Pharmacogenomic Landscape of Ivermectin and Selective Antioxidants: Exploring Gene Interplay in the Context of Long COVID
Abstract
:1. Introduction
2. Results
2.1. Structural Formulas of Ivermectin and the 6 Selected Antioxidants
2.2. Interacting Genes of Ivermectin and the Six Selected Antioxidants with COVID-19
2.3. Gene Ontology Analyses
2.4. Target Gene–KEGG Pathway Network
2.5. Network Analysis
2.6. Disease Analysis
2.7. Target Identification of Genes
3. Discussion
3.1. Ivermectin as a Repurposing COVID-19 Drug
3.2. Antioxidants in Attenuating COVID-19 Symptoms
3.3. Pharmacogenomic Analyses of Ivermectin and the Selected 6 Antioxidants
3.4. microRNA Analyses for COVID-19 Medicines
3.5. Essentiality and Limitation of Pharmacogenomic for COVID-19 Treatments
4. Materials and Methods
4.1. Curated Interaction Analysis
4.2. Gene Ontology (GO) Enrichment Analysis
4.3. Disease Analysis
4.4. Identifications of Target microRNA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, M.; Sawajan, N.; Rungrotmongkol, T.; Sanachai, K.; Ershadian, M.; Sukasem, C. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Front. Pharmacol. 2022, 13, 835136. [Google Scholar] [CrossRef] [PubMed]
- Heidary, F.; Gharebaghi, R. Ivermectin: A systematic review from antiviral effects to COVID-19 complementary regimen. J. Antibiot. 2020, 73, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Hariyanto, T.I.; Halim, D.A.; Rosalind, J.; Gunawan, C.; Kurniawan, A. Ivermectin and outcomes from COVID-19 pneumonia: A systematic review and meta-analysis of randomized clinical trial studies. Rev. Med. Virol. 2022, 32, e2265. [Google Scholar] [CrossRef]
- López-Medina, E.; López, P.; Hurtado, I.C.; Dávalos, D.M.; Ramirez, O.; Martínez, E.; Díazgranados, J.A.; Oñate, J.M.; Chavarriaga, H.; Herrera, S.; et al. Effect of Ivermectin on Time to Resolution of Symptoms among Adults with Mild COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- La Maestra, S.; De Flora, S.; Balansky, R. Antioxidants and COVID-19. J. Prev. Med. Hyg. 2021, 62 (Suppl. S3), E34–E45. [Google Scholar] [CrossRef]
- Mrityunjaya, M.; Pavithra, V.; Neelam, R.; Janhavi, P.; Halami, P.M.; Ravindra, P.V. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front. Immunol. 2020, 11, 570122. [Google Scholar] [CrossRef]
- Liu, J.; Bodnar, B.H.; Meng, F.; Khan, A.I.; Wang, X.; Saribas, S.; Wang, T.; Lohani, S.C.; Wang, P.; Wei, Z.; et al. Epigallocatechin gallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor. Cell Biosci. 2021, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Vahedian-Azimi, A.; Abbasifard, M.; Rahimi-Bashar, F.; Guest, P.C.; Majeed, M.; Mohammadi, A.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients 2022, 14, 256. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, D.C.; Angadi, U.B.; Yadav, R.; Rai, A.; Kumar, D. Inhibition Potencies of Phytochemicals Derived from Sesame against SARS-CoV-2 Main Protease: A Molecular Docking and Simulation Study. Front. Chem. 2021, 9, 744376. [Google Scholar] [CrossRef] [PubMed]
- Messaoudi, O.; Gouzi, H.; El-Hoshoudy, A.N.; Benaceur, F.; Patel, C.; Goswami, D.; Boukerouis, D.; Bendahou, M. Berries anthocyanins as potential SARS-CoV–2 inhibitors targeting the viral attachment and replication; molecular docking simulation. Egypt. J. Pet. 2021, 30, 33–43. [Google Scholar] [CrossRef]
- Manjunath, S.H.; Thimmulappa, R.K. Antiviral, immunomodulatory, and anticoagulant effects of quercetin and its derivatives: Potential role in prevention and management of COVID-19. J. Pharm. Anal. 2022, 12, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Faverio, P.; Rebora, P.; Rossi, E.; Del Giudice, S.; Montanelli, F.; Garzillo, L.; Busnelli, S.; Luppi, F.; Valsecchi, M.G.; Pesci, A. Impact of N-acetyl-l-cysteine on SARS-CoV-2 pneumonia and its sequelae: Results from a large cohort study. ERJ Open Res. 2022, 8. [Google Scholar] [CrossRef]
- Cuozzo, A.; Daina, A.; Perez, M.A.S.; Michielin, O.; Zoete, V. SwissBioisostere 2021: Updated structural, bioactivity and physicochemical data delivered by a reshaped web interface. Nucleic Acids Res. 2021, 50, D1382–D1390. [Google Scholar] [CrossRef]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef]
- Perez-Garcia, L.A.; Mejias-Carpio, I.E.; Delgado-Noguera, L.A.; Manzanarez-Motezuma, J.P.; Escalona-Rodriguez, M.A.; Sordillo, E.M.; Mogollon-Rodriguez, E.A.; Hernandez-Pereira, C.E.; Marquez-Colmenarez, M.C.; Paniz-Mondolfi, A.E. Ivermectin: Repurposing a multipurpose drug for Venezuela’s humanitarian crisis. Int. J. Antimicrob. Agents 2020, 56, 106037. [Google Scholar] [CrossRef]
- González-Paz, L.; Hurtado-León, M.L.; Lossada, C.; Fernández-Materán, F.V.; Vera-Villalobos, J.; Loroño, M.; Paz, J.L.; Jeffreys, L.; Alvarado, Y.J. Structural deformability induced in proteins of potential interest associated with COVID-19 by binding of homologues present in ivermectin: Comparative study based in elastic networks models. J. Mol. Liq. 2021, 340, 117284. [Google Scholar] [CrossRef]
- Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 2020, 178, 104787. [Google Scholar] [CrossRef]
- Ahmed, F.F.; Reza, M.S.; Sarker, M.S.; Islam, M.S.; Mosharaf, M.P.; Hasan, S.; Mollah, M.N.H. Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. PLoS ONE 2022, 17, e0266124. [Google Scholar] [CrossRef]
- Akinbolade, S.; Coughlan, D.; Fairbairn, R.; McConkey, G.; Powell, H.; Ogunbayo, D.; Craig, D. Combination therapies for COVID-19: An overview of the clinical trials landscape. Br. J. Clin. Pharmacol. 2022, 88, 1590–1597. [Google Scholar] [CrossRef] [PubMed]
- Henss, L.; Auste, A.; Schürmann, C.; Schmidt, C.; von Rhein, C.; Mühlebach, M.D.; Schnierle, B.S. The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection. J. Gen. Virol. 2021, 102. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Li, Q.-S.; Zheng, X.-Q.; Lu, J.-L.; Liang, Y.-R. Antiviral Effects of Green Tea EGCG and Its Potential Application against COVID-19. Molecules 2021, 26, 3962. [Google Scholar] [CrossRef] [PubMed]
- Pawar, K.S.; Mastud, R.N.; Pawar, S.K.; Pawar, S.S.; Bhoite, R.R.; Bhoite, R.R.; Kulkarni, M.V.; Deshpande, A.R. Oral Curcumin with Piperine as Adjuvant Therapy for the Treatment of COVID-19: A Randomized Clinical Trial. Front. Pharmacol. 2021, 12, 1056. [Google Scholar] [CrossRef] [PubMed]
- Thimmulappa, R.K.; Mudnakudu-Nagaraju, K.K.; Shivamallu, C.; Subramaniam, K.J.T.; Radhakrishnan, A.; Bhojraj, S.; Kuppusamy, G. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021, 7, e06350. [Google Scholar] [CrossRef]
- Zupin, L.; Fontana, F.; Clemente, L.; Borelli, V.; Ricci, G.; Ruscio, M.; Crovella, S. Optimization of Anti-SARS-CoV-2 Treatments Based on Curcumin, Used Alone or Employed as a Photosensitizer. Viruses 2022, 14, 2132. [Google Scholar] [CrossRef] [PubMed]
- Askari, G.; Sahebkar, A.; Soleimani, D.; Mahdavi, A.; Rafiee, S.; Majeed, M.; Khorvash, F.; Iraj, B.; Elyasi, M.; Rouhani, M.H.; et al. The efficacy of curcumin-piperine co-supplementation on clinical symptoms, duration, severity, and inflammatory factors in COVID-19 outpatients: A randomized double-blind, placebo-controlled trial. Trials 2022, 23, 472. [Google Scholar] [CrossRef] [PubMed]
- Majdalawieh, A.F.; Yousef, S.M.; Abu-Yousef, I.A.; Nasrallah, G.K. Immunomodulatory and anti-inflammatory effects of sesamin: Mechanisms of action and future directions. Crit. Rev. Food Sci. Nutr. 2022, 62, 5081–5112. [Google Scholar] [CrossRef] [PubMed]
- Magurano, F.; Micucci, M.; Nuzzo, D.; Baggieri, M.; Picone, P.; Gioacchini, S.; Fioravanti, R.; Bucci, P.; Kojouri, M.; Mari, M.; et al. A potential host and virus targeting tool against COVID-19: Chemical characterization, antiviral, cytoprotective, antioxidant, respiratory smooth muscle relaxant effects of Paulownia tomentosa Steud. Biomed. Pharmacother. 2023, 158, 114083. [Google Scholar] [CrossRef] [PubMed]
- Akinnusi, P.A.; Olubode, S.O.; Salaudeen, W.A. Molecular binding studies of anthocyanins with multiple antiviral activities against SARS-CoV-2. Bull. Natl. Res. Cent. 2022, 46, 102. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, M.; Zhang, H.; Qian, X.; Luo, L.; He, Z. Anthocyanins Inhibit Airway Inflammation by Downregulating the NF-κB Pathway via the miR-138-5p/SIRT1 Axis in Asthmatic Mice. Int. Arch. Allergy Immunol. 2022, 183, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Saeedi-Boroujeni, A.; Mahmoudian-Sani, M.-R. Anti-inflammatory potential of Quercetin in COVID-19 treatment. J. Inflamm. 2021, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Iqtadar, S.; Khan, A.; Ullah Mumtaz, S.; Masud Chaudhry, M.; Bertuccioli, A.; Derosa, G.; Maffioli, P.; Togni, S.; Riva, A.; et al. Potential Clinical Benefits of Quercetin in the Early Stage of COVID-19: Results of a Second, Pilot, Randomized, Controlled and Open-Label Clinical Trial. Int. J. Gen. Med. 2021, 14, 2807–2816. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Puyo, C.A. N-Acetylcysteine to Combat COVID-19: An Evidence Review. Ther. Clin. Risk Manag. 2020, 16, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Poe, F.L.; Corn, J. N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2. Med. Hypotheses 2020, 143, 109862. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.K.; Lee, S.W.H.; Kua, K.P. N-Acetylcysteine as Adjuvant Therapy for COVID-19—A Perspective on the Current State of the Evidence. J. Inflamm. Res. 2021, 14, 2993–3013. [Google Scholar] [CrossRef] [PubMed]
- Atefi, N.; Behrangi, E.; Mozafarpoor, S.; Seirafianpour, F.; Peighambari, S.; Goodarzi, A. N-acetylcysteine and coronavirus disease 2019: May it work as a beneficial preventive and adjuvant therapy? A comprehensive review study. J. Res. Med. Sci. 2020, 25, 109. [Google Scholar] [CrossRef] [PubMed]
- Walayat, S.; Shoaib, H.; Asghar, M.; Kim, M.; Dhillon, S. Role of N-acetylcysteine in non-acetaminophen-related acute liver failure: An updated meta-analysis and systematic review. Ann. Gastroenterol. 2021, 34, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour, A.; Daneshzad, E.; Dezfouli, R.A.; Zamani, S.; Qorbani, M. The Association Between Antioxidants and COVID-19 Outcomes: A Systematic Review on Observational Studies. Biol. Trace Elem. Res. 2023, 201, 5098–5114. [Google Scholar] [CrossRef]
- Fricke-Galindo, I.; Falfán-Valencia, R. Pharmacogenetics Approach for the Improvement of COVID-19 Treatment. Viruses 2021, 13, 413. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Luzum, J.A.; Nicol, M.R.; Jacobson, P.A. Pharmacogenomics of COVID-19 therapies. NPJ Genom. Med. 2020, 5, 35. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Hossain, N.; Kashem, M.A.; Shahid, M.A.; Alam, A. Immune response in COVID-19: A review. J. Infect. Public Health 2020, 13, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Z.; Wang, Z.; Gutiérrez-Castrellón, P.; Shi, H. Cell deaths: Involvement in the pathogenesis and intervention therapy of COVID-19. Signal Transduct. Target. Ther. 2022, 7, 186. [Google Scholar] [CrossRef] [PubMed]
- De Francesco, E.M.; Vella, V.; Belfiore, A. COVID-19 and Diabetes: The Importance of Controlling RAGE. Front. Endocrinol. 2020, 11, 526. [Google Scholar] [CrossRef] [PubMed]
- Matczak, S.; Levy, C.; Fortas, C.; Cohen, J.F.; Béchet, S.; Aït El Belghiti, F.; Guillot, S.; Trombert-Paolantoni, S.; Jacomo, V.; Savitch, Y.; et al. Association between the COVID-19 pandemic and pertussis derived from multiple nationwide data sources, France, 2013 to 2020. Eurosurveillance 2022, 27, 2100933. [Google Scholar] [CrossRef] [PubMed]
- Rottoli, M.; Gori, A.; Pellino, G.; Flacco, M.E.; Martellucci, C.; Spinelli, A.; Poggioli, G.; COVID–Colorectal Cancer (CRC) Study Group. Colorectal Cancer Stage at Diagnosis before vs during the COVID-19 Pandemic in Italy. JAMA Netw. Open 2022, 5, e2243119. [Google Scholar] [CrossRef]
- Attique, Z.; Ali, A.; Hamza, M.; al-Ghanim, K.A.; Mehmood, A.; Khan, S.; Ahmed, Z.; Al-Mulhm, N.; Rizwan, M.; Munir, A.; et al. In-silico network-based analysis of drugs used against COVID-19: Human well-being study. Saudi J. Biol. Sci. 2021, 28, 2029–2039. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Bae, J.H.; Kwon, H.-S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol. 2021, 17, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Galyfos, G.; Sianou, A.; Frountzas, M.; Vasilios, K.; Vouros, D.; Theodoropoulos, C.; Michalopoulou, V.; Sigala, F.; Filis, K. Acute limb ischemia among patients with COVID-19 infection. J. Vasc. Surg. 2022, 75, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Liaquat, A.; Shabbir, S.; Bokhari, S.A.; Tariq, Z.; Furrukh, Z.; Raja, A.A.; Khan, M.J. High level of lactate dehydrogenase and ischaemia–reperfusion injury regulate the multiple organ dysfunction in patients with COVID-19. Postgrad. Med. J. 2022, 99, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Farr, R.J.; Rootes, C.L.; Rowntree, L.C.; Nguyen, T.H.O.; Hensen, L.; Kedzierski, L.; Cheng, A.C.; Kedzierska, K.; Au, G.G.; Marsh, G.A.; et al. Altered microRNA expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLoS Pathog. 2021, 17, e1009759. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hu, X.; Li, L.; Li, J.-H. Differential microRNA expression in the peripheral blood from human patients with COVID-19. J. Clin. Lab. Anal. 2020, 34, e23590. [Google Scholar] [CrossRef]
- Lou, L.; Tian, M.; Chang, J.; Li, F.; Zhang, G. MiRNA-192-5p attenuates airway remodeling and autophagy in asthma by targeting MMP-16 and ATG7. Biomed. Pharmacother. 2020, 122, 109692. [Google Scholar] [CrossRef]
- Bartel, S.; La Grutta, S.; Cilluffo, G.; Perconti, G.; Bongiovanni, A.; Giallongo, A.; Behrends, J.; Kruppa, J.; Hermann, S.; Chiang, D.; et al. Human airway epithelial extracellular vesicle miRNA signature is altered upon asthma development. Allergy 2020, 75, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Houshmandfar, S.; Saeedi-Boroujeni, A.; Rashno, M.; Khodadadi, A.; Mahmoudian-Sani, M.-R. miRNA-223 as a regulator of inflammation and NLRP3 inflammasome, the main fragments in the puzzle of immunopathogenesis of different inflammatory diseases and COVID-19. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Badary, O.A. Pharmacogenomics and COVID-19: Clinical implications of human genome interactions with repurposed drugs. Pharmacogenom. J. 2021, 21, 275–284. [Google Scholar] [CrossRef]
- Surendiran, A.; Pradhan, S.C.; Adithan, C. Role of pharmacogenomics in drug discovery and development. Indian J. Pharmacol. 2008, 40, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Aneesh, T.P.; Sekhar, S.; Jose, A.; Chandran, L.; Zachariah, S.M. Pharmacogenomics: The right drug to the right person. J. Clin. Med. Res. 2009, 1, 191–194. [Google Scholar] [CrossRef]
- Abdullah-Koolmees, H.; van Keulen, A.M.; Nijenhuis, M.; Deneer, V.H.M. Pharmacogenetics Guidelines: Overview and Comparison of the DPWG, CPIC, CPNDS, and RNPGx Guidelines. Front. Pharmacol. 2021, 11, 595219. [Google Scholar] [CrossRef]
- Davis, A.P.; Wiegers, T.C.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Mattingly, C.J. Comparative Toxicogenomics Database (CTD): Update 2023. Nucleic Acids Res. 2022, 51, D1257–D1262. [Google Scholar] [CrossRef]
- Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2016, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009. [Google Scholar]
- Fani, M.; Zandi, M.; Ebrahimi, S.; Soltani, S.; Abbasi, S. The role of miRNAs in COVID-19 disease. Future Virol. 2021, 16, 301–306. [Google Scholar] [CrossRef]
- Zhang, S.; Amahong, K.; Sun, X.; Lian, X.; Liu, J.; Sun, H.; Lou, Y.; Zhu, F.; Qiu, Y. The miRNA: A small but powerful RNA for COVID-19. Brief. Bioinform. 2021, 22, 1137–1149. [Google Scholar] [CrossRef]
- Quillet, A.; Saad, C.; Ferry, G.; Anouar, Y.; Vergne, N.; Lecroq, T.; Dubessy, C. Improving Bioinformatics Prediction of microRNA Targets by Ranks Aggregation. Front. Genet. 2020, 10, 1330. [Google Scholar] [CrossRef]
Gene Symbols | Ensembl ID | Gene Names | Location |
---|---|---|---|
BAX | ENSG00000087088 | BCL2 Associated X, Apoptosis Regulator | 19q13.33 |
BCL2 | ENSG00000171791 | BCL2 Apoptosis Regulator | 18q21.33 |
CASP3 | ENSG00000164305 | Caspase 3 | 4q35.1 |
CAT | ENSG00000121691 | Catalase | 11p13 |
CDH1 | ENSG00000039068 | Cadherin 1 | 16q22.1 |
CTNNB1 | ENSG00000168036 | Catenin Beta 1 | 3p22.1 |
GSR | ENSG00000104687 | Glutathione-Disulfide Reductase | 8p12 |
IL1B | ENSG00000125538 | Interleukin 1 Beta | 2q14.1 |
IL6 | ENSG00000136244 | Interleukin 6 | 7p15.3 |
NOS2 | ENSG00000007171 | Nitric Oxide Synthase 2 | 17q11.2 |
PARP1 | ENSG00000143799 | Poly(ADP-Ribose) Polymerase 1 | 1q42.12 |
TNF | ENSG00000232810 | Tumor Necrosis Factor | 6p21.33 |
hsa-miR-16-2-3p | ||||||||
Gene | miRabel Score | PITA | miRanda | SVMicrO | TargetScan | ExpVal | 5′UTR | CDS |
TNF | 0.988286972 | - | 2668 | 15378 | - | NO | NO | NO |
CASP3 | 0.100207001 | - | 127 | 1966 | 105 | NO | NO | YES |
IL1B | 0.996285021 | - | 4743 | 15,246 | - | NO | NO | YES |
BCL2 | 0.824105024 | - | 3263 | 10,901 | 1647 | NO | NO | NO |
IL6 | 0.752004027 | - | 1639 | 1959 | - | NO | NO | NO |
GSR | 0.962409019 | - | 5136 | 8872 | 3521 | NO | NO | NO |
CTNNB1 | 0.994284987 | - | 4179 | 4578 | - | NO | NO | NO |
hsa-miR-183-5p | ||||||||
Gene | miRabel Score | PITA | miRanda | SVMicrO | TargetScan | ExpVal | 5′UTR | CDS |
CASP3 | 0.983915985 | 2398 | - | 8157 | - | NO | NO | NO |
NOS2 | 0.994018972 | 4567 | - | - | - | NO | NO | NO |
BCL2 | 0.894342005 | 2504 | 5100 | 16,998 | - | NO | NO | NO |
IL6 | 0.994167984 | - | 4906 | 13,116 | - | NO | NO | NO |
GSR | 0.879396021 | 4974 | - | 11,344 | 1877 | YES | NO | YES |
CTNNB1 | 0.984951973 | - | 2573 | 8458 | - | NO | NO | NO |
hsa-miR-6501-5p | ||||||||
Gene | miRabel Score | PITA | miRanda | SVMicrO | TargetScan | ExpVal | 5′UTR | CDS |
TNF | 0.989279985 | - | - | - | 1104 | NO | NO | YES |
CASP3 | 0.968086004 | - | - | - | 235 | NO | NO | YES |
BCL2 | 0.988623023 | - | - | - | 1060 | NO | NO | YES |
GSR | 0.999303997 | - | - | - | 2847 | YES | NO | YES |
hsa-miR-627-5p | ||||||||
Gene | miRabel Score | PITA | miRanda | SVMicrO | TargetScan | ExpVal | 5′UTR | CDS |
CASP3 | 0.961603999 | 3997 | 4606 | 4334 | - | NO | NO | NO |
IL1B | 0.010888 | 3198 | 1449 | 550 | 509 | NO | NO | YES |
BCL2 | 0.526557028 | 2000 | 4630 | 2157 | - | NO | NO | NO |
IL6 | 0.970826983 | - | 853 | 14,610 | - | NO | NO | NO |
CTNNB1 | 0.016702199 | 1179 | 2532 | 1986 | 697 | NO | NO | NO |
hsa-miR-31-5p | ||||||||
Gene | miRabel Score | PITA | miRanda | SVMicrO | TargetScan | ExpVal | 5′UTR | CDS |
BCL2 | 0.99229598 | 3762 | - | - | - | NO | NO | NO |
PARP1 | 0.211814001 | 3328 | 424 | - | 1367 | YES | NO | YES |
CTNNB1 | 0.72943902 | 2940 | 432 | - | - | NO | NO | NO |
hsa-miR-1275 | ||||||||
Gene | miRabel Score | PITA | miRanda | SVMicrO | TargetScan | ExpVal | 5′UTR | CDS |
CASP3 | 0.990505993 | 3998 | - | 5005 | - | NO | YES | NO |
NOS2 | 0.968831003 | 858 | - | - | - | NO | NO | NO |
BCL2 | 0.233618006 | 4952 | 6014 | 4709 | 2540 | NO | NO | YES |
PARP1 | 0.996828973 | 6499 | - | 10,247 | - | NO | NO | YES |
CTNNB1 | 0.996882021 | - | 6808 | 14,157 | - | NO | YES | NO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-F.; Singh, S. Pharmacogenomic Landscape of Ivermectin and Selective Antioxidants: Exploring Gene Interplay in the Context of Long COVID. Int. J. Mol. Sci. 2023, 24, 15471. https://doi.org/10.3390/ijms242015471
Yang Y-F, Singh S. Pharmacogenomic Landscape of Ivermectin and Selective Antioxidants: Exploring Gene Interplay in the Context of Long COVID. International Journal of Molecular Sciences. 2023; 24(20):15471. https://doi.org/10.3390/ijms242015471
Chicago/Turabian StyleYang, Ying-Fei, and Sher Singh. 2023. "Pharmacogenomic Landscape of Ivermectin and Selective Antioxidants: Exploring Gene Interplay in the Context of Long COVID" International Journal of Molecular Sciences 24, no. 20: 15471. https://doi.org/10.3390/ijms242015471
APA StyleYang, Y. -F., & Singh, S. (2023). Pharmacogenomic Landscape of Ivermectin and Selective Antioxidants: Exploring Gene Interplay in the Context of Long COVID. International Journal of Molecular Sciences, 24(20), 15471. https://doi.org/10.3390/ijms242015471