A Genome-Wide Analysis of Serine Protease Inhibitors in Cydia pomonella Provides Insights into Their Evolution and Expression Pattern
Abstract
:1. Introduction
2. Results
2.1. Overview of C. pomonella Serpins
2.2. Gain-and-Loss Analysis of the Serpin Gene Family across Lepidoptera Insects
2.3. The RCL Region of C. pomonella Serpins
2.4. Evolutionary Relationships among the Lepidoptera Insect Serpins
2.5. Collinearity and Chromosomal Location of Serpin Genes
2.6. Alternative Splicing Analysis of the Serpin1 Gene in C. pomonella
2.7. Expression Profile of C. pomonella Serpins
3. Discussion
4. Materials and Methods
4.1. Identification of Serpin Genes in C. pomonella
4.2. Feature Analysis of Serpin Protein Sequences
4.3. Phylogenetic Analysis
4.4. Gene Gain-and-Loss Analysis
4.5. Genomic Location and Synteny Analysis
4.6. Estimation of the Synonymous and Nonsynonymous Rate Ratio
4.7. Insect Rearing and Sample Collection
4.8. RNA Sequencing (RNA-Seq) and Gene Expression Analysis
4.9. Identification and Cloning of C. pomonella Serpin1 Isoforms
4.10. Selective Pressure Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huntington, J.A. Serpin structure, function and dysfunction. J. Thromb. Haemost. 2011, 9 (Suppl. S1), 26–34. [Google Scholar] [CrossRef] [PubMed]
- Meekins, D.A.; Kanost, M.R.; Michel, K. Serpins in arthropod biology. Semin. Cell Dev. Biol. 2017, 62, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, M.; Xu, X.; De Mandal, S.; Jin, F. Role of serine protease inhibitors in insect-host-pathogen interactions. Arch. Insect Biochem. 2019, 102, e21556. [Google Scholar] [CrossRef]
- Rühlmann, A.; Kukla, D.; Schwager, P.; Bartels, K.; Huber, R. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region. J. Mol. Biol. 1973, 77, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Irving, J.A.; Pike, R.N.; Lesk, A.M.; Whisstock, J.C. Phylogeny of the serpin superfamily: Implications of patterns of amino acid conservation for structure and function. Genome Res. 2000, 10, 1845–1864. [Google Scholar] [CrossRef] [PubMed]
- Law, R.H.; Zhang, Q.; McGowan, S.; Buckle, A.M.; Silverman, G.A.; Wong, W.; Rosado, C.J.; Langendorf, C.G.; Pike, R.N.; Bird, P.I.; et al. An overview of the serpin superfamily. Genome Biol. 2006, 7, 216. [Google Scholar] [CrossRef]
- Marijanovic, E.M.; Fodor, J.; Riley, B.T.; Porebski, B.T.; Costa, M.G.S.; Kass, I.; Hoke, D.E.; McGowan, S.; Buckle, A.M. Reactive centre loop dynamics and serpin specificity. Sci. Rep. 2019, 9, 3870. [Google Scholar] [CrossRef]
- Chen, J.; Cui, D.; Ullah, H.; Hao, K.; Tu, X.; Zhang, Z. Serpin7 controls egg diapause of migratory locust (Locusta migratoria) by regulating polyphenol oxidase. FEBS Open Bio 2020, 10, 707–717. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Canagarajah, B.; Jiang, H.; Kanost, M.; Goldsmith, E.J. The structure of active serpin 1K from Manduca sexta. Structure 1999, 7, 103–109. [Google Scholar] [CrossRef]
- Gettins, P.G. Serpin structure, mechanism, and function. Chem. Rev. 2002, 102, 4751–4804. [Google Scholar] [CrossRef]
- Laskowski, M.; Kato, I. Protein inhibitors of proteinases. Annu. Rev. Biochem. 1980, 49, 593–626. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Singh, P.; Azhar, A.; Naseem, A.; Rashid, Q.; Kabir, M.A.; Jairajpuri, M.A. Serpin inhibition mechanism: A delicate balance between native metastable state and polymerization. J. Amino Acids 2011, 2011, 606797. [Google Scholar] [CrossRef] [PubMed]
- Huntington, J.A.; Read, R.J.; Carrell, R.W. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000, 407, 923–926. [Google Scholar] [CrossRef] [PubMed]
- Cerenius, L.; Kawabata, S.-I.; Lee, B.L.; Nonaka, M.; Söderhäll, K. Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem. Sci. 2010, 35, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Kim, B.Y.; Lee, K.S.; Yoon, H.J.; Jin, B.R. A serine protease inhibitor from the hornfaced bee, Osmia cornifrons, exhibits antimicrobial activities. J. Asia-Pac. Entomol. 2015, 18, 489–495. [Google Scholar] [CrossRef]
- Kausar, S.; Abbas, M.N.; Qian, C.; Zhu, B.; Sun, Y.; Sun, Y.; Wang, L.; Wei, G.; Maqsood, I.; Liu, C.L. Serpin-14 negatively regulates prophenoloxidase activation and expression of antimicrobial peptides in Chinese oak silkworm Antheraea pernyi. Dev. Comp. Immunol. 2017, 76, 45–55. [Google Scholar] [CrossRef]
- Garrett, M.; Fullaondo, A.; Troxler, L.; Micklem, G.; Gubb, D. Identification and analysis of serpin-family genes by homology and synteny across the 12 sequenced Drosophilid genomes. BMC Genom. 2009, 10, 489. [Google Scholar] [CrossRef]
- Zou, Z.; Evans, J.D.; Lu, Z.; Zhao, P.; Williams, M.; Sumathipala, N.; Hetru, C.; Hultmark, D.; Jiang, H. Comparative genomic analysis of the Tribolium immune system. Genome Biol. 2007, 8, R177. [Google Scholar] [CrossRef]
- Evans, J.D.; Aronstein, K.; Chen, Y.P.; Hetru, C.; Imler, J.L.; Jiang, H.; Kanost, M.; Thompson, G.J.; Zou, Z.; Hultmark, D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 2006, 15, 645–656. [Google Scholar] [CrossRef]
- Xiong, G.H.; Xing, L.S.; Lin, Z.; Saha, T.T.; Wang, C.; Jiang, H.; Zou, Z. High throughput profiling of the cotton bollworm Helicoverpa armigera immunotranscriptome during the fungal and bacterial infections. BMC Genom. 2015, 16, 321. [Google Scholar] [CrossRef]
- Zou, Z.; Picheng, Z.; Weng, H.; Mita, K.; Jiang, H. A comparative analysis of serpin genes in the silkworm genome. Genomics 2009, 93, 367–375. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, E.; Han, S.J.; Lee, W.J.; Baek, M.J.; Osaki, T.; Kawabata, S.; Lee, B.L.; Iwanaga, S.; Lemaitre, B.; Brey, P.T. An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell 2002, 3, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Ligoxygakis, P.; Pelte, N.; Ji, C.; Leclerc, V.; Duvic, B.; Belvin, M.; Jiang, H.; Hoffmann, J.A.; Reichhart, J.M. A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J. 2002, 21, 6330–6337. [Google Scholar] [CrossRef] [PubMed]
- Levashina, E.A.; Langley, E.; Green, C.; Gubb, D.; Ashburner, M.; Hoffmann, J.A.; Reichhart, J.M. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 1999, 285, 1917–1919. [Google Scholar] [CrossRef]
- Green, C.; Levashina, E.; McKimmie, C.; Dafforn, T.; Reichhart, J.M.; Gubb, D. The necrotic gene in Drosophila corresponds to one of a cluster of three serpin transcripts mapping at 43A1.2. Genetics 2000, 156, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Gooptu, B.; Lomas, D.A. Conformational pathology of the serpins: Themes, variations, and therapeutic strategies. Annu. Rev. Biochem. 2009, 78, 147–176. [Google Scholar] [CrossRef]
- Zhao, P.; Dong, Z.; Duan, J.; Wang, G.; Wang, L.; Li, Y.; Xiang, Z.; Xia, Q. Genome-wide identification and immune response analysis of serine protease inhibitor genes in the silkworm, Bombyx mori. PLoS ONE 2012, 7, e31168. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yu, H.-Z.; Ye, C.-J.; Ma, Y.; Li, X.; Fan, T.; Chen, F.-S.; Xu, J.-P. Bombyx mori Serpin6 regulates prophenoloxidase activity and the expression of antimicrobial proteins. Gene 2017, 610, 64–70. [Google Scholar] [CrossRef]
- Li, M.; Christen, J.M.; Dittmer, N.T.; Cao, X.; Zhang, X.; Jiang, H.; Kanost, M.R. The Manduca sexta serpinome: Analysis of serpin genes and proteins in the tobacco hornworm. Insect Biochem. Mol. Biol. 2018, 102, 21–30. [Google Scholar] [CrossRef]
- Hegedus, D.D.; Erlandson, M.; Baldwin, D.; Hou, X.; Chamankhah, M. Differential expansion and evolution of the exon family encoding the Serpin-1 reactive centre loop has resulted in divergent serpin repertoires among the Lepidoptera. Gene 2008, 418, 15–21. [Google Scholar] [CrossRef]
- Gan, H.; Wang, Y.; Jiang, H.; Mita, K.; Kanost, M.R. A bacteria-induced, intracellular serpin in granular hemocytes of Manduca sexta. Insect Biochem. Mol. Biol. 2001, 31, 887–898. [Google Scholar] [CrossRef]
- Suwanchaichinda, C.; Ochieng, R.; Zhuang, S.; Kanost, M.R. Manduca sexta serpin-7, a putative regulator of hemolymph prophenoloxidase activation. Insect Biochem. Mol. Biol. 2013, 43, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Kanost, M.R. Characterization and functional analysis of 12 naturally occurring reactive site variants of serpin-1 from Manduca sexta. J. Biol. Chem. 1997, 272, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, Y.; Yu, X.Q.; Zhu, Y.; Kanost, M. Prophenoloxidase-activating proteinase-3 (PAP-3) from Manduca sexta hemolymph: A clip-domain serine proteinase regulated by serpin-1J and serine proteinase homologs. Insect Biochem. Mol. Biol. 2003, 33, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, Y.; Gorman, M.J.; Jiang, H.; Kanost, M.R. Manduca sexta serpin-3 regulates prophenoloxidase activation in response to infection by inhibiting prophenoloxidase-activating proteinases. J. Biol. Chem. 2003, 278, 46556–46564. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, H. Purification and characterization of Manduca sexta serpin-6: A serine proteinase inhibitor that selectively inhibits prophenoloxidase-activating proteinase-3. Insect Biochem. Mol. Biol. 2004, 34, 387–395. [Google Scholar] [CrossRef]
- Tong, Y.; Kanost, M.R. Manduca sexta serpin-4 and serpin-5 inhibit the prophenol oxidase activation pathway: cDNA cloning, protein expression, and characterization. J. Biol. Chem. 2005, 280, 14923–14931. [Google Scholar] [CrossRef]
- Suwanchaichinda, C.; Kanost, M.R. The serpin gene family in Anopheles gambiae. Gene 2009, 442, 47–54. [Google Scholar] [CrossRef]
- An, C.; Kanost, M.R. Manduca sexta serpin-5 regulates prophenoloxidase activation and the Toll signaling pathway by inhibiting hemolymph proteinase HP6. Insect Biochem. Mol. Biol. 2010, 40, 683–689. [Google Scholar] [CrossRef]
- An, C.; Ragan, E.J.; Kanost, M.R. Serpin-1 splicing isoform J inhibits the proSpätzle-activating proteinase HP8 to regulate expression of antimicrobial hemolymph proteins in Manduca sexta. Dev. Comp. Immunol. 2011, 35, 135–141. [Google Scholar] [CrossRef]
- Christen, J.M.; Hiromasa, Y.; An, C.; Kanost, M.R. Identification of plasma proteinase complexes with serpin-3 in Manduca sexta. Insect Biochem. Mol. Biol. 2012, 42, 946–955. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, L.; Lin, Z.; Zou, Z.; Lu, Z. Serpin-5 regulates prophenoloxidase activation and antimicrobial peptide pathways in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2016, 73, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.T.; Ling, X.D.; Xiao, L.F.; Hu, J.J.; Zhao, X.X.; Liu, J.X.; Zhang, Y. Effects of Bombyx mori nuclear polyhedrosis virus on serpin and antibacterial peptide expression in B. mori. Microb. Pathog. 2019, 130, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Xing, L.; Wang, M.; Wang, X.; Yin, M.; Wang, Q.; Hu, Z.; Zou, Z. Inhibition of melanization by serpin-5 and serpin-9 promotes baculovirus infection in cotton bollworm Helicoverpa armigera. PLoS Pathog. 2017, 13, e1006645. [Google Scholar] [CrossRef]
- Pan, Y.; Xia, H.; Lü, P.; Chen, K.; Yao, Q.; Chen, H.; Gao, L.; He, Y.; Wang, L. Molecular cloning, expression and characterization of Bmserpin-2 gene from Bombyx mori. Acta Biochim. Pol. 2009, 56, 671–677. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Yang, H.J.; Chen, M.; Lou, C.F.; Zhang, Y.Z.; Chen, K.P.; Wang, Y.; Yu, M.L.; Yu, F.; Li, J.Y.; et al. Comparative proteomic analysis between the domesticated silkworm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet. J. Proteome Res. 2008, 7, 5103–5111. [Google Scholar] [CrossRef]
- Reichhart, J.M.; Gubb, D.; Leclerc, V. The Drosophila serpins: Multiple functions in immunity and morphogenesis. Methods Enzymol. 2011, 499, 205–225. [Google Scholar]
- Hashimoto, C.; Kim, D.R.; Weiss, L.A.; Miller, J.W.; Morisato, D. Spatial regulation of developmental signaling by a serpin. Dev. Cell 2003, 5, 945–950. [Google Scholar] [CrossRef]
- Ligoxygakis, P.; Roth, S.; Reichhart, J.M. A serpin regulates dorsal-ventral axis formation in the Drosophila embryo. Curr. Biol. 2003, 13, 2097–2102. [Google Scholar] [CrossRef]
- Wan, F.; Yin, C.; Tang, R.; Chen, M.; Wu, Q.; Huang, C.; Qian, W.; Rota-Stabelli, O.; Yang, N.; Wang, S.; et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat. Commun. 2019, 10, 4237. [Google Scholar] [CrossRef]
- Buck, M.J.; Atchley, W.R. Networks of coevolving sites in structural and functional domains of serpin proteins. Mol. Biol. Evol. 2005, 22, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- van Gent, D.; Sharp, P.; Morgan, K.; Kalsheker, N. Serpins: Structure, function and molecular evolution. Int. J. Biochem. Cell Biol. 2003, 35, 1536–1547. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Lin, X.; Zhu, J.; Yu, X.Q.; Xia, X.; Yao, F.; Yang, G.; You, M. Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). BMC Genom. 2017, 18, 162. [Google Scholar] [CrossRef] [PubMed]
- Reichhart, J.M. Tip of another iceberg: Drosophila serpins. Trends Cell Biol. 2005, 15, 659–665. [Google Scholar] [CrossRef]
- Michel, K.; Suwanchaichinda, C.; Morlais, I.; Lambrechts, L.; Cohuet, A.; Awono-Ambene, P.H.; Simard, F.; Fontenille, D.; Kanost, M.R.; Kafatos, F.C. Increased melanizing activity in Anopheles gambiae does not affect development of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 2006, 103, 16858–16863. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Fu, H.; Zhang, L.; Guo, P.; Xia, Q.; Zhao, P. Silkworm serpin32 functions as a negative-regulator in prophenoloxidase activation. Dev. Comp. Immunol. 2019, 91, 123–131. [Google Scholar] [CrossRef]
- Zou, Z.; Jiang, H. Manduca sexta serpin-6 regulates immune serine proteinases PAP-3 and HP8. cDNA cloning, protein expression, inhibition kinetics, and function elucidation. J. Biol. Chem. 2005, 280, 14341–14348. [Google Scholar] [CrossRef]
- Gulley, M.M.; Zhang, X.; Michel, K. The roles of serpins in mosquito immunology and physiology. J. Insect Physiol. 2013, 59, 138–147. [Google Scholar] [CrossRef]
- An, C.; Hiromasa, Y.; Zhang, X.; Lovell, S.; Zolkiewski, M.; Tomich, J.M.; Michel, K. Biochemical characterization of Anopheles gambiae SRPN6, a malaria parasite invasion marker in mosquitoes. PLoS ONE 2012, 7, e48689. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Sumathipala, N.; Cao, X.; Kanost, M.R.; Jiang, H. Manduca sexta serpin-12 controls the prophenoloxidase activation system in larval hemolymph. Insect Biochem. Mol. Biol. 2018, 99, 27–36. [Google Scholar] [CrossRef]
- Yan, Z.; Fang, Q.; Song, J.; Yang, L.; Xiao, S.; Wang, J.; Ye, G. A serpin gene from a parasitoid wasp disrupts host immunity and exhibits adaptive alternative splicing. PLoS Pathog. 2023, 19, e1011649. [Google Scholar] [CrossRef]
- Han, P.; Fan, J.; Liu, Y.; Cuthbertson, A.G.; Yan, S.; Qiu, B.L.; Ren, S. RNAi-mediated knockdown of serine protease inhibitor genes increases the mortality of Plutella xylostella challenged by destruxin A. PLoS ONE 2014, 9, e97863. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.F.; Li, Y.N.; Jia, R.; Cui, W.Z.; Mu, Z.M.; Zhang, Z.F. Alternative splicing of the antitrypsin gene in the silkworm, Bombyx mori. Mol. Biol. Rep. 2011, 38, 2793–2799. [Google Scholar] [CrossRef] [PubMed]
- Scharlaken, B.; De Graaf, D.C.; Memmi, S.; Devreese, B.; Van Beeumen, J.; Jacobs, F.J. Differential protein expression in the honey bee head after a bacterial challenge. Arch. Insect Biochem. Physiol. 2007, 65, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Lopez, D.L.; Kanost, M.R.; Evans, J.D.; Jiang, H. Comparative analysis of serine protease-related genes in the honey bee genome: Possible involvement in embryonic development and innate immunity. Insect Mol. Biol. 2006, 15, 603–614. [Google Scholar] [CrossRef]
- Gu, Q.J.; Zhou, S.M.; Zhou, Y.N.; Huang, J.H.; Shi, M.; Chen, X.X. A trypsin inhibitor-like protein secreted by Cotesia vestalis teratocytes inhibits hemolymph prophenoloxidase activation of Plutella xylostella. J. Insect Physiol. 2019, 116, 41–48. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, H.; Zhou, J.; Wu, J.; Tong, D.; Chen, X.; Huang, Y.; Shi, H.; Yang, Y.; Ma, G.; et al. The trypsin inhibitor-like domain is required for a serine protease inhibitor of Haemonchus contortus to inhibit host coagulation. Int. J. Parasitol. 2021, 51, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.; Hu, S.; Li, X.; An, S.; Miao, X.; Li, H. A TIL-type serine protease inhibitor involved in humoral immune response of Asian corn borer Ostrinia furnaculis. Front. Immunol. 2022, 13, 900129. [Google Scholar] [CrossRef]
- Tikhe, C.V.; Cardoso-Jaime, V.; Dong, S.; Rutkowski, N.; Dimopoulos, G. Trypsin-like inhibitor domain (TIL)-harboring protein is essential for Aedes aegypti reproduction. Int. J. Mol. Sci. 2022, 23, 7736. [Google Scholar] [CrossRef]
- Koymans, K.J.; Feitsma, L.J.; Brondijk, T.H.; Aerts, P.C.; Lukkien, E.; Lossl, P.; van Kessel, K.P.; de Haas, C.J.; van Strijp, J.A.; Huizinga, E.G. Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proc. Natl. Acad. Sci. USA 2015, 112, 11018–11023. [Google Scholar] [CrossRef]
- Koymans, K.J.; Goldmann, O.; Karlsson, C.A.Q.; Sital, W.; Thanert, R.; Bisschop, A.; Vrieling, M.; Malmstrom, J.; van Kessel, K.P.M.; de Haas, C.J.C.; et al. The TLR2 antagonist staphylococcal superantigen-like protein 3 acts as a virulence factor to promote bacterial pathogenicity in vivo. J. Innate Immun. 2017, 9, 561–573. [Google Scholar] [CrossRef]
- Dato, F.M.; Maassen, A.; Goldfuss, B.; Pietsch, M. Characterization of fatty acid amide hydrolase activity by a fluorescence-based assay. Anal. Biochem. 2018, 546, 50–57. [Google Scholar] [CrossRef]
- Winkler, K.; Ramer, R.; Dithmer, S.; Ivanov, I.; Merkord, J.; Hinz, B. Fatty acid amide hydrolase inhibitors confer anti-invasive and antimetastatic effects on lung cancer cells. Oncotarget 2016, 7, 15047–15064. [Google Scholar] [CrossRef]
- Endsley, M.P.; Thill, R.; Choudhry, I.; Williams, C.L.; Kajdacsy-Balla, A.; Campbell, W.B.; Nithipatikom, K. Expression and function of fatty acid amide hydrolase in prostate cancer. Int. J. Cancer 2008, 123, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Dipatrizio, N.V.; Simansky, K.J. Inhibiting parabrachial fatty acid amide hydrolase activity selectively increases the intake of palatable food via cannabinoid CB1 receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1409–R1414. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, P.C.; Stone, S.R. The contribution of the conserved hinge region residues of alpha1-antitrypsin to its reaction with elastase. Biochemistry 1995, 34, 15872–15879. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Salamov, A.A.; Solovyev, V.V. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 2000, 10, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Birney, E.; Clamp, M.; Durbin, R. GeneWise and Genomewise. Genome Res. 2004, 14, 988–995. [Google Scholar] [CrossRef]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef]
- Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012, 40, D302–D305. [Google Scholar] [CrossRef] [PubMed]
- Eddy, S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2015, 33, 1870–1874. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- De Bie, T.; Cristianini, N.; Demuth, J.P.; Hahn, M.W. CAFE: A computational tool for the study of gene family evolution. Bioinformatics 2006, 22, 1269–1271. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, M.J. r8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 2003, 19, 301–302. [Google Scholar] [CrossRef] [PubMed]
- Suyama, M.; Torrents, D.; Bork, P. PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006, 34, W609–W612. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
Gene Name | Gene # b CPOM | Length c | Exon d | Signal Peptide e | pI f | Mw (kDa) f | #chr g | B. mori Homolog |
---|---|---|---|---|---|---|---|---|
CpSPN1 a | 02460 | 391 | 9 | 1–18 | 5.30 | 43.132 | chr5 | BmSPN1 |
CpSPN2 | 01920 | 397 | 8 | 1–20 | 4.88 | 43.697 | chr1 | BmSPN2 |
CpSPN3 | 07058 | 456 | 7 | 1–17 | 5.48 | 50.788 | chr3 | BmSPN3 |
CpSPN4 | 00506 | 416 | 1 | 1–17 | 5.97 | 46.694 | chr2 | BmSPN4 |
CpSPN5 | - | 395 | 1 | 1–15 | 5.50 | 44.324 | chr23 | BmSPN5 |
CpSPN6 | 18793 | 439 | 8 | 1–17 | 5.50 | 49.838 | chr1 | BmSPN6 |
CpSPN7 | 00499 | 373 | 2 | 1–15 | 5.13 | 42.098 | chr2 | BmSPN32 |
CpSPN8 | - | 413 | 1 | 1–17 | 6.28 | 47.338 | chr19 | BmSPN4 |
CpSPN9 | 00026 and 00027 | 382 | 3 | 1–17 | 5.06 | 43.463 | chr2 | BmSPN7 |
CpSPN10 | 07057 | 518 | 7 | 1–16 | 5.55 | 58.325 | chr3 | BmSPN10 |
CpSPN11 | 07058 | 436 | 6 | NO | 6.28 | 48.631 | chr3 | BmSPN11 |
CpSPN12 | 07056 | 570 | 7 | 1–18 | 9.04 | 63.316 | chr3 | BmSPN12 |
CpSPN13 | 14815 | 432 | 7 | 1–19 | 5.30 | 49.080 | chr3 | BmSPN13 |
CpSPN14 | 00028 | 390 | 3 | 1–16 | 9.11 | 44.298 | chr2 | BmSPN14 |
CpSPN15 | 09906 | 371 | 9 | NO | 5.96 | 41.940 | chr22 | BmSNP2 |
CpSPN16 | - | 394 | 1 | 1–15 | 6.55 | 43.996 | chr2 | BmSPN5 |
CpSPN17 | - | 418 | 9 | NO | 6.47 | 46.646 | chr15 | BmSPN2 |
CpSPN18 | 14126 | 348 | 7 | NO | 5.70 | 39.096 | chr15 | BmSPN2 |
CpSPN19 | 14124 and 14125 | 391 | 8 | NO | 6.98 | 43.900 | chr15 | BmSPN2 |
CpSPN20 | 19028 | 366 | 7 | NO | 5.64 | 41.271 | chr1 | BmSPN29 |
CpSPN21 | 14131 | 383 | 8 | NO | 5.42 | 43.117 | chr15 | BmSPN2 |
CpSPN22 | 02462 | 276 | 6 | NO | 5.41 | 31.103 | chr5 | BmSPN1 |
CpSPN23 | - | 345 | 7 | NO | 7.72 | 38.892 | chr15 | BmSPN2 |
CpSPN24 | - | 465 | 9 | NO | 5.68 | 51.965 | chr22 | BmSPN2 |
CpSPN25 | 02473 | 814 | 16 | NO | 8.40 | 89.394 | chr5 | BmSPN1 |
CpSPN26 | 12437 | 1405 | 6 | NO | 5.49 | 155.10 | chr16 | BmSPN27 |
Serpin ID a | Predicted P1/P1′ Cleavage | Target Protease c | Inhibitory (Yes/No) | #chr | Phylogenetic Group d | Expression Group | |
---|---|---|---|---|---|---|---|
Stages e | Tissues f | ||||||
1 b | Y/L | C | Yes | 5 | A (A2) | I | II |
2 | M/C | E | Yes | 1 | A (A1) | II | III |
15 | I/C | C | Yes | 22 | A (A1) | III | III |
17 | Y/Q | C | Yes | 15 | A (A1) | III | II |
18 | L/C | C | Yes | 15 | A (A1) | III | III |
19 | L/C | C | Yes | 15 | A (A1) | III | III |
21 | R/C | T | Yes | 15 | A (A1) | III | II |
22 | - | - | No | 5 | A (A2) | III | I |
23 | Y/Q | C | Yes | 15 | A (A1) | III | II |
24 | M/P | E | Yes | 22 | A (A1) | III | II |
25 | V/G | E | Yes | 5 | A (A2) | III | I |
3 | K/F | T | Yes | 3 | B | I | III |
4 | R/I | T | Yes | 2 | C (C2) | II | III |
5 | R/F | T | Yes | 23 | C (C1) | IV | I |
7 | R/F | T | Yes | 2 | C (C4) | IV | I |
8 | A/N | E | Yes | 19 | C (C2) | IV | I |
9 | R/R | T | Yes | 2 | C (C3) | I | III |
14 | V/E | E | Yes | 2 | C (C3) | IV | III |
16 | R/I | T | Yes | 2 | C (C1) | II | III |
6 | R/S | T | Yes | 1 | D | II | III |
10 | - | - | No | 3 | E | II | III |
20 | - | - | No | 1 | E | IV | I |
26 | - | - | No | 16 | E | IV | I |
11 | L/I | C | Yes | 3 | F | II | III |
13 | R/T | T | Yes | 3 | F | IV | III |
12 | L/S | C | Yes | 3 | G | II | III |
Clade | n | dN/dS | 2ΔI | |
---|---|---|---|---|
M0 vs. M3 | M7 vs. M8 | |||
Group A1 | 13 | 0.19403 | 477.533 ** (p = 0) | 66.7717 (p = 3.22 × 10−15) ** |
Group A2 | 7 | 0.09542 | 180.71 ** (p = 0) | 3.99655 (p = 0.1356) |
Group B | 7 | 0.02043 | 212.243 ** (p = 0) | 0.00113 (p = 0.9994) |
Group C1 | 7 | 0.02503 | 135.335 ** (p = 0) | 0.70398 (p = 0.7033) |
Group C2 | 5 | 0.13251 | 165.873 ** (p = 0) | 0.43196 (p = 0.8057) |
Group C3 | 10 | 0.00763 | 300.516 ** (p = 0) | 1.51731 (p = 0.4683) |
Group C4 | 4 | 0.06961 | 115.716 ** (p = 0) | 3.60781 (p = 0.1647) |
Group D | 6 | 0.02532 | 237.675 ** (p = 0) | 18.7153 (p = 8.63 × 10−5) ** |
Group E | 9 | 0.03745 | 42.2526 ** (p = 6.68 × 10−10) | 3.99341 (p = 0.1358) |
Group F | 11 | 0.01565 | 383.2 ** (p = 0) | 0.00317 (p = 0.9984) |
Group G | 7 | 0.12685 | 210.412 ** (p = 0) | 20.1964 (p = 4.12 × 10−5) ** |
Group H | 12 | 0.35895 | 72.4922 ** (p = 2.22 × 10−16) | 0.04041 (p = 0.9800) |
Clade | Parameter Estimated under the M8 Model | Positively Selected Sites (PSSs) from Bayes Empirical Bayes (BEB) Analysis | ||
Group A1 | p0 = 0.95322, p = 0.80398, q = 15.38401, p1 = 0.04678, ω = 24.25724 | 230G (0.990) ** | ||
232S (1.000) ** | ||||
234R (0.990) * | ||||
235S (1.000) ** | ||||
239V (0.974) * | ||||
265I (0.947) | ||||
Group D | p0 = 0.94870, p = 0.97062, q = 3.71832, p1 = 0.05130, ω = 10.62317 | 4C (0.733) | ||
Group G | p0 = 0.97816, p = 1.15116, q = 6.46773, p1 = 0.02184, ω = 341.91199 | 3Q (0.985) ** 182S (0.945) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Xing, L.; Du, M.; Huang, C.; Liu, B.; Zhou, H.; Liu, W.; Wan, F.; Qian, W. A Genome-Wide Analysis of Serine Protease Inhibitors in Cydia pomonella Provides Insights into Their Evolution and Expression Pattern. Int. J. Mol. Sci. 2023, 24, 16349. https://doi.org/10.3390/ijms242216349
Wu Q, Xing L, Du M, Huang C, Liu B, Zhou H, Liu W, Wan F, Qian W. A Genome-Wide Analysis of Serine Protease Inhibitors in Cydia pomonella Provides Insights into Their Evolution and Expression Pattern. International Journal of Molecular Sciences. 2023; 24(22):16349. https://doi.org/10.3390/ijms242216349
Chicago/Turabian StyleWu, Qiang, Longsheng Xing, Min Du, Cong Huang, Bo Liu, Hongxu Zhou, Wanxue Liu, Fanghao Wan, and Wanqiang Qian. 2023. "A Genome-Wide Analysis of Serine Protease Inhibitors in Cydia pomonella Provides Insights into Their Evolution and Expression Pattern" International Journal of Molecular Sciences 24, no. 22: 16349. https://doi.org/10.3390/ijms242216349
APA StyleWu, Q., Xing, L., Du, M., Huang, C., Liu, B., Zhou, H., Liu, W., Wan, F., & Qian, W. (2023). A Genome-Wide Analysis of Serine Protease Inhibitors in Cydia pomonella Provides Insights into Their Evolution and Expression Pattern. International Journal of Molecular Sciences, 24(22), 16349. https://doi.org/10.3390/ijms242216349