Recent Advances of Microfluidic Platform for Cell Based Non-Invasive Prenatal Diagnosis
Abstract
:1. Introduction
2. The Progress of Prenatal Screening Test for Fetal Aneuploidies
3. Cell Based NIPD
4. Microfluidics Technologies for NIPD
4.1. Immunoaffinity Based Microfluidic Technique
4.2. Size-Based Microfluidic Technology
5. Isolation of Fetal Cells
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, J.K.; Mutton, D.E.; Alberman, E. Revised estimates of the maternal age specific live birth prevalence of Down’s syndrome. J. Med. Screen. 2002, 9, 2–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACOG Committee on Practice Bulletins. ACOG Practice Bulletin No. 77: Screening for fetal chromosomal abnormalities. Obstet. Gynecol. 2007, 109, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, K.H.; Azar, G.; Byrne, D.; Mansur, C.; Marks, K. Fetal nuchal translucency: Ultrasound screening for chromosomal defects in first trimester of pregnancy. Br. Med. J. 1992, 304, 867–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santorum, M.; Wright, D.; Syngelaki, A.; Karagioti, N.; Nicolaides, K.H. Accuracy of first-trimester combined test in screening for trisomies 21, 18 and 13. Ultrasound Obstet. Gynecol. 2017, 49, 714–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, Y.M.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 1997, 350, 485–487. [Google Scholar] [CrossRef]
- Palomaki, G.E.; Kloza, E.M.; Lambert-Messerlian, G.M.; Haddow, J.E.; Neveux, L.M.; Ehrich, M.; van den Boom, D.; Bombard, A.T.; Deciu, C.; Grody, W.W.; et al. DNA sequencing of maternal plasma to detect down syndrome: An international clinical validation study. Genet. Med. 2011, 13, 913–920. [Google Scholar] [CrossRef]
- Mackie, F.L.; Hemming, K.; Allen, S.; Morris, R.K.; Kilby, M.D. The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: A systematic review and bivariate meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2017, 124, 32–46. [Google Scholar] [CrossRef] [Green Version]
- Pös, O.; Budiš, J.; Szemes, T. Recent trends in prenatal genetic screening and testing. F1000Research 2019, 8, 764. [Google Scholar] [CrossRef]
- Walknowska, J.; Conte, F.; Grumbach, M. Practical and theoretical implications of fetal/maternal lymphocyte transfer. Lancet 1969, 293, 1119–1122. [Google Scholar] [CrossRef]
- Sabbatinelli, G.; Fantasia, D.; Palka, C.; Morizio, E.; Alfonsi, M.; Calabrese, G. Isolation and Enrichment of Circulating Fetal Cells for NIPD: An Overview. Diagnostics 2021, 11, 2239. [Google Scholar] [CrossRef]
- Oudejans, C.B.M.; Tjoa, M.L.; Westerman, B.A.; Mulders, M.A.M.; Van Wijk, I.J.; Van Vugt, J.M.G. Circulating trophoblast in maternal blood. Prenat. Diagn. 2003, 23, 111–116. [Google Scholar] [CrossRef]
- Malvestiti, F.; Agrati, C.; Grimi, B.; Pompilii, E.; Izzi, C.; Martinoni, L.; Gaetani, E.; Liuti, M.R.; Trotta, A.; Maggi, F.; et al. Interpreting mosaicism in chorionic villi: Results of a monocentric series of 1001 mosaics in chorionic villi with follow-up amniocentesis. Prenat. Diagn. 2015, 35, 1117–1127. [Google Scholar] [CrossRef]
- Kleihauer, E.; Braun, H.; Betke, K. Demonstration von fetalem Hämoglobin in den Erythrocyten Eines Blutausstrichs. Klin. Wochenschr. 1957, 35, 637–638. [Google Scholar] [CrossRef]
- Gänshirt, D.; Garritsen, H.; Miny, P.; Holzgreve, W. Fetal cells in maternal circulation throughout gestation. Lancet 1994, 343, 1038–1039. [Google Scholar] [CrossRef]
- Kavanagh, D.; Kersaudy-Kerhoas, M.; Dhariwal, R.; Desmulliez, M. Current and emerging techniques of fetal cell separation from maternal blood. J. Chromatogr. B 2010, 878, 1905–1911. [Google Scholar] [CrossRef]
- Pearson, H.A. Life-span of the fetal red blood cell. J. Pediatr. 1967, 70, 166–171. [Google Scholar] [CrossRef]
- Gänshirt-Ahlert, D.; Pohlschmidt, M.; Gal, A.; Miny, P.; Horst, J.; Holzgreve, W. Ratio of fetal to maternal DNA is less than 1 in 5000 at different gestational ages in maternal blood. Clin. Genet. 1990, 38, 38–43. [Google Scholar] [CrossRef]
- Price, J.O.; Elias, S.; Wachtel, S.S.; Klinger, K.; Dockter, M.; Tharapel, A.; Shulman, L.P.; Phillips, O.P.; Meyers, C.M.; Shook, D.; et al. Prenatal diagnosis with fetal cells isolated from maternal blood by multiparameter flow cytometry. Am. J. Obstet. Gynecol. 1991, 165, 1731–1737. [Google Scholar] [CrossRef]
- He, Z.; Guo, F.; Feng, C.; Cai, B.; Lata, J.P.; He, R.; Huang, Q.; Yu, X.; Rao, L.; Liu, H.; et al. Fetal nucleated red blood cell analysis for non-invasive prenatal diagnostics using a nanostructure microchip. J. Mater. Chem. B 2017, 5, 226–235. [Google Scholar] [CrossRef]
- Hou, S.; Chen, J.-F.; Song, M.; Zhu, Y.; Jan, Y.J.; Chen, S.H.; Weng, T.-H.; Ling, D.-A.; Chen, S.-F.; Ro, T.; et al. Imprinted NanoVelcro microchips for isolation and characterization of circulating fetal trophoblasts: Toward noninvasive prenatal diagnostics. ACS Nano 2017, 11, 8167–8177. [Google Scholar] [CrossRef]
- Huang, C.-E.; Ma, G.-C.; Jou, H.-J.; Lin, W.-H.; Lee, D.-J.; Lin, Y.-S.; Ginsberg, N.A.; Chen, H.-F.; Chang, F.M.-C.; Chen, M. Noninvasive prenatal diagnosis of fetal aneuploidy by circulating fetal nucleated red blood cells and extravillous trophoblasts using silicon-based nanostructured microfluidics. Mol. Cytogenet. 2017, 10, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, C.; He, Z.; Cai, B.; Peng, J.; Song, J.; Yu, X.; Sun, Y.; Yuan, J.; Zhao, X.; Zhang, Y. Non-invasive prenatal diagnosis of chromosomal aneuploidies and microdeletion syndrome using fetal nucleated red blood cells isolated by nanostructure microchips. Theranostics 2018, 8, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.-C.; Lin, W.-H.; Huang, C.-E.; Chang, T.-Y.; Liu, J.-Y.; Yang, Y.-J.; Lee, M.-H.; Wu, W.-J.; Chang, Y.-S.; Chen, M. A silicon-based coral-like nanostructured microfluidics to isolate rare cells in human circulation: Validation by SK-BR-3 cancer cell line and its utility in circulating fetal nucleated red blood cells. Micromachines 2019, 10, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonek, J.; Muller, R.; Muller-Cohn, J.; Dickerson, J.; Lopez, B.G.; Barber-Singh, J.; Dufek, D.; Hiett, A.K.; Buchanan, P. Identification of fetal aneuploidy with dual-probe fluorescence in situ hybridization analysis in circulating trophoblasts after enrichment using a high-sensitivity microfluidic platform. Prenat. Diagn. 2021, 41, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Cayrefourcq, L.; Vincent, M.-C.; Pierredon, S.; Moutou, C.; Imbert-Bouteille, M.; Haquet, E.; Puechberty, J.; Willems, M.; Liautard-Haag, C.; Molinari, N.; et al. Single circulating fetal trophoblastic cells eligible for non invasive prenatal diagnosis: The exception rather than the rule. Sci. Rep. 2020, 10, 9861. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, S.; Chao, S.; Wu, L.; Tao, M.; Situ, B.; Ye, X.; Zhang, Y.; Luo, S.; Chen, W.; et al. Isolation of circulating fetal trophoblasts by a four-stage inertial microfluidic device for single-cell analysis and noninvasive prenatal testing. Lab Chip 2020, 20, 4342–4348. [Google Scholar] [CrossRef]
- Fiddler, M. Fetal Cell Based Prenatal Diagnosis: Perspectives on the Present and Future. J. Clin. Med. 2014, 3, 972–985. [Google Scholar] [CrossRef]
- Singh, R.; Hatt, L.; Ravn, K.; Vogel, I.; Petersen, O.B.; Uldbjerg, N.; Schelde, P. Fetal cells in maternal blood for prenatal diagnosis: A love story rekindled. Biomark. Med. 2017, 11, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, D.; Simpson, J.; Jackson, L. National Institute of Child Health and Development Fetal Cell Isolation Study. Fetal gender and aneuploidy detection using fetal cells in maternal blood: Analysis of NIFTY I data. Prenat. Diagn. 2002, 22, 609–615. [Google Scholar] [CrossRef]
- Bhat, M.P.; Thendral, V.; Uthappa, U.T.; Lee, K.-H.; Kigga, M.; Altalhi, T.; Kurkuri, M.D.; Kant, K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. Biosensors 2022, 12, 220. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, L.; Wei, X.; Cai, B.; Sun, Y.; Zhang, Y.; Liao, L.; Zhao, X.-Z. High-throughput isolation of fetal nucleated red blood cells by multifunctional microsphere-assisted inertial microfluidics. Biomed. Microdevices 2020, 22, 75. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Liu, Y.; Zhao, Y.; Zhang, L.; Zhang, L.; Mao, H.; Huang, C. Nanotechnology-assisted isolation and analysis of circulating tumor cells on microfluidic devices. Micromachines 2020, 11, 774. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, R.; Zhang, L.; Guo, S. Nanomaterial-Based Immunocapture Platforms for the Recognition, Isolation, and Detection of Circulating Tumor Cells. Front. Bioeng. Biotechnol. 2022, 10, 850241. [Google Scholar] [CrossRef] [PubMed]
- Dundas, C.M.; Demonte, D.; Park, S. Streptavidin–biotin technology: Improvements and innovations in chemical and biological applications. Appl. Microbiol. Biotechnol. 2013, 97, 9343–9353. [Google Scholar] [CrossRef]
- Stayton, P.S.; Freitag, S.; Klumb, A.L.; Chilkoti, A.; Chu, V.; Penzotti, E.J.; To, R.; Hyre, D.; Le Trong, I.; Lybrand, T.P.; et al. Streptavidin–biotin binding energetics. Biomol. Eng. 1999, 16, 39–44. [Google Scholar] [CrossRef]
- Carey, T.R.; Cotner, K.L.; Li, B.; Sohn, L.L. Developments in label-free microfluidic methods for single-cell analysis and sorting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1529. [Google Scholar] [CrossRef] [Green Version]
- Rossi, E.; Zamarchi, R. Single-cell analysis of circulating tumor cells: How far have we come in the -omics era? Front. Genet. 2019, 10, 958. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Lu, Y.-T.; Li, F.; Wu, K.; Hou, S.; Yu, J.; Shen, Q.; Wu, D.; Song, M.; Ouyang, W.-H.; et al. High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing. Adv. Mater. 2013, 25, 2897–2902. [Google Scholar] [CrossRef] [Green Version]
- Emmert-Buck, M.R.; Bonner, R.F.; Smith, P.D.; Chuaqui, R.F.; Zhuang, Z.; Goldstein, S.R.; Weiss, R.A.; Liotta, L.A. Laser capture microdissection. Science 1996, 274, 998–1001. [Google Scholar] [CrossRef]
Authors/Year/Ref. | Case No. | GA | Cell Type | Microfluidic Platform | Markers for Enrichment | Immuno-Staining | Cell No. | Down-Stream Analysis |
---|---|---|---|---|---|---|---|---|
Immunoaffinity | ||||||||
He (2017) [19] | 48 | 10–30 | fnRBCs | HA/CTS NPs | CD147 | ε-HbF+/CD71+/DAPI+ | 3–71/mL | FISH |
Hou (2017) [20] | 15 | 8–23 | EVTs | NanoVelcro Microchip | EpCAM | Hoechst+/CK7+/HLA-G+/CD45− | 3–6/2mL * 5–15/2 mL ** | aCGH, STR |
Huang CE (2017) [21] | 24 | 11–13 | EVTs | Cell Reveal with PicoBioChip | EpCAM | CK7+/ HLA-G+/CD45−/DAPI+ | 1–44/4mL | FISH, aCGH, STR, NGS |
fnRBCs | Cell RevealTM system with PicoBioChip | CD71 | CD71+/GPA+/ CD45−/DAPI+ | 14–22/4mL | FISH, aCGH, STR, NGS | |||
Feng (2018) [22] | 13 | ~18 | fnRBCs | Biotin-doped Ppy microchip | CD147 | ε-HbF+/CD71+/DAPI+ | NA | FISH, WEA |
Ma (2019) [23] | 14 | 13–27 | fnRBCs | Cell RevealTM system with Coral Chip | CD71 | CD71+/GPA+/CD45−/Hoechst+ | 2–71/2 mL | FISH, aCGH, STR, NGS |
Sonek (2021) [24] | 9 | 12–35 | EVTs | LiquidScan® | EpCAM | None | 1.28/mL | FISH |
6 | 12–35 | EVTs | LiquidScan® | mixture | None | 2.67/mL | FISH | |
Size-based (Label free) | ||||||||
Cayrefourcq (2020) [25] | 16 | 10–16 | EVTs | Pasotix system | None | CD105+/ panCK+/ β-hCG+/CD45− | Only 5 fetal cells obtained | WGA |
Huang Y (2020) [26] | 30 | NA | EVTs | CelutriateChip 1 | None | CK7+/CD45−/DAPI+ | 1–3/2mL in 26/30 cases | WGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jou, H.-J.; Lo, P.-H.; Ling, P.-Y. Recent Advances of Microfluidic Platform for Cell Based Non-Invasive Prenatal Diagnosis. Int. J. Mol. Sci. 2023, 24, 991. https://doi.org/10.3390/ijms24020991
Jou H-J, Lo P-H, Ling P-Y. Recent Advances of Microfluidic Platform for Cell Based Non-Invasive Prenatal Diagnosis. International Journal of Molecular Sciences. 2023; 24(2):991. https://doi.org/10.3390/ijms24020991
Chicago/Turabian StyleJou, Hei-Jen, Pei-Hsuan Lo, and Pei-Ying Ling. 2023. "Recent Advances of Microfluidic Platform for Cell Based Non-Invasive Prenatal Diagnosis" International Journal of Molecular Sciences 24, no. 2: 991. https://doi.org/10.3390/ijms24020991
APA StyleJou, H. -J., Lo, P. -H., & Ling, P. -Y. (2023). Recent Advances of Microfluidic Platform for Cell Based Non-Invasive Prenatal Diagnosis. International Journal of Molecular Sciences, 24(2), 991. https://doi.org/10.3390/ijms24020991