Why Do We Study Aquatic Organisms?
Conflicts of Interest
References
- Zhong, L.; Fu, T.; Wang, C.; Qi, X.; Chan, W.Y.; Cai, D.; Zhao, H. Developmental expression of peroxiredoxin gene family in early embryonic development of Xenopus tropicalis. Gene Expr. Patterns 2023, 14, 119345. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Kaothien, P.; Matsui, T.; Kawaoka, A.; Shinmyo, A. Molecular biology and application of plant peroxidase genes. Appl. Microbiol. Biotechnol. 2003, 60, 665–670. [Google Scholar] [CrossRef]
- Brooks, E.R.; Wallingford, J.B. Multiciliated cells. Curr. Biol. 2014, 24, R973–R982. [Google Scholar] [CrossRef] [PubMed]
- Suzawa, M.; Bland, M.L. Insulin signaling in development. Development 2023, 150, dev201599. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Liao, Z.; Zou, J. Genetic and epigenetic regulators of retinal Müller glial cell reprogramming. Adv. Ophthalmol. Pract. Res. 2023, 3, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Mujica, E.; den Hoed, M. Investigating the role of lipid genes in liver disease using models of steatotic liver disease in zebrafish (Danio rerio). Liver Int. 2023, 43, 2348–2350. [Google Scholar] [CrossRef] [PubMed]
- Nugraha, A.S.; Firli, L.N.; Rani, D.M.; Hidayatiningsih, A.; Lestari, N.D.; Wongso, H.; Tarman, K.; Rahaweman, A.C.; Manurung, J.; Ariantari, N.P.; et al. Indonesian marine and its medicinal contribution. Nat. Prod. Bioprospect. 2023, 13, 38. [Google Scholar] [CrossRef]
- Kaliaperumal, K.; Salendra, L.; Liu, Y.; Ju, Z.; Sahu, S.K.; Elumalai, S.; Subramanian, K.; M Alotaibi, N.; Alshammari, N.; Saeed, M.; et al. Isolation of anticancer bioactive secondary metabolites from the sponge-derived endophytic fungi Penicillium sp. and in-silico computational docking approach. Front. Microbiol. 2023, 14, 1216928. [Google Scholar] [CrossRef]
- Senadheera, T.R.L.; Hossain, A.; Dave, D.; Shahidi, F. Functional and physiochemical properties of protein isolates from different body parts of North Atlantic sea cucumber (Cucumaria frondosa). Food Biosci. 2023, 52, 102511. [Google Scholar] [CrossRef]
- Muhsin, M.F.; Fujaya, Y.; Hidayani, A.A.; Fazhan, H.; Wan Mahari, W.A.; Lam, S.S.; Shu-Chien, A.C.; Wang, Y.; Afiqah-Aleng, N.; Rukminasari, N.; et al. Bridging the gap between sustainability and profitability: Unveiling the untapped potential of sea cucumber viscera. PeerJ 2023, 11, e16252. [Google Scholar] [CrossRef]
- Mashanov, V.; Ademiluyi, S.; Jacob Machado, D.; Reid, R.; Janies, D. Echinoderm radial glia in adult cell renewal, indeterminate growth, and regeneration. Front. Neural Circuits 2023, 17, 1258370. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, F.; Andrade, C.; Simões, B.; Brigham, F.; Valente, R.; Martinez, P.; Rino, J.; Sugni, M.; Coelho, A.V. Regeneration of starfish radial nerve cord restores animal mobility and unveils a new coelomocyte population. Cell Tissue Res. 2023, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Afshar, A.; Khoradmehr, A.; Nowzari, F.; Baghban, N.; Zare, M.; Najafi, M.; Keshavarzi, S.Z.; Zendehboudi, F.; Mohebbi, G.; Barmak, A.; et al. Tissue Extract from Brittle Star Undergoing Arm Regeneration Promotes Wound Healing in Rat. Mar. Drugs 2023, 21, 381. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.C.; Lai, Y.C.; Kuo, T.J.; Su, J.H.; Sung, P.J.; Feng, C.W.; Lin, Y.Y.; Chen, P.C.; Tai, M.H.; Cheng, S.Y.; et al. Rhodoptilometrin, a Crinoid-Derived Anthraquinone, Induces Cell Regeneration by Promoting Wound Healing and Oxidative Phosphorylation in Human Gingival Fibroblast Cells. Mar. Drugs 2019, 17, 138. [Google Scholar] [CrossRef]
- Dai, Y.; Prithiviraj, N.; Gan, J.; Zhang, X.A.; Yan, J. Tissue Extract Fractions from Starfish Undergoing Regeneration Promote Wound Healing and Lower Jaw Blastema Regeneration of Zebrafish. Sci. Rep. 2016, 6, 38693. [Google Scholar] [CrossRef]
- Feng, W.; Liu, S.; Deng, Q.; Fu, S.; Yang, Y.; Dai, X.; Wang, S.; Wang, Y.; Liu, Y.; Lin, X.; et al. A scATAC-seq atlas of chromatin accessibility in axolotl brain regions. Sci. Data 2023, 10, 627. [Google Scholar] [CrossRef]
- Tajer, B.; Savage, A.M.; Whited, J.L. The salamander blastema within the broader context of metazoan regeneration. Front. Cell Dev. Biol. 2023, 11, 1206157. [Google Scholar] [CrossRef]
- Zhong, J.; Aires, R.; Tsissios, G.; Skoufa, E.; Brandt, K.; Sandoval-Guzmán, T.; Aztekin, C. Multi-species atlas resolves an axolotl limb development and regeneration paradox. Nat. Commun. 2023, 14, 6346. [Google Scholar] [CrossRef]
- Sugni, M.; Manno, V.; Barbaglio, A.; Mozzi, D.; Bonasoro, F.; Tremolada, P.; Candia Carnevali, M.D. Echinoderm regenerative response as a sensitive ecotoxicological test for the exposure to endocrine disrupters: Effects of p,p′DDE and CPA on crinoid arm regeneration. Cell Biol. Toxicol. 2008, 24, 573–586. [Google Scholar] [CrossRef]
- Sugni, M.; Mozzi, D.; Barbaglio, A.; Bonasoro, F.; Candia Carnevali, M.D. Endocrine disrupting compounds and echinoderms: New ecotoxicological sentinels for the marine ecosystem. Ecotoxicology 2007, 16, 95–108. [Google Scholar] [CrossRef]
- Nazzari, M.; Romitti, M.; Hauser, D.; Carvalho, D.J.; Giselbrecht, S.; Moroni, L.; Costagliola, S.; Caiment, F. Investigation of the effects of phthalates on in vitro thyroid models with RNA-Seq and ATAC-Seq. Front. Endocrinol. 2023, 14, 1200211. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.; Thacharodi, A.; Priya, A.; Meenatchi, R.; Hegde, T.A.; Nguyen, H.T.; Pugazhendhi, A. Endocrine disruptors: Unravelling the link between chemical exposure and Women’s reproductive health. Environ. Res. 2023, 117385. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Li, Y.; Zhu, M.; Li, J.; Qin, Z. Transcriptional changes caused by estrogenic endocrine disrupting chemicals in gonad-mesonephros complexes of genetic male Xenopus laevis: Multiple biomarkers for early detection of testis differentiation disruption. Sci. Total Environ. 2020, 726, 138522. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.J.; Lu, F.I.; Wu, S.M. Generational effects and abnormalities in craniofacial chondrogenesis in zebrafish (Danio rerio) embryos upon maternal exposure to estrogen endocrine disrupting chemicals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 273, 109743. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kloc, M.; Kubiak, J.Z. Why Do We Study Aquatic Organisms? Int. J. Mol. Sci. 2023, 24, 15807. https://doi.org/10.3390/ijms242115807
Kloc M, Kubiak JZ. Why Do We Study Aquatic Organisms? International Journal of Molecular Sciences. 2023; 24(21):15807. https://doi.org/10.3390/ijms242115807
Chicago/Turabian StyleKloc, Malgorzata, and Jacek Z. Kubiak. 2023. "Why Do We Study Aquatic Organisms?" International Journal of Molecular Sciences 24, no. 21: 15807. https://doi.org/10.3390/ijms242115807
APA StyleKloc, M., & Kubiak, J. Z. (2023). Why Do We Study Aquatic Organisms? International Journal of Molecular Sciences, 24(21), 15807. https://doi.org/10.3390/ijms242115807