatitis C virus in HIV/HCV coinfected patients. PLoS ONE 2014, 9, e101760. [Google Scholar] [CrossRef] [Green Version]
- Moreira, S.; Silva, G.; de Moraes, C.; Grotto, R.; de Moura Campos, P.; Bicalho, M.; Moliterno, R. Influence of cytokine and cytokine receptor gene polymorphisms on the degree of liver damage in patients with chronic hepatitis C. Meta Gene 2016, 9, 90–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yee, L.; Tang, J.; Herrera, J.; Kaslow, R.; Van Leeuwen, D. Tumor necrosis factor gene polymorphisms in patients with cirrhosis from chronic hepatitis C virus infection. Genes Immun. 2000, 1, 386–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martelossi Cebinelli, G.; Paiva Trugilo, K.; Badaró Garcia, S.; Brajão de Oliveira, K. TGF-β1 functional polymorphisms: A review. Eur. Cytokine Netw. 2016, 27, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- rs1800469—SNPedia. Available online: https://www.snpedia.com/index.php/Rs1800469 (accessed on 4 February 2019).
- Radwan, M.; Pasha, H.; Mohamed, R.; Hussien, H.; El-Khshab, M. Influence of transforming growth factor-β1 and tumor necrosis factor-α genes polymorphisms on the development of cirrhosis and hepatocellular carcinoma in chronic hepatitis C patients. Cytokine 2012, 60, 271–276. [Google Scholar] [CrossRef]
- rs1800470 | SelfDecode | Análise do Genoma. Available online: https://www.selfdecode.com/snp/rs1800470/ (accessed on 4 February 2019).
- Mohy, A.; Fouad, A. Role of transforming growth factor-β1 in serum and −509 C>T promoter gene polymorphism in development of liver cirrhosis in Egyptian patients. Meta Gene 2014, 2, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.; Haque, A.; Iqbal, M.; Ashfaq, U.; Mausood, M.; Qasim, M.; Jahan, S.; Shamsi, F.; Yousaf, M. TGF-β1 rs1800469 gene polymorphism in the development of cirrhosis & hepatocellular carcinoma in Pakistani HCV patients. Future Virol. 2019, 14, 663–670. [Google Scholar]
- Cao, H.; Zhou, Q.; Lan, R.; Røe, O.; Chen, X.; Chen, Y.; Wang, D. A Functional Polymorphism C-509T in TGFβ-1 Promoter Contributes to Susceptibility and Prognosis of Lone Atrial Fibrillation in Chinese Population. PLoS ONE 2014, 9, e112912. [Google Scholar] [CrossRef] [Green Version]
- rs1800896 | SelfDecode | Genome Analysis. Available online: https://www.selfdecode.com/snp/rs1800896/ (accessed on 14 August 2019).
- Ramos, J.; Silva, R.; Hoffmann, L.; Ramos, A.L.; Cabello, P.; Ürményi, T.; Villella-Nogueira, C.; Lewis-Ximenez, L.; Rondinelli, E. Association of IL-10, IL-4, and IL-28B gene polymorphisms with spontaneous clearance of hepatitis C virus in a population from Rio de Janeiro. BMC Res. Notes 2012, 5, 508. [Google Scholar] [CrossRef]
- Sun, X.; Wu, J.; Shi, K.; Tang, K. Relationship between IL-10 gene -1082A/G and -592C/A polymorphisms and the risk of hepatitis C infection: A meta-analysis. J. Viral Hepat. 2013, 20, 602–611. [Google Scholar] [CrossRef]
- rs1800872 | SelfDecode | Genome Analysis. Available online: https://www.selfdecode.com/snp/rs1800872/ (accessed on 14 August 2019).
- Knapp, S.; Hennig, B.; Frodsham, A.; Zhang, L.; Hellier, S.; Wright, M.; Goldin, R.; Hill, A.; Thomas, H.; Thursz, M. Interleukin-10 promoter polymorphisms and the outcome of hepatitis C virus infection. Immunogenetics 2003, 55, 362–369. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, M.C.; Zhang, A.Q.; Wang, Y.B.; Jiang, K.; Dong, J.H. Interleukin-10 gene promoter polymorphism and risk of liver cirrhosis. Genet. Mol. Res. 2015, 14, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- da Silva, N.; Germano, F.; Vidales-Braz, B.; Zanella, R.; dos Santos, D.; Lobato, R.; Martinez, A. Polymorphisms of IL-10 gene in patients infected with HCV under antiviral treatment in southern Brazil. Cytokine 2015, 73, 253–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.-J.; Xie, J.-X.; Wang, L.-M.; Zhou, Q.; Zhang, S.-Y. Interaction effects among IFN-γ+874, IL-2-330, IL-10-1082, IL-10-592 and IL-4-589 polymorphisms on the clinical progression of subjects infected with hepatitis B virus and/or hepatitis C virus: A retrospective nested case–control study. BMJ Open 2017, 7, e013279. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.; Ferraz, M.; Perez, R.; Lanzoni, V.; Figueiredo, V.; Silva, A. Role of gamma-glutamyl transferase activity in patients with chronic hepatitis C virus infection. J. Gastroenterol. Hepatol. 2004, 19, 314–318. [Google Scholar] [CrossRef]
- 18th WMA General Assembly, Helsinki, Finland, June 1964. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ (accessed on 23 October 2022).
- Serejo, F.; Marinho, R.; Velosa, J.; Costa, A.; Carneiro de Moura, M. Transient hepatic elastography, a non-invasive method for assessing fibrosis in patients with chronic hepatitis C. GE—J. Port Gastroenterol. 2007, 14, 8–15. [Google Scholar]
- Lahiri, D.; Nurnberger, J. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991, 19, 5444. [Google Scholar] [CrossRef]
Parameter | F1/2 | F3/4 | p-Value * | ||
---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | ||
ALP (UI/l) | 72.06 | [68.60–75.51] | 93.15 | [85.03–101.28] | <0.001 |
AST (UI/l) | 49.67 | [45.48–53.86] | 88.26 | [77.27–99.26] | <0.001 |
ALT (UI/l) | 79.91 | [70.34–89.48] | 116.07 | [98.79–133.36] | <0.001 |
γGT (UI/l) | 55.26 | [48.86–61.66] | 118.53 | [95.74–141.33] | <0.001 |
Platelet count (U/µL) | 2.22 × 105 | [2.13 × 105–2.31 × 105] | 1.75 × 105 | [1.61 × 105–1.90 × 105] | <0.001 |
IL-10 (pg/mL) | 4.55 | [1.59–7.50] | 2.11 | [1.46–2.76] | 0.199 |
TNF-α (pg/mL) | 2.84 | [1.85–3.82] | 3.13 | [2.17–4.08] | 0.034 |
TGF-β (pg/mL) | 1475.43 | [1335.57–1615.29] | 1306.63 | [1131.29–1481.97] | 0.169 |
Parameter | F1/2 (After DAA Treatment) | F3/4 (After DAA Treatment) | p-Value * | ||
---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | ||
ALP (UI/l) | 74.74 | [69.95–79.52] | 100.17 | [85.03–101.28] | 0.001 |
AST (UI/l) | 50.84 | [44.29–57.40] | 81.23 | [66.65–95.81] | <0.001 |
ALT (UI/l) | 70.48 | [60.03–80.92] | 95.03 | [72.80–117.26] | 0.003 |
γGT (UI/l) | 77.24 | [61.40–93.08] | 128.97 | [87.63–170.36] | 0.002 |
Platelet count (U/µL) | 2.18 × 105 | [2.06 × 105–2.30 × 105] | 1.60 × 105 | [1.27 × 105–1.92 × 105] | <0.001 |
IL-10 (pg/mL) | 3.90 | [1.63–6.18] | 1.92 | [1.00–2.83] | 0.394 |
TNF-α (pg/mL) | 2.46 | [1.53–3.39] | 1.92 | [1.45–2.38] | 0.323 |
TGF-β (pg/mL) | 1602.66 | [1408.73–1796.59] | 1534.26 | [1163.77–1904.74] | 0.732 |
Parameter (After DAA Treatment) | F1/2 (After DAA Treatment) | F3/4 (After DAA Treatment) | p-Value * | ||
---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | ||
ALP (UI/l) | 69.08 | [64.76–73.39] | 81.76 | [70.49–93.03] | 0.020 |
AST (UI/l) | 23.02 | [21.56–24.48] | 30.13 | [22.42–37.85] | 0.002 |
ALT (UI/l) | 21.73 | [19.57–23.89] | 29.37 | [20.01–38.72] | 0.009 |
γGT (UI/l) | 21.52 | [18.90–24.15] | 62.55 | [31.26–93.84] | <0.001 |
Platelet count (U/µL) | 2.14 × 105 | [1.99 × 105–2.30 × 105] | 1.67 × 105 | [1.28 × 105–2.04 × 105] | <0.001 |
IL-10 (pg/mL) | 3.27 | [0.68–5.86] | 2.41 | [1.15–3.67] | 0.430 |
TNF-α (pg/mL) | 1.60 | [1.26–1.94] | 1.44 | [0.92–1.97] | 0.979 |
TGF-β (pg/mL) | 1370.99 | [1156.11–1585.87] | 1394.19 | [951.76–1836.61] | 0.714 |
Fibrosis Stage | |||||
---|---|---|---|---|---|
F1/2 | F3/4 | p-Value * | OR | 95% CI | |
Before DAA treatment; n (%) | 82 (61.2) | 52 (38.8) | 0.001 | 2.410 | [1.416–4.100] |
After DAA treatment; n (%) | 114 (79.2) | 30 (20.8) | 1 |
Parameter | Before DAA Treatment | After DAA Treatment | p-Value * | ||
---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | ||
ALP (UI/l) | 80.37 | [74.65–86.10] | 71.70 | [67.48–75.92] | <0.001 |
AST (UI/l) | 57.70 | [51.36–64.04] | 24.59 | [22.52–26.67] | <0.001 |
ALT (UI/l) | 76.02 | [66.48–85.55] | 23.38 | [20.70–26.06] | <0.001 |
γGT (UI/l) | 88.27 | [72.68–103.85] | 30.62 | [23.10–38.14] | <0.001 |
Platelet count (U/µL) | 2.05 × 105 | [1.92 × 105–2.17 × 105] | 2.04 × 105 | [1.89 × 105–2.18 × 105] | 0.456 |
IL-10 (pg/mL) | 3.68 | [1.61–5.74] | 3.49 | [0.91–6.06] | 0.796 |
TNF-α (pg/mL) | 2.08 | [1.53–2.63] | 1.59 | [1.29–1.88] | 0.035 |
TGF-β (pg/mL) | 1655.82 | [1448.98–1862.66] | 1419.52 | [1219.83–1619.20] | 0.280 |
Baseline Parameter | F3/4 (Before DAA Treatment) to F1/2 (After DAA Treatment) | F3/4 (Before DAA Treatment) to F3/4 (After DAA Treatment) | p-Value * | ||
---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | ||
ALP (UI/l) | 83.04 | [71.10–94.98] | 101.30 | [81.13–121.47] | 0.179 |
AST (UI/l) | 79.96 | [57.10–102.81] | 84.85 | [69.36–100.34] | 0.234 |
ALT (UI/l) | 101.79 | [70.65–132.94] | 99.56 | [75.48–123.63] | 0.692 |
γGT (UI/l) | 134.63 | [78.44–190.81] | 126.37 | [82.01–170.73] | 0.727 |
Platelet count (U/µL) | 2.11 × 105 | [1.78 × 105–2.44 × 105] | 1.49 × 105 | [1.16 × 105–1.82 × 105] | 0.003 |
IL-10 (pg/mL) | 2.26 | [1.17–3.36] | 1.92 | [1.00–2.83] | 0.606 |
TNF-α (pg/mL) | 2.42 | [0.98–3.86] | 1.93 | [1.44–2.42] | 0.608 |
TGF-β (pg/mL) | 1346.71 | [1031.86–1661.56] | 1499.27 | [1106.72–1891.83] | 0.595 |
Polymorphism | Genotype | F1/2 (Before DAA Treatment) | F3/4 (Before DAA Treatment) | p-Value | OR | CI 95% | F1/2 (After DAA Treatment) | F3/4 (After DAA Treatment) | p-Value | OR | CI 95% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | ||||||||
TNF-α-308 G/A | GG | 129 | 68.25 | 64 | 66.67 | 0.863 ** | - | - | 66 | 66.00 | 25 | 86.21 | 0.039 * | 1 | - |
GA | 56 | 29.63 | 29 | 30.21 | 34 | 34.00 | 4 | 13.79 | 0.311 | [0.100–0.965] | |||||
AA | 4 | 2.12 | 3 | 3.13 | |||||||||||
TNF-α-238 G/A | GG | 157 | 91.81 | 78 | 87.64 | 0.691 * | - | - | 86 | 91.81 | 23 | 87.64 | 1.000 * | - | |
GA | 14 | 8.19 | 11 | 12.36 | 11 | 8.19 | 3 | 12.36 | |||||||
TGF-β-509 C/T | CC | 62 | 31.16 | 46 | 45.10 | 0.018 ** | NA | - | 34 | 31.16 | 13 | 45.10 | 0.274 ** | - | |
CT | 103 | 51.76 | 48 | 47.06 | 51 | 51.76 | 9 | 47.06 | |||||||
TT | 34 | 17.09 | 8 | 7.84 | 14 | 17.09 | 4 | 7.84 | |||||||
CC | 62 | 31.16 | 46 | 45.10 | 0.022 * | 1 | - | ||||||||
CT or TT | 137 | 68.84 | 56 | 54.90 | 0.551 | [0.337–0.901] | |||||||||
TGF-β 29 T/C | TT | 65 | 34.76 | 35 | 37.23 | 0.473 ** | - | - | 34 | 34.76 | 11 | 37.23 | 0.797 ** | - | |
CT | 92 | 49.20 | 49 | 52.13 | 47 | 49.20 | 11 | 52.13 | |||||||
CC | 30 | 16.04 | 10 | 10.64 | 15 | 16.04 | 4 | 10.64 | |||||||
IL-10-1082 T/C | TT | 59 | 34.50 | 31 | 32.29 | 0.099 ** | - | - | 38 | 34.50 | 6 | 32.29 | 0.170 ** | - | |
TC | 90 | 52.63 | 43 | 44.79 | 45 | 52.63 | 17 | 44.79 | |||||||
CC | 22 | 12.87 | 22 | 22.92 | 16 | 12.87 | 7 | 22.92 | |||||||
TT or TC | 149 | 87.13 | 74 | 77.08 | 0.040 * | 1 | - | ||||||||
CC | 22 | 12.87 | 22 | 22.92 | 2.013 | [1.048–3.870] | |||||||||
IL-10-592 G/T | GG | 85 | 50.30 | 34 | 35.05 | 0.021 * | 1 | - | 52 | 50.30 | 8 | 35.05 | 0.021 * | 1 | - |
GT | 84 | 49.70 | 63 | 64.95 | 1.875 | [1.121–3.137] | 47 | 49.70 | 22 | 64.95 | 3.043 | [1.237–7.485] |
Polymorphism | Genotype | F3/4 (Before DAA Treatment) to F1/2 (After DAA Treatment) | F3/4 (Before DAA Treatment) to F3/4 (After DAA Treatment) | p-Value | OR | CI 95% | ||
---|---|---|---|---|---|---|---|---|
N | % | N | % | |||||
TNF-α-308 G/A | GG | 10 | 45.45 | 23 | 88.46 | 0.002 * | 1 | - |
GA | 12 | 54.55 | 3 | 11.54 | 0.109 | [0.025–0.471] | ||
TNF-α-238 G/A | GG | 16 | 39.02 | 22 | 91.67 | 0.439 * | - | - |
GA | 25 | 60.98 | 3 | 8.33 | ||||
TGF-β-509 C/T | CC | 11 | 45.83 | 12 | 52.17 | 0.208 ** | - | - |
CT | 12 | 50.00 | 7 | 30.43 | ||||
TT | 1 | 4.17 | 4 | 17.40 | ||||
TGF-β 29 T/C | TT | 10 | 43.48 | 9 | 39.13 | 0.881 ** | - | - |
CT | 11 | 47.83 | 11 | 47.83 | ||||
CC | 2 | 8.69 | 3 | 13.04 | ||||
IL-10-1082 T/C | TT | 10 | 40.00 | 5 | 18.52 | 0.050 ** | - | - |
TC | 8 | 32.00 | 16 | 59.26 | ||||
CC | 7 | 28.00 | 6 | 22.22 | ||||
IL-10-592 G/T | GG | 11 | 47.83 | 8 | 29.63 | 0.247 * | - | - |
GT | 12 | 52.17 | 19 | 70.37 | ||||
IL-10-1082 T/C + IL-10-592 G/T | TT/GG | 8 | 34.78 | 2 | 7.41 | 0.030 * | 1 6.667 | - [1.247–35.647] |
Other | 15 | 65.22 | 25 | 92.59 |
Before DAA Treatment (n = 329) | After DAA Treatment (n = 134) | |||
---|---|---|---|---|
Parameter | Mean | 95% CI | Mean | 95% CI |
Age (years) | 48.93 | [47.57–50.28] | 53.42 | [51.47–55.36] |
BMI (kg/m2 | 25.25 | [24.80–25.06] | 25.06 | [20.78–26.10] |
ALP (UI/l) | 79.52 | [75.73–83.31] | 71.86 | [67.66–76.06] |
AST (UI/l) | 63.06 | [57.98–68.15] | 24.61 | [22.55–26.67] |
ALT (UI/l) | 92.53 | [83.71–101.36] | 23.44 | [20.78–26.10] |
γGT (UI/l) | 77.48 | [67.93–87.03] | 30.54 | [23.08–38.00] |
Platelet count (U/µL) | 2.05 × 105 | [1.97 × 105–2.13 × 105] | 2.04 × 105 | [1.97 × 105–2.18 × 105] |
Parameter | n | % | n | % |
Gender | ||||
Female | 124 | 37.7 | 58 | 43.3 |
Male | 205 | 62.3 | 76 | 56.7 |
HCV genotype | ||||
1 and 4 | 257 | 78.2 | 117 | 87.3 |
2 and 3 | 72 | 21.8 | 17 | 12.7 |
Liver fibrosis | ||||
F1/2 | 210 | 65.0 | 104 | 77.6 |
F3/4 | 115 | 35.0 | 30 | 22.4 |
Polymorphism | Primers | Amplification Fragment |
---|---|---|
TGF-β-509 C/T | Forward 5′—TGA TCC AGA TGC GCT GTG GCT T—3′ Reverse 5′—CTC AGT AAA GGA GAG CAA TTC T—3′ | 280 pb |
TGF-β 29 T/C | Forward 5′—ACC ACA CCA GCC CTG TTC GCG C—3′ Reverse 5′—AGC CAC AGC AGC GGT AGC AGG A—3′ | 107 pb |
Polymorphism | Amplification Conditions | Reagents |
---|---|---|
TGF-β-509 C/T | HotStart—94 °C, 2 min | 200 ng DNA and H2O up to 10 µL |
35 cycles Denaturation: 94 °C, 45 s Annealing: 54 °C, 45 s Extension: 72 °C, 60 s | DNA: 10 µL, 200 ng Primer Forward (Invitrogen): 10 pmol Primer Reverse (Invitrogen): 10 pmol Green Taq PCR Master Mix (Thermofisher): 12.5 μL Deionized H2O: 0.5 μL | |
1 cycle Final extension: 72 °C, 5 min | ||
TGF-β 29 T/C | HotStart—94°C, 2 min | 200 ng DNA and H2O up to 10 µL |
35 cycles Denaturation: 94 °C, 45 s Annealing: 67 °C, 45 s Extension: 72 °C, 60 s | DNA: 10 µL, 200 ng Primer Forward (Invitrogen): 10 pmol Primer Reverse (Invitrogen): 10 pmol Green Taq PCR Master Mix (Thermofisher): 12.5 μL Deionized H2O: 0.5 μL | |
1 cycle Final extension: 72 °C, 5 min |
Polymorphism | Restriction Conditions | Reagents | Restriction Fragments/Genotypes |
---|---|---|---|
TGF-β-509 C/T | 16 h; 37 °C | Amplification product: 10 μL Eco 81I (10 U/μL) (Fermentas): 10 U Buffer (10×) (Fermentas): 2 μL Deionized H2O: 7 μL | CT (280 pb + 226 pb + 54 pb) CC (226 pb + 54 pb) TT (280 pb) |
TGF-β 29 T/C | 16 h; 37 °C | Amplification product: 10 μL MbiI (10 U/μL) (Fermentas): 10 U Buffer (10×) (Fermentas): 2 μL Deionized H2O: 7 μL | CT (107 pb + 84 pb + 23 pb) CC (84 pb + 23 pb) TT (107 pb) |
Polymorphism | Endpoint Genotyping Conditions | Reagents |
---|---|---|
TNF-α-308 G/A TNF-α-238 G/A IL-10-1082 T/C IL-10-592 G/T | Pre-incubation: 95 °C, 10 min | DNA (5 ng): 6.75 µL TaqMan ™ SNP (Thermofisher): 0.75 µL TaqMan ™ Master Mix (Thermofisher): 7.5 μL |
40 cycles Amplification: 95 °C, 5 s; 60 °C, 1 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, J.; Oliveira, M.; Bicho, M.; Serejo, F. Role of Inflammatory/Immune Response and Cytokine Polymorphisms in the Severity of Chronic Hepatitis C (CHC) before and after Direct Acting Antiviral (DAAs) Treatment. Int. J. Mol. Sci. 2023, 24, 1380. https://doi.org/10.3390/ijms24021380
Ferreira J, Oliveira M, Bicho M, Serejo F. Role of Inflammatory/Immune Response and Cytokine Polymorphisms in the Severity of Chronic Hepatitis C (CHC) before and after Direct Acting Antiviral (DAAs) Treatment. International Journal of Molecular Sciences. 2023; 24(2):1380. https://doi.org/10.3390/ijms24021380
Chicago/Turabian StyleFerreira, Joana, Mariana Oliveira, Manuel Bicho, and Fátima Serejo. 2023. "Role of Inflammatory/Immune Response and Cytokine Polymorphisms in the Severity of Chronic Hepatitis C (CHC) before and after Direct Acting Antiviral (DAAs) Treatment" International Journal of Molecular Sciences 24, no. 2: 1380. https://doi.org/10.3390/ijms24021380
APA StyleFerreira, J., Oliveira, M., Bicho, M., & Serejo, F. (2023). Role of Inflammatory/Immune Response and Cytokine Polymorphisms in the Severity of Chronic Hepatitis C (CHC) before and after Direct Acting Antiviral (DAAs) Treatment. International Journal of Molecular Sciences, 24(2), 1380. https://doi.org/10.3390/ijms24021380