Camptothecin Effectively Regulates Germline Differentiation through Bam–Cyclin A Axis in Drosophila melanogaster
Abstract
:1. Introduction
2. Results
2.1. The Effects of CPT on Germ Cells
2.2. CPT Treatment Fails to Cause Apoptosis and Influence Niche in Ovarian GSCs
2.3. Bam Signal Was Involved in CPT-Induced Toxicity in Germarium
2.4. The Role of Top1 in CPT-Induced Toxicology
2.5. CPT Treatment Led to Cell Cycle Arrest
2.6. CycA Was Involved in CPT-Induced Differentiation Defects
3. Discussion
4. Materials and Methods
4.1. Drosophila Stocks
4.2. Survival Analysis
4.3. Fecundity Examination
4.4. Immunostaining
4.5. In Situ Hybridization
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Li, F.; Jiang, T.; Li, Q.; Ling, X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am. J. Cancer Res. 2017, 7, 2350. [Google Scholar]
- Morham, S.G.; Kluckman, K.D.; Voulomanos, N.; Smithies, O. Targeted disruption of the mouse topoisomerase I gene by camptothecin selection. Mol. Cell. Biol. 1996, 16, 6804–6809. [Google Scholar] [CrossRef] [Green Version]
- Sloan, R.; Huang, S.N.; Pommier, Y.; Jinks-Robertson, S. Effects of camptothecin or TOP1 overexpression on genetic stability in Saccharomyces cerevisiae. DNA Repair 2017, 59, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.M.; Rajan, R.; Mondragon, A. Structural studies of type I topoisomerases. Nucleic Acids Res. 2009, 37, 693–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray Chaudhuri, A.; Hashimoto, Y.; Herrador, R.; Neelsen, K.J.; Fachinetti, D.; Bermejo, R.; Cocito, A.; Costanzo, V.; Lopes, M. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 2012, 19, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Jayasooriya, R.G.; Dilshara, M.G.; Molagoda, I.M.; Park, C.; Park, S.R.; Lee, S.; Choi, Y.H.; Kim, G.Y. Camptothecin induces G2/M phase arrest through the ATM-Chk2-Cdc25C axis as a result of autophagy-induced cytoprotection: Implications of reactive oxygen species. Oncotarget 2018, 9, 21744–21757. [Google Scholar] [CrossRef] [Green Version]
- Pommier, Y. Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2003, 532, 173–203. [Google Scholar] [CrossRef] [Green Version]
- Goldwasser, F.; Shimizu, T.; Jackman, J.; Hoki, Y.; O’Connor, P.M.; Kohn, K.W.; Pommier, Y. Correlations between S and G2 arrest and the cytotoxicity of camptothecin in human colon carcinoma cells. Cancer Res. 1996, 56, 4430–4437. [Google Scholar]
- Adachi, S.; Ogasawara, T.; Yamasaki, N.; Shibahara, H.; Kanazawa, R.; Tsuji, Y.; Takemura, T.; Koyama, K. A pilot study of CPT-11 and cisplatin for ovarian clear cell adenocarcinoma. Jpn. J. Clin. Oncol. 1999, 29, 434–437. [Google Scholar] [CrossRef]
- Khaiwa, N.; Maarouf, N.R.; Darwish, M.H.; Alhamad, D.W.; Sebastian, A.; Hamad, M.; Omar, H.A.; Orive, G.; Al-Tel, T.H. Camptothecin’s journey from discovery to WHO Essential Medicine: Fifty years of promise. Eur. J. Med. Chem. 2021, 223, 113639. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Zhang, P.; Li, N. Topoisomerase II trapping agent teniposide induces apoptosis and G2/M or S phase arrest of oral squamous cell carcinoma. World J. Surg. Oncol. 2006, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Moertel, C.G.; Schutt, A.J.; Reitemeier, R.; Hahn, R. Phase Il Study of Camptothecin (NSC-100880) in the Treatment. Cancer Chemother. Rep. 1972, 56, 95–101. [Google Scholar] [PubMed]
- Xia, L.; Jia, S.; Huang, S.; Wang, H.; Zhu, Y.; Mu, Y.; Kan, L.; Zheng, W.; Wu, D.; Li, X.; et al. The Fused/Smurf complex controls the fate of Drosophila germline stem cells by generating a gradient BMP response. Cell 2010, 143, 978–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, J.O.; Chen, C.; Yamashita, Y.M. Germline stem cell homeostasis. Curr. Top. Dev. Biol. 2019, 135, 203–244. [Google Scholar]
- Shen, R.; Weng, C.; Yu, J.; Xie, T. eIF4A controls germline stem cell self-renewal by directly inhibiting BAM function in the Drosophila ovary. Proc. Natl. Acad. Sci. USA 2009, 106, 11623–11628. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.J.; Bahader, M.; Lai, C.M. Molecular control of the female germline stem cell niche size in Drosophila. Cell. Mol. Life Sci. 2019, 76, 4309–4317. [Google Scholar] [CrossRef] [PubMed]
- Xi, R.; Doan, C.; Liu, D.; Xie, T. Pelota controls self-renewal of germline stem cells by repressing a Bam-independent differentiation pathway. Development 2005, 132, 5365–5374. [Google Scholar] [CrossRef] [Green Version]
- Decotto, E.; Spradling, A.C. The Drosophila ovarian and testis stem cell niches: Similar somatic stem cells and signals. Dev. Cell 2005, 9, 501–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Geng, C.; Wang, H.; Yang, Z.; Weng, C.; Li, H.; Deng, L.; Liu, L.; Liu, N.; Ni, J.; et al. Twin Promotes the Maintenance and Differentiation of Germline Stem Cell Lineage through Modulation of Multiple Pathways. Cell Rep. 2015, 13, 1366–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Lin, H. The division of Drosophila germline stem cells and their precursors requires a specific cyclin. Curr. Biol. 2005, 15, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.J.; Drummond-Barbosa, D. Insulin signals control the competence of the Drosophila female germline stem cell niche to respond to Notch ligands. Dev. Biol. 2011, 350, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Artoni, F.; Kreipke, R.E.; Palmeira, O.; Dixon, C.; Goldberg, Z.; Ruohola-Baker, H. Loss of foxo rescues stem cell aging in Drosophila germ line. Elife 2017, 6, e27842. [Google Scholar] [CrossRef]
- Xing, Y.; Su, T.T.; Ruohola-Baker, H. Tie-mediated signal from apoptotic cells protects stem cells in Drosophila melanogaster. Nat. Commun. 2015, 6, 7058. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Li, C.; Hu, L.; Liu, K.; Mei, J.; Luo, Y.; Tao, Y.; Xia, Z.; Sun, Q.; Chen, D. Bam-dependent deubiquitinase complex can disrupt germ-line stem cell maintenance by targeting cyclin A. Proc. Natl. Acad. Sci. USA 2017, 114, 6316–6321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Jin, Z.; Yu, Y.; Zhang, Y.; Yang, F.; Huang, H.; Cai, T.; Xi, R. A Progressive Somatic Cell Niche Regulates Germline Cyst Differentiation in the Drosophila Ovary. Curr. Biol. 2021, 31, 840–852. [Google Scholar] [CrossRef]
- Kirilly, D.; Wang, S.; Xie, T. Self-maintained escort cells form a germline stem cell differentiation niche. Development 2011, 138, 5087–5097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tastan, Ö.Y.; Maines, J.Z.; Li, Y.; Mckearin, D.M.; Buszczak, M. Drosophila Ataxin 2-binding protein 1 marks an intermediate step in the molecular differentiation of female germline cysts. Development 2010, 137, 3167–3176. [Google Scholar] [CrossRef] [Green Version]
- Losick, V.P.; Morris, L.X.; Fox, D.T.; Spradling, A. Drosophila stem cell niches: A decade of discovery suggests a unified view of stem cell regulation. Dev. Cell 2011, 21, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Siah, C.K.; Cai, Y. Engrailed acts with Nejire to control decapentaplegic expression in the Drosophila ovarian stem cell niche. Development 2017, 144, 3224–3231. [Google Scholar] [CrossRef] [Green Version]
- Hamada-Kawaguchi, N.; Nore, B.F.; Kuwada, Y.; Smith, C.I.E.; Yamamoto, D. Btk29A Promotes Wnt4 Signaling in the Niche to Terminate Germ Cell Proliferation in Drosophila. Science 2014, 343, 294–297. [Google Scholar] [CrossRef]
- Gonzalez-Reyes, A. Stem cells, niches and cadherins: A view from Drosophila. J. Cell Sci. 2003, 116, 949–954. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Wang, H.; Fan, C.; Liu, S.; Cai, Y. Wnt ligands regulate Tkv expression to constrain Dpp activity in the Drosophila ovarian stem cell niche. J. Cell Biol. 2015, 209, 595–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperka, T.; Wang, J.; Rudolph, K.L. DNA damage checkpoints in stem cells, ageing and cancer. Nat. Rev. Mol. Cell Biol. 2012, 13, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.J.; Ashworth, A. The DNA damage response and cancer therapy. Nature 2012, 481, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Zielke, N.; Korzelius, J.; van Straaten, M.; Bender, K.; Schuhknecht, G.F.; Dutta, D.; Xiang, J.; Edgar, B.A. Fly-FUCCI: A versatile tool for studying cell proliferation in complex tissues. Cell Rep. 2014, 7, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, J.; Huynh, J. Bam and Otu can regulate stem cell fate by stabilizing cyclin A. Proc. Natl. Acad. Sci. USA 2017, 114, 6154–6156. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wang, Z.W.; Wen, P.; Wei, W.; Chen, Y.; Ai, H.; Sun, W.B. Hydrocarbons mediate seed dispersal: A new mechanism of vespicochory. New Phytol. 2018, 220, 714–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer 2006, 6, 789–802. [Google Scholar] [CrossRef] [Green Version]
- Park, D.S.; Morris, E.J.; Greene, L.A.; Geller, H.M. G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J. Neurosci. 1997, 17, 1256–1270. [Google Scholar] [CrossRef] [Green Version]
- Walowsky, C.; Fitzhugh, D.J.; Castaño, I.B.; Ju, J.Y.; Levin, N.A.; Christman, M.F. The Topoisomerase-related Function Gene TRF4 Affects Cellular Sensitivity to the Antitumor Agent Camptothecin. J. Biol. Chem. 1999, 274, 7302–7308. [Google Scholar] [CrossRef] [Green Version]
- Kroep, J.R.; Gelderblom, H. Diflomotecan, a promising homocamptothecin for cancer therapy. Expert Opin. Investig. Drugs 2009, 18, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Moukharskaya, J.; Verschraegen, C. Topoisomerase 1 Inhibitors and Cancer Therapy. Hematol. Oncol. Clin. N. Am. 2012, 26, 507–525. [Google Scholar] [CrossRef]
- Bailly, C. Topoisomerase I poisons and suppressors as anticancer drugs. Curr. Med. Chem. 2000, 7, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Drummond-Barbosa, D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019, 213, 9–26. [Google Scholar] [CrossRef]
- Nishida, M.; Tsunoda, H.; Ichikawa, Y.; Yoshikawa, H. Complete response to irinotecan hydrochloride and nedaplatin in a patient with advanced ovarian clear cell carcinoma. Int. J. Clin. Oncol. 2004, 9, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Drummond-Barbosa, E.T.A.A. Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals. Development 2013, 140, 530–540. [Google Scholar]
- Novak, B.; Tyson, J.J.; Gyorffy, B.; Csikasz-Nagy, A. Irreversible cell-cycle transitions are due to systems-level feedback. Nat. Cell Biol. 2007, 9, 724–728. [Google Scholar] [CrossRef]
- Lilly, M.A.; de Cuevas, M.; Spradling, A.C. Cyclin A associates with the fusome during germline cyst formation in the Drosophila ovary. Dev. Biol. 2000, 218, 53–63. [Google Scholar] [CrossRef]
- Flora, P.; Schowalter, S.; Wong-Deyrup, S.; DeGennaro, M.; Nasrallah, M.A.; Rangan, P. Transient transcriptional silencing alters the cell cycle to promote germline stem cell differentiation in Drosophila. Dev. Biol. 2018, 434, 84–95. [Google Scholar] [CrossRef]
- Chen, D.; McKearin, D.M. A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell. Development 2003, 130, 1159–1170. [Google Scholar] [CrossRef] [Green Version]
- McKearin, D.M.; Spradling, A.C. bag-of-marbles: A Drosophila gene required to initiate both male and female gametogenesis. Genes Dev. 1990, 4, 2242–2251. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Minor, N.T.; Park, J.K.; McKearin, D.M.; Maines, J.Z. Bam and Bgcn antagonize Nanos-dependent germ-line stem cell maintenance. Proc. Natl. Acad. Sci. USA 2009, 106, 9304–9309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohlstein, B.; McKearin, D. Ectopic expression of the Drosophila Bam protein eliminates oogenic germline stem cells. Development 1997, 124, 3651–3662. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Han, Y.; Song, X.; Do, T.; Yang, Z.; Ni, J.; Xie, T. DNA damage-induced Lok/CHK2 activation compromises germline stem cell self-renewal and lineage differentiation. Development 2016, 143, 4312–4323. [Google Scholar] [PubMed]
- Jiang, J.; Struhl, G. Protein kinase A and hedgehog signaling in Drosophila limb development. Cell 1995, 80, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhong, G.; Chai, P.C.; Luo, L.; Liu, S.; Yang, Y.; Baeg, G.H.; Cai, Y. Coordinated niche-associated signals promote germline homeostasis in the Drosophila ovary. J. Cell Biol. 2015, 211, 469–484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, S.; Sun, Z.; Cai, Y.; Zhong, G.; Yi, X. Camptothecin Effectively Regulates Germline Differentiation through Bam–Cyclin A Axis in Drosophila melanogaster. Int. J. Mol. Sci. 2023, 24, 1617. https://doi.org/10.3390/ijms24021617
Zhang J, Zhang S, Sun Z, Cai Y, Zhong G, Yi X. Camptothecin Effectively Regulates Germline Differentiation through Bam–Cyclin A Axis in Drosophila melanogaster. International Journal of Molecular Sciences. 2023; 24(2):1617. https://doi.org/10.3390/ijms24021617
Chicago/Turabian StyleZhang, Jing, Shijie Zhang, Zhipeng Sun, Yu Cai, Guohua Zhong, and Xin Yi. 2023. "Camptothecin Effectively Regulates Germline Differentiation through Bam–Cyclin A Axis in Drosophila melanogaster" International Journal of Molecular Sciences 24, no. 2: 1617. https://doi.org/10.3390/ijms24021617
APA StyleZhang, J., Zhang, S., Sun, Z., Cai, Y., Zhong, G., & Yi, X. (2023). Camptothecin Effectively Regulates Germline Differentiation through Bam–Cyclin A Axis in Drosophila melanogaster. International Journal of Molecular Sciences, 24(2), 1617. https://doi.org/10.3390/ijms24021617