Genome-Wide Comparative Analysis of the Fasciclin-like Arabinogalactan Proteins (FLAs) in Salicacea and Identification of Secondary Tissue Development-Related Genes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Genome-Wide Identification and Sequence Analysis of Populus and Salix FLA genes
2.2. Chromosomal Distribution and Identification of Gene Duplication in Populus and Salix FLA Genes
2.3. Phylogeny, Conserved Gene Structures, and Protein Motif Analysis of Populus and Salix FLA Genes
2.4. Phylogenetic Analysis and Functional Prediction of the FLA Gene Family
2.5. Identification of FLA Candidate Genes Related to Stem Development in Populus and Salix
2.6. Identification of FLA Candidate Genes Related to Seed Hair Development in Populus and Salix
3. Materials and Methods
3.1. Genome-Wide Identification and Sequence Analysis of Populus and Salix FLA Genes
3.2. Chromosomal Distribution of FLA Genes
3.3. Phylogenetic Analysis and Functional Prediction of FLA Genes
3.4. Analysis of Gene Structure and Protein Motif Identification
3.5. Preparation of Plant Materials
3.6. Primer Design, RNA Extraction, and qRT-PCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kieliszewski, M.J.; Shpak, E. Synthetic genes for the elucidation of glycosylation codes for arabinogalactan-proteins and other hydroxyproline-rich glycoproteins. Cell. Mol. Life Sci. 2001, 58, 1386–1398. [Google Scholar] [CrossRef] [PubMed]
- Schultz, C.J.; Rumsewicz, M.P.; Johnson, K.L.; Jones, B.J.; Gaspar, Y.M.; Bacic, A. Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol. 2002, 129, 1448–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Zhao, J. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J. Exp. Bot. 2010, 61, 2647–2668. [Google Scholar] [CrossRef]
- Showalter, A.M.; Keppler, B.; Lichtenberg, J.; Gu, D.; Welch, L.R. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol. 2010, 153, 485–513. [Google Scholar] [CrossRef] [Green Version]
- Seifert, G.J.; Roberts, K. The biology of arabinogalactan proteins. Annu. Rev. Plant Biol. 2007, 58, 137–161. [Google Scholar] [CrossRef]
- Pereira, A.M.; Pereira, L.G.; Coimbra, S. Arabinogalactan proteins: Rising attention from plant biologists. Plant Reprod. 2015, 28, 1–15. [Google Scholar] [CrossRef]
- Gaspar, Y.; Johnson, K.L.; McKenna, J.A.; Bacic, A.; Schultz, C.J. The complex structures of arabinogalactan-proteins and the journey towards understanding function. Plant Mol. Biol. 2001, 47, 161–176. [Google Scholar] [CrossRef]
- Tan, L.; Leykam, J.F.; Kieliszewski, M.J. Glycosylation motifs that direct arabinogalactan addition to arabinogalactan-proteins. Plant Physiol. 2003, 132, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.L.; Jones, B.J.; Bacic, A.; Schultz, C.J. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol. 2003, 133, 1911–1925. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Hu, B.; Yi, G.; Li, X.; Chen, H.; Wang, Y.; Yuan, W.; Xing, Y.; Sheng, Q.; Su, Z.; et al. Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. Plant Cell Rep. 2020, 39, 693–708. [Google Scholar] [CrossRef]
- Jun, L.; Xiaoming, W. Genome-wide identification, classification and expression analysis of genes encoding putative fasciclin-like arabinogalactan proteins in Chinese cabbage (Brassica rapa L.). Mol. Biol. Rep. 2012, 39, 10541–10555. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, G.; Mangeot-Peter, L.; Legay, S.; Behr, M.; Lutts, S.; Siddiqui, K.S.; Hausman, J.F. Identification of fasciclin-like arabinogalactan proteins in textile hemp (Cannabis sativa L.): In silico analyses and gene expression patterns in different tissues. BMC Genom. 2017, 18, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.; Ahmed, B.; Ullah, M.; Aktar, N.; Haque, M.; Islam, M. Genome-wide identification of fasciclin-like arabinogalactan proteins in jute and their expression pattern during fiber formation. Mol. Biol. Rep. 2020, 47, 7815–7829. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.Q.; Xu, W.L.; Gong, S.Y.; Li, B.; Wang, X.L.; Xu, D.; Li, X.B. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiol. Plant. 2008, 134, 348–359. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, C.P.; Taylor, L.; Bi, Y.; Southerton, S.G.; Evans, R.; Spokevicius, A. The fasciclin-like arabinogalactan protein family of Eucalyptus grandis contains members that impact wood biology and biomechanics. New Phytol. 2015, 206, 1314–1327. [Google Scholar] [CrossRef]
- Wu, X.; Lai, Y.; Lv, L.; Ji, M.; Han, K.; Yan, D.; Lu, Y.; Peng, J.; Rao, S.; Yan, F.; et al. Fasciclin-like arabinogalactan gene family in Nicotiana benthamiana: Genome-wide identification, classification and expression in response to pathogens. BMC Plant Biol. 2015, 20, 1–15. [Google Scholar] [CrossRef]
- Zang, L.; Zheng, T.; Chu, Y.; Ding, C.; Zhang, W.; Huang, Q.; Su, X. Genome-wide analysis of the fasciclin-like arabinogalactan protein gene family reveals differential expression patterns, localization, and salt stress response in Populus. Front Plant Sci. 2015, 6, 1140. [Google Scholar] [CrossRef] [Green Version]
- Faik, A.; Abouzouhair, J.; Sarhan, F. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): Identification and bioinformatic analyses. Mol. Genet. Genom. 2006, 276, 478–494. [Google Scholar] [CrossRef]
- Hozumi, A.; Bera, S.; Fujiwara, D.; Obayashi, T.; Yokoyama, R.; Nishitani, K.; Aoki, K. Arabinogalactan proteins accumulate in the cell walls of searching hyphae of the stem parasitic plants, Cuscuta campestris and Cuscuta japonica. Plant Cell Physiol. 2017, 58, 1868–1877. [Google Scholar] [CrossRef] [Green Version]
- MacMillan, C.P.; Mansfield, S.D.; Stachurski, Z.H.; Evans, R.; Southerton, S.G. Fasciclin-like arabinogalactan proteins: Specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J. 2010, 62, 689–703. [Google Scholar] [CrossRef]
- Shi, H.; Kim, Y.; Guo, Y.; Stevenson, B.; Zhu, J.K. The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 2003, 15, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.; MacMillan, C.P.; Shafee, T.; Ma, Y.; Ratcliffe, J.; Van de Meene, A.; Bacic, A.; Humphries, J.; Johnson, K.L. Fasciclin-like arabinogalactan-protein 16 (FLA16) is required for stem development in Arabidopsis. Front. Plant Sci. 2020, 11, 615392. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, C.; Wang, C.; Yang, Y.; Yang, L.; Gao, X.; Zhang, H. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees. J. Exp. Bot. 2015, 66, 1291–1302. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Jin, Y.; Wang, C.; Li, B.; Jiang, C.; Sun, Z.; Zhang, Z.; Kong, F.; Zhang, H. Fasciclin-like arabinogalactan proteins, PtFLAs, play important roles in GA-mediated tension wood formation in Populus. Sci. Rep. 2017, 7, 6182. [Google Scholar] [CrossRef]
- Zhang, L.; Xi, Z.; Wang, M.; Guo, X.; Ma, T. Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows. Ecol. Evol. 2018, 8, 7817–7823. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Wei, S.; Pan, H.; Zhuge, Q.; Yin, T. Uneven selection pressure accelerating divergence of Populus and Salix. Hortic. Res. 2019, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Gaut, B.; Yang, L.; Takuno, S.; Eguiarte, L.E. The patterns and causes of variation in plant nucleotide substitution rates. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 245–266. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.A.; Donoghue, M.J. Rates of molecular evolution are linked to life history in flowering plants. Science 2008, 322, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Hu, Q.; Cai, Q.; Feng, K.; Ye, N.; Tuskan, G.A.; Milne, R.; Chen, Y.; Wan, Z.; Wang, Z.; et al. The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res. 2014, 24, 1274–1277. [Google Scholar] [CrossRef]
- Brown, D.M.; Zeef, L.A.; Ellis, J.; Goodacre, R.; Turner, S.R. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 2005, 17, 2281–2295. [Google Scholar] [CrossRef]
- Persson, S.; Wei, H.; Milne, J.; Page, G.P.; Somerville, C.R. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc. Natl. Acad. Sci. USA 2005, 102, 8633–8638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Suzuki, Y.; Miyamoto, K.; Ueda, J.; Yamaguchi, I. AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in screlenchyma cells. Biosci. Biotechnol. Biochem. 2005, 69, 1963–1969. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.L.; Kibble, N.A.; Bacic, A.; Schultz, C.J. A Fasciclin-Like A rabinogalactan-Protein (FLA) Mutant of Arabidopsis thaliana, fla1, Shows Defects in Shoot Regeneration. PLoS ONE 2011, 6, e25154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Yu, M.; Geng, L.L.; Zhao, J. The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. Plant J. 2010, 64, 482–497. [Google Scholar] [CrossRef]
- Nieminen, K.; Blomster, T.; Helariutta, Y.; Mähönen, A.P. Vascular cambium development. Arab. Book 2015, 2015, 13. [Google Scholar] [CrossRef] [Green Version]
- Sehr, E.M.; Agusti, J.; Lehner, R.; Farmer, E.E.; Schwarz, M.; Greb, T. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J. 2010, 63, 811–822. [Google Scholar] [CrossRef]
- Eddy, S.R. Profile hidden Markov models. Bioinformatics 1998, 14, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.D.; Mistry, J.; Schuster-Böckler, B.; Griffiths-Jones, S.; Hollich, V.; Lassmann, T.; Moxon, S.; Marshall, M.; Khanna, A.; Durbin, R.; et al. Pfam: Clans, web tools and services. Nucleic Acids Res. 2006, 34, D247–D251. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012, 40, D302–D305. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [Green Version]
- Eisenhaber, B.; Wildpaner, M.; Schultz, C.J.; Borner, G.H.; Dupree, P.; Eisenhaber, F. Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence-and genome-wide studies for Arabidopsis and rice. Plant Physiol. 2003, 133, 1691–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; De Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef]
- Gu, Z.; Cavalcanti, A.; Chen, F.C.; Bouman, P.; Li, W.H. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol. Biol. Evol. 2002, 19, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Zhang, X.; Yue, J.X.; Tian, D.; Chen, J.Q. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol. Genet. Genom. 2008, 280, 187–198. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, L.; Mauriat, M.; Guénin, S.; Pelloux, J.; Lefebvre, J.F.; Louvet, R.; Rusterucci, C.; Moritz, T.; Guerineau, F.; Bellini, C.; et al. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 2008, 6, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jia, H.; Han, X.; Zhang, J.; Sun, P.; Lu, M.; Hu, J. Selection of reliable reference genes for gene expression analysis under abiotic stresses in the desert biomass willow, Salix psammophila. Front. Plant Sci. 2016, 7, 1505. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | Gene ID | Chr | Start | End | Amino Acid | pI | Mw |
---|---|---|---|---|---|---|---|
PdeFLA1 | EVM0033614 | chr1 | 2863,934 | 2,864,908 | 281 | 7.79 | 28,804.55 |
PdeFLA2 | EVM0013530 | chr1 | 31,953,859 | 31,954,589 | 213 | 5.58 | 22,696.96 |
PdeFLA3 | EVM0016507 | chr1 | 37,804,827 | 37,807,480 | 406 | 5.49 | 43,144.42 |
PdeFLA4 | EVM0019309 | chr1 | 46,418,162 | 46,419,355 | 397 | 5.06 | 42,295.82 |
PdeFLA5 | EVM0012430 | chr2 | 14,552,755 | 14,553,795 | 176 | 6.38 | 18,211.68 |
PdeFLA6 | EVM0003247 | chr2 | 14,743,911 | 14,744,707 | 254 | 4.50 | 26,606.07 |
PdeFLA7 | EVM0003107 | chr4 | 20,721,639 | 20,727,689 | 323 | 8.59 | 34,386.37 |
PdeFLA8 | EVM0000914 | chr5 | 6,121,373 | 6,122,701 | 442 | 6.03 | 47,578.60 |
PdeFLA9 | EVM0035476 | chr6 | 10,905,263 | 10,906,724 | 227 | 4.75 | 24,112.12 |
PdeFLA10 | EVM0035420 | chr6 | 17,439,680 | 17,441,342 | 426 | 5.23 | 44,980.52 |
PdeFLA11 | EVM0030864 | chr6 | 20,717,497 | 20,720,696 | 466 | 6.07 | 50,934.06 |
PdeFLA12 | EVM0005454 | chr6 | 26,560,554 | 26,561,810 | 394 | 8.92 | 41,861.21 |
PdeFLA13 | EVM0010041 | chr8 | 598,740 | 601,878 | 440 | 5.98 | 48,356.80 |
PdeFLA14 | EVM0021839 | chr9 | 2,003,076 | 2,004,125 | 263 | 8.44 | 28,699.16 |
PdeFLA15 | EVM0017387 | chr9 | 2,005,847 | 2,007,233 | 269 | 8.40 | 28,404.59 |
PdeFLA16 | EVM0034822 | chr10 | 21,572,863 | 21,578,206 | 460 | 6.21 | 50,769.91 |
PdeFLA17 | EVM0012659 | chr11 | 11,492,405 | 11,495,560 | 408 | 5.69 | 43,677.05 |
PdeFLA18 | EVM0036111 | chr12 | 1,843,829 | 1,848,143 | 229 | 7.77 | 23,800.59 |
PdeFLA19 | EVM0016248 | chr12 | 14,176,837 | 14,177,559 | 240 | 5.33 | 25,352.79 |
PdeFLA20 | EVM0035889 | chr13 | 1,002,373 | 1,003,172 | 255 | 7.02 | 27,077.81 |
PdeFLA21 | EVM0037601 | chr13 | 13,975,549 | 13,976,510 | 241 | 6.55 | 25,114.65 |
PdeFLA22 | EVM0020019 | chr13 | 15,988,602 | 16,005,827 | 269 | 6.64 | 28,265.15 |
PdeFLA23 | EVM0022991 | chr13 | 16,027,081 | 16,028,142 | 353 | 9.32 | 39,230.62 |
PdeFLA24 | EVM0034823 | chr14 | 5,118,954 | 5,120,795 | 423 | 5.36 | 43,390.45 |
PdeFLA25 | EVM0004019 | chr14 | 12,708,764 | 12,710,721 | 262 | 5.56 | 27,645.30 |
PdeFLA26 | EVM0001785 | chr14 | 13,240,881 | 13,242,143 | 376 | 7.65 | 40,562.30 |
PdeFLA27 | EVM0017855 | chr15 | 13,612,965 | 13,614,288 | 240 | 6.72 | 25,379.90 |
PdeFLA28 | EVM0008767 | chr16 | 4,738,845 | 4,742,370 | 466 | 5.90 | 51,122.10 |
PdeFLA29 | EVM0000252 | chr16 | 7,252,981 | 7,254,142 | 239 | 5.73 | 25,172.56 |
PdeFLA30 | EVM0030626 | chr17 | 12,475,605 | 12,476,664 | 339 | 4.50 | 37,001.51 |
PdeFLA31 | EVM0029903 | chr18 | 11,808,901 | 11,810,496 | 427 | 5.29 | 44,971.60 |
PdeFLA32 | EVM0013339 | chr19 | 1,874,378 | 1,875,226 | 282 | 10.77 | 30,578.54 |
PdeFLA33 | EVM0014374 | chr19 | 9,899,008 | 9,899,766 | 252 | 7.76 | 27,151.55 |
PdeFLA34 | EVM0017850 | chr19 | 15,221,093 | 15,221,992 | 245 | 6.72 | 25,421.84 |
PdeFLA35 | EVM0023928 | chr19 | 17,054,292 | 17,069,477 | 261 | 6.50 | 27,443.27 |
PdeFLA36 | EVM0017906 | chr19 | 17,076,489 | 17,081,736 | 212 | 9.68 | 22,669.99 |
PdeFLA37 | EVM0003708 | Contig00307 | 137 | 987 | 211 | 6.18 | 22,266.27 |
PdeFLA38 | EVM0009936 | Contig00307 | 14,016 | 15,179 | 263 | 6.50 | 27,647.50 |
PdeFLA39 | EVM0004735 | Contig00342 | 28,127 | 29,763 | 397 | 5.51 | 42,607.59 |
PdeFLA40 | EVM0030058 | Contig02018 | 2408 | 3139 | 243 | 9.04 | 25,611.18 |
SsuFLA1 | EVM0026394 | chr1 | 6,636,804 | 6,639,178 | 454 | 6.29 | 49,805.69 |
SsuFLA2 | EVM0024166 | chr1 | 9,407,953 | 9,408,990 | 240 | 5.29 | 25,207.58 |
SsuFLA3 | EVM0006591 | chr1 | 25,816,885 | 25,817,328 | 340 | 5.19 | 35,939.01 |
SsuFLA4 | EVM0006450 | chr1 | 32,542,611 | 32,543,813 | 400 | 5.47 | 42,028.31 |
SsuFLA5 | EVM0021770 | chr4 | 15,902,015 | 15,902,939 | 242 | 8.89 | 26,127.29 |
SsuFLA6 | EVM0006635 | chr4 | 15,905,288 | 15,906,103 | 271 | 8.55 | 28,341.48 |
SsuFLA7 | EVM0003490 | chr6 | 8,865,503 | 8,866,458 | 241 | 6.55 | 25,146.69 |
SsuFLA8 | EVM0000130 | chr6 | 10,047,978 | 10,048,840 | 257 | 7.85 | 27,187.19 |
SsuFLA9 | EVM0014792 | chr6 | 12,547,684 | 12,549,068 | 388 | 5.16 | 40,792.62 |
SsuFLA10 | EVM0022300 | chr6 | 14,817,544 | 14,820,039 | 468 | 7.77 | 51,646.93 |
SsuFLA11 | EVM0039496 | chr6 | 14,859,433 | 14,862,830 | 444 | 6.06 | 48,952.77 |
SsuFLA12 | EVM0030612 | chr6 | 14,870,417 | 14,872,828 | 465 | 6.25 | 51,410.46 |
SsuFLA13 | EVM0002771 | chr6 | 20,137,156 | 20,138,004 | 282 | 8.98 | 29,097.38 |
SsuFLA14 | EVM0038485 | chr7 | 9,014,791 | 9,016,143 | 450 | 5.95 | 48,762.99 |
SsuFLA15 | EVM0004828 | chr7 | 9,076,360 | 9,077,712 | 450 | 5.95 | 48,775.05 |
SsuFLA16 | EVM0004641 | chr8 | 467,485 | 470,609 | 428 | 5.78 | 47,346.78 |
SsuFLA17 | EVM0030085 | chr8 | 7,324,477 | 7,325,427 | 316 | 4.68 | 34,441.38 |
SsuFLA18 | EVM0025887 | chr9 | 1,053,546 | 1,054,711 | 269 | 6.41 | 28,307.37 |
SsuFLA19 | EVM0026596 | chr10 | 16,349,980 | 16,352,801 | 461 | 5.61 | 50,880.71 |
SsuFLA20 | EVM0032967 | chr11 | 9,355,631 | 9,358,661 | 344 | 6.14 | 37,231.76 |
SsuFLA21 | EVM0003643 | chr12 | 927,908 | 931,248 | 275 | 6.41 | 28,692.16 |
SsuFLA22 | EVM0039047 | chr12 | 9,693,341 | 9,693,356 | 206 | 5.78 | 21,712.59 |
SsuFLA23 | EVM0028769 | chr13 | 792,822 | 793,782 | 257 | 7.74 | 27,166.11 |
SsuFLA24 | EVM0029643 | chr13 | 12,512,025 | 12,512,743 | 211 | 4.73 | 21,708.68 |
SsuFLA25 | EVM0007673 | chr13 | 14,193,258 | 14,194,071 | 245 | 6.51 | 25,665.23 |
SsuFLA26 | EVM0039302 | chr13 | 14,197,604 | 14,198,398 | 264 | 7.87 | 27,766.61 |
SsuFLA27 | EVM0003847 | chr13 | 14,200,804 | 14,202,010 | 245 | 8.67 | 25,785.40 |
SsuFLA28 | EVM0021248 | chr13 | 14,285,373 | 14,286,276 | 265 | 7.88 | 27,869.72 |
SsuFLA29 | EVM0029154 | chr13 | 14,289,871 | 14,290,923 | 259 | 7.06 | 27,479.26 |
SsuFLA30 | EVM0019512 | chr13 | 14,308,009 | 14,309,070 | 353 | 8.91 | 39,166.45 |
SsuFLA31 | EVM0039706 | chr14 | 4,440,309 | 4,441,573 | 411 | 5.37 | 42,242.28 |
SsuFLA32 | EVM0024403 | chr14 | 10,667,361 | 10,669,307 | 260 | 4.73 | 27,416.04 |
SsuFLA33 | EVM0016971 | chr14 | 11,035,380 | 11,037,015 | 391 | 7.09 | 41,605.74 |
SsuFLA34 | EVM0008734 | chr15 | 781,936 | 782,981 | 267 | 6.50 | 28,227.71 |
SsuFLA35 | EVM0034733 | chr15 | 11,756,924 | 11,758,526 | 240 | 6.57 | 25,349.91 |
SsuFLA36 | EVM0008341 | chr16 | 2,217,768 | 2,218,745 | 325 | 6.57 | 33,166.50 |
SsuFLA37 | EVM0021655 | chr17 | 10,904,748 | 10,905,794 | 325 | 4.33 | 35,075.06 |
SsuFLA38 | EVM0000963 | chr18 | 324,610 | 325,410 | 266 | 5.45 | 27,430.66 |
SsuFLA39 | EVM0000740 | chr18 | 9,619,792 | 9,620,553 | 397 | 4.96 | 42,023.18 |
SsuFLA40 | EVM0022185 | chr19 | 3,251,016 | 3,251,879 | 287 | 10.81 | 31,346.24 |
SsuFLA41 | EVM0019293 | chr19 | 9,639,274 | 9,639,996 | 240 | 8.41 | 25,832.92 |
SsuFLA42 | EVM0007092 | chr19 | 14,655,296 | 14,656,329 | 243 | 6.27 | 25,492.98 |
SsuFLA43 | EVM0013439 | chr19 | 16,018,464 | 16,019,599 | 263 | 6.97 | 27,756.63 |
SsuFLA44 | EVM0030289 | chr19 | 16,037,704 | 16,038,793 | 263 | 6.58 | 27,414.32 |
SsuFLA45 | EVM0013597 | chr19 | 16,041,720 | 16,042,511 | 263 | 6.97 | 27,756.63 |
SsuFLA46 | EVM0006563 | Contig04279 | 21,081 | 21,802 | 223 | 7.06 | 24,277.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, F.; Wang, H.; Chen, Y.; Yin, T.; Wu, H. Genome-Wide Comparative Analysis of the Fasciclin-like Arabinogalactan Proteins (FLAs) in Salicacea and Identification of Secondary Tissue Development-Related Genes. Int. J. Mol. Sci. 2023, 24, 1481. https://doi.org/10.3390/ijms24021481
Zhang Y, Zhou F, Wang H, Chen Y, Yin T, Wu H. Genome-Wide Comparative Analysis of the Fasciclin-like Arabinogalactan Proteins (FLAs) in Salicacea and Identification of Secondary Tissue Development-Related Genes. International Journal of Molecular Sciences. 2023; 24(2):1481. https://doi.org/10.3390/ijms24021481
Chicago/Turabian StyleZhang, Yingying, Fangwei Zhou, Hui Wang, Yingnan Chen, Tongming Yin, and Huaitong Wu. 2023. "Genome-Wide Comparative Analysis of the Fasciclin-like Arabinogalactan Proteins (FLAs) in Salicacea and Identification of Secondary Tissue Development-Related Genes" International Journal of Molecular Sciences 24, no. 2: 1481. https://doi.org/10.3390/ijms24021481
APA StyleZhang, Y., Zhou, F., Wang, H., Chen, Y., Yin, T., & Wu, H. (2023). Genome-Wide Comparative Analysis of the Fasciclin-like Arabinogalactan Proteins (FLAs) in Salicacea and Identification of Secondary Tissue Development-Related Genes. International Journal of Molecular Sciences, 24(2), 1481. https://doi.org/10.3390/ijms24021481