Identification of Molecular Mechanisms Involved in Viral Infection Progression Based on Text Mining: Case Study for HIV Infection
Abstract
:1. Introduction
2. Results
2.1. Analysis of Texts Revealing Key Genes and Proteins Involved in HIV Infection Progression
2.1.1. Collections of Texts
2.1.2. Identification of Proteins and Genes Involved in HIV Infection Progression
2.2. Experimental Verification of Key Genes That Can Be Involved in HIV Infection Progression
2.2.1. Results of Gene Expression Analysis
2.2.2. Interactions Revealed by Text Mining Approach Allow Identification of Differentially Expressed Genes
3. Discussion
4. Materials and Methods
4.1. Collection and Analysis of Texts
4.1.1. Preparation of Texts Collections
4.1.2. Extraction of Protein and Gene Named Entities from Texts of Publications
4.1.3. Building the Interaction Map Based on Text-Mining
4.2. Analysis of Gene Transcription
4.3. Analysis of the Text-Mining-Based Results and Genes with Differential Expression
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Février, M.; Dorgham, K.; Rebollo, A. CD4+ T Cell Depletion in Human Immunodeficiency Virus (HIV) Infection: Role of Apoptosis. Viruses 2011, 3, 586–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Shang, H.; Jiang, Y. ICAM-1 in HIV Infection and Underlying Mechanisms. Cytokine 2020, 125, 154830. [Google Scholar] [CrossRef] [PubMed]
- Sufiawati, I.; Herrera, R.; Mayer, W.; Cai, X.; Borkakoti, J.; Lin, V.; Rosbe, K.; Tugizov, S.M. Human Immunodeficiency Virus (HIV) and Human Cytomegalovirus (HCMV) Coinfection of Infant Tonsil Epithelium May Synergistically Promote Both HIV-1 and HCMV Spread and Infection. J. Virol. 2021, 95, e0092121. [Google Scholar] [CrossRef] [PubMed]
- Chinnapaiyan, S.; Dutta, R.; Bala, J.; Parira, T.; Agudelo, M.; Nair, M.; Unwalla, H.J. Cigarette Smoke Promotes HIV Infection of Primary Bronchial Epithelium and Additively Suppresses CFTR Function. Sci. Rep. 2018, 8, 7984. [Google Scholar] [CrossRef] [Green Version]
- Cotter, B.R. Endothelial Dysfunction in HIV Infection. Curr. HIV/AIDS Rep. 2006, 3, 126–131. [Google Scholar] [CrossRef]
- Morozov, Y.E.; Mazus, A.I.; Shigeev, S.V. [The HIV-associated diseases encountered in the practice of forensic medical autopsies]. Sud. Med. Ekspertiza 2018, 61, 28–31. [Google Scholar] [CrossRef]
- Yen, Y.-F.; Ko, M.-C.; Yen, M.-Y.; Hu, B.-S.; Wang, T.-H.; Chuang, P.-H.; Lai, H.-H.; Chen, C.-C.; Deng, C.-Y. Human Immunodeficiency Virus Increases the Risk of Incident Heart Failure. J. Acquir. Immune Defic. Syndr. 2019, 80, 255–263. [Google Scholar] [CrossRef]
- Gallo, R.C. HIV/AIDS Research for the Future. Cell Host Microbe 2020, 27, 499–501. [Google Scholar] [CrossRef]
- Korn, D.; Bobrowski, T.; Li, M.; Kebede, Y.; Wang, P.; Owen, P.; Vaidya, G.; Muratov, E.; Chirkova, R.; Bizon, C.; et al. COVID-KOP: Integrating Emerging COVID-19 Data with the ROBOKOP Database. Bioinformatics 2021, 37, 586–587. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, Z.; Li, J.; Fu, L.; Yan, L.; Yang, B. Systematic Analysis of the Molecular Mechanisms of Methotrexate Therapy for Rheumatoid Arthritis Using Text Mining. Clin. Exp. Rheumatol. 2021, 39, 829–837. [Google Scholar] [CrossRef]
- Stubbe, H.C.; Dahlke, C.; Rotheneder, K.; Stirner, R.; Roider, J.; Conca, R.; Seybold, U.; Bogner, J.; Addo, M.M.; Draenert, R. Integration of Microarray Data and Literature Mining Identifies a Sex Bias in DPP4+CD4+ T Cells in HIV-1 Infection. PLoS ONE 2020, 15, e0239399. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.K.; Morales-Menendez, R.; Gupta, P.K.; Iqbal, H.M.N.; Hussain, F.; Khatoon, K.; Ahmad, S. Correlation Between Temperature and COVID-19 (Suspected, Confirmed and Death) Cases Based on Machine Learning Analysis. J. Pure Appl. Microbiol. 2020, 14, 1017–1024. [Google Scholar] [CrossRef]
- Chen, Y.; Ouyang, L.; Bao, F.S.; Li, Q.; Han, L.; Zhang, H.; Zhu, B.; Ge, Y.; Robinson, P.; Xu, M.; et al. A Multimodality Machine Learning Approach to Differentiate Severe and Nonsevere COVID-19: Model Development and Validation. J. Med. Internet Res. 2021, 23, e23948. [Google Scholar] [CrossRef]
- Tarasova, O.A.; Rudik, A.V.; Biziukova, N.Y.; Filimonov, D.A.; Poroikov, V.V. Chemical Named Entity Recognition in the Texts of Scientific Publications Using the Naïve Bayes Classifier Approach. J. Cheminform. 2022, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Biziukova, N.; Tarasova, O.; Ivanov, S.; Poroikov, V. Automated Extraction of Information From Texts of Scientific Publications: Insights Into HIV Treatment Strategies. Front. Genet. 2020, 11, 618862. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.; Mehryary, F.; Luoma, J.; Pyysalo, S.; Valencia, A.; Krallinger, M. Overview of DrugProt BioCreative VII track: Quality evaluation and large -cale text mining of drug-gene/protein relations. In Proceedings of the BioCreative VII Challenge Evaluation Workshop, Online, 8–10 November 2021; pp. 11–21. [Google Scholar]
- Batista-Navarro, R.; Rak, R.; Ananiadou, S. Optimising Chemical Named Entity Recognition with Pre-Processing Analytics, Knowledge-Rich Features and Heuristics. J. Cheminform. 2015, 7, S6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocktäschel, T.; Weidlich, M.; Leser, U. ChemSpot: A Hybrid System for Chemical Named Entity Recognition. Bioinformatics 2012, 28, 1633–1640. [Google Scholar] [CrossRef] [Green Version]
- Tarasova, O.A.; Biziukova, N.Y.; Rudik, A.V.; Dmitriev, A.V.; Filimonov, D.A.; Poroikov, V.V. Extraction of Data on Parent Compounds and Their Metabolites from Texts of Scientific Abstracts. J. Chem. Inf. Model. 2021, 61, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, S.; Flanders, M.; Cutler, S.; Soghoian, D.Z.; Ghebremichael, M.; Davis, I.; Lindqvist, M.; Pereyra, F.; Walker, B.D.; Heckerman, D.; et al. HIV-Specific CD4 T Cell Responses to Different Viral Proteins Have Discordant Associations with Viral Load and Clinical Outcome. J. Virol. 2012, 86, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Turk, G.; Ghiglione, Y.; Hormanstorfer, M.; Laufer, N.; Coloccini, R.; Salido, J.; Trifone, C.; Ruiz, M.J.; Falivene, J.; Holgado, M.P.; et al. Biomarkers of Progression after HIV Acute/Early Infection: Nothing Compares to CD4+ T-Cell Count? Viruses 2018, 10, 34. [Google Scholar] [CrossRef]
- Chen, S.-T.; Li, F.-J.; Hsu, T.; Liang, S.-M.; Yeh, Y.-C.; Liao, W.-Y.; Chou, T.-Y.; Chen, N.-J.; Hsiao, M.; Yang, W.-B.; et al. CLEC5A Is a Critical Receptor in Innate Immunity against Listeria Infection. Nat. Commun. 2017, 8, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, J.C.; Stevenson, M.; Latz, E.; Urcuqui-Inchima, S. HIV Type 1 Infection Up-Regulates TLR2 and TLR4 Expression and Function In Vivo and In Vitro. AIDS Res. Hum. Retroviruses 2012, 28, 1313–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Chen, H.; Zhang, Z.; Fu, Y.; Han, X.; Zhang, Y.; Xu, J.; Ding, H.; Cui, H.; Dong, T.; et al. Elevated CD54 Expression Renders CD4+ T Cells Susceptible to Natural Killer Cell-Mediated Killing. J. Infect. Dis. 2019, 220, 1892–1903. [Google Scholar] [CrossRef] [PubMed]
- Chand, K.; Iyer, K.; Mitra, D. Comparative Analysis of Differential Gene Expression of HSP40 and HSP70 Family Isoforms during Heat Stress and HIV-1 Infection in T-Cells. Cell Stress Chaperones 2021, 26, 403–416. [Google Scholar] [CrossRef]
- Meraviglia, S.; Di Carlo, P.; Pampinella, D.; Guadagnino, G.; Presti, E.L.; Orlando, V.; Marchetti, G.; Dieli, F.; Sergi, C. T-Cell Subsets (TCM, TEM, TEMRA) and Poly-Functional Immune Response in Patients with Human Immunodeficiency Virus (HIV) Infection and Different T-CD4 Cell Response. Ann. Clin. Lab. Sci. 2019, 49, 519–528. [Google Scholar]
- Marras, F.; Casabianca, A.; Bozzano, F.; Ascierto, M.L.; Orlandi, C.; Di Biagio, A.; Pontali, E.; Dentone, C.; Orofino, G.; Nicolini, L.; et al. Control of the HIV-1 DNA Reservoir Is Associated In Vivo and In Vitro with NKp46/NKp30 (CD335 CD337) Inducibility and Interferon Gamma Production by Transcriptionally Unique NK Cells. J. Virol. 2017, 91, e00647-17. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-W.; Chen, B.-S. Investigating HIV-Human Interaction Networks to Unravel Pathogenic Mechanism for Drug Discovery: A Systems Biology Approach. Curr. HIV Res. 2018, 16, 77–95. [Google Scholar] [CrossRef]
- Bhargav, A.; Gupta, S.; Seth, S.; James, S.; Fatima, F.; Chaurasia, P.; Ramachandran, S. Knowledgebase of Potential Multifaceted Solutions to Antimicrobial Resistance. Comput. Biol. Chem. 2022, 101, 107772. [Google Scholar] [CrossRef]
- Jamieson, D.G.; Gerner, M.; Sarafraz, F.; Nenadic, G.; Robertson, D.L. Towards Semi-Automated Curation: Using Text Mining to Recreate the HIV-1, Human Protein Interaction Database. Database 2012, 2012, bas023. [Google Scholar] [CrossRef]
- Fu, W.; Sanders-Beer, B.E.; Katz, K.S.; Maglott, D.R.; Pruitt, K.D.; Ptak, R.G. Human Immunodeficiency Virus Type 1, Human Protein Interaction Database at NCBI. Nucleic Acids Res. 2009, 37, D417–D422. [Google Scholar] [CrossRef] [Green Version]
- Kozera, B.; Rapacz, M. Reference Genes in Real-Time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef] [PubMed]
- Tarasova, O.A.; Biziukova, N.Y.; Filimonov, D.A.; Poroikov, V.V.; Nicklaus, M.C. Data Mining Approach for Extraction of Useful Information About Biologically Active Compounds from Publications. J. Chem. Inf. Model. 2019, 59, 3635–3644. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
Patient ID | Duration of Infection (a) 1 | Days of Infection (c) 2 | Viral Load, Copies/mL | CD4+ T Count, cell/mL | CD8+ T Count, cell/mL | CD4/CD8 |
---|---|---|---|---|---|---|
1 | 1 year | 8 | 3825 | 673 | 898 | 0.75 |
2 | unknown | 13 | 262,686 | 705 | 914 | 0.77 |
3 | unknown | 115 | 8821 | 543 | 1195 | 0.45 |
4 | 1 year | 54 | 31,635 | 675 | 884 | 0.76 |
5 | 1 year | 23 | 81,743 | 642 | 576 | 1.12 |
6 | 3 months | 40 | 154,272 | 782 | 1024 | 0.76 |
7 | Over 1 year | 416 | 144,350 | 344 | 970 | 0.35 |
8 | Over 1 year | 514 | 11,875 | 782 | 1040 | 0.41 |
9 | Over 1 year | 474 | 64,368 | 540 | 1062 | 0.51 |
10 | Over 2 years | 900 | 20 | 413 | 822 | 0.50 |
11 | Over 2 years | 1060 | 27,942 | 552 | 1205 | 0.46 |
Number of Samples | Duration of Infection (a) 1 | Upregulated Genes | Downregulated Genes | Reference |
---|---|---|---|---|
33 | At least 6 months | 1 (women vs. men) | - | 11 |
11 | At least 1 year | 443 (duration of infection) | 163 | Our study |
Dozens | 2–6, 6–18, 16–24 h | - | - | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasova, O.; Biziukova, N.; Shemshura, A.; Filimonov, D.; Kireev, D.; Pokrovskaya, A.; Poroikov, V.V. Identification of Molecular Mechanisms Involved in Viral Infection Progression Based on Text Mining: Case Study for HIV Infection. Int. J. Mol. Sci. 2023, 24, 1465. https://doi.org/10.3390/ijms24021465
Tarasova O, Biziukova N, Shemshura A, Filimonov D, Kireev D, Pokrovskaya A, Poroikov VV. Identification of Molecular Mechanisms Involved in Viral Infection Progression Based on Text Mining: Case Study for HIV Infection. International Journal of Molecular Sciences. 2023; 24(2):1465. https://doi.org/10.3390/ijms24021465
Chicago/Turabian StyleTarasova, Olga, Nadezhda Biziukova, Andrey Shemshura, Dmitry Filimonov, Dmitry Kireev, Anastasia Pokrovskaya, and Vladimir V. Poroikov. 2023. "Identification of Molecular Mechanisms Involved in Viral Infection Progression Based on Text Mining: Case Study for HIV Infection" International Journal of Molecular Sciences 24, no. 2: 1465. https://doi.org/10.3390/ijms24021465
APA StyleTarasova, O., Biziukova, N., Shemshura, A., Filimonov, D., Kireev, D., Pokrovskaya, A., & Poroikov, V. V. (2023). Identification of Molecular Mechanisms Involved in Viral Infection Progression Based on Text Mining: Case Study for HIV Infection. International Journal of Molecular Sciences, 24(2), 1465. https://doi.org/10.3390/ijms24021465