Transcriptomics of MASLD Pathobiology in African American Patients in the Washington DC Area † †
Abstract
:1. Introduction
2. Results
2.1. Participants’ Demography and Clinical Information
2.2. Global Gene Expression
2.3. Top Biofunctions and Canonical Pathways Based on Global Expression Data
2.4. Disease-Specific Gene Expression Validation by TLDA
2.5. Gene Network and Canonical Pathways (Validated Expression by TLDA)
2.6. Comparison of TLDA and Global Expression
2.7. Comparison Analysis of Canonical Pathway Using IPA
3. Discussion
4. Materials and Methods
4.1. Study Ethics, Participants, and Selection of Participants
4.2. RNA Isolation & cDNA Synthesis
4.3. Microarrays and Global Gene Expression
4.4. High-Throughput TaqMan® Low-Density Array (TLDA) Gene Expression with Liver Cancer Profiler Array
4.5. Identification of Cellular Processes, Biofunctions, and Canonical Pathways by Ingenuity Pathways Analysis (IPA)
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le, M.H.; Yeo, Y.H.; Cheung, R.; Wong, V.W.; Nguyen, M.H. Ethnic influence on nonalcoholic fatty liver disease prevalence and lack of disease awareness in the United States, 2011–2016. J. Intern. Med. 2020, 287, 711–722. [Google Scholar] [CrossRef]
- Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic review: The epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 2011, 34, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Berardo, C.; Di Pasqua, L.G.; Cagna, M.; Richelmi, P.; Vairetti, M.; Ferrigno, A. Nonalcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: Current Issues and Future Perspectives in Preclinical and Clinical Research. Int. J. Mol. Sci. 2020, 21, 9646. [Google Scholar] [CrossRef] [PubMed]
- Le, M.H.; Yeo, Y.H.; Zou, B.; Barnet, S.; Henry, L.; Cheung, R.; Nguyen, M.H. Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical bayesian approach. Clin. Mol. Hepatol. 2022, 28, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Erickson, S.K. Nonalcoholic fatty liver disease. J. Lipid Res. 2009, 50, S412–S416. [Google Scholar] [CrossRef] [PubMed]
- NASH Definition & Prevalence. Available online: https://liverfoundation.org/liver-diseases/fatty-liver-disease/nonalcoholic-steatohepatitis-nash/nash-definition-prevalence/#:~:text=NAFLD%20is%20the%20most%20common,of%20adults%20in%20the%20U.S (accessed on 24 October 2023).
- Definition & Facts of NAFLD & NASH. Available online: https://www.niddk.nih.gov/health-information/liver-disease/nafld-nash/definition-facts#:~:text=Only%20a%20small%20number%20of,of%20U.S.%20adults%20have%20NASH (accessed on 24 October 2023).
- Witkowski, M.; Moreno, S.I.; Fernandes, J.; Johansen, P.; Augusto, M.; Nair, S. The Economic Burden of Non-Alcoholic Steatohepatitis: A Systematic Review. PharmacoEconomics 2022, 40, 751–776. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Blissett, D.; Blissett, R.; Henry, L.; Stepanova, M.; Younossi, Y.; Racila, A.; Hunt, S.; Beckerman, R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 2016, 64, 1577–1586. [Google Scholar] [CrossRef]
- Dietrich, C.G.; Rau, M.; Geier, A. Screening for nonalcoholic fatty liver disease-when, who and how? World J. Gastroenterol. 2021, 27, 5803–5821. [Google Scholar] [CrossRef]
- Heyens, L.J.M.; Busschots, D.; Koek, G.H.; Robaeys, G.; Francque, S. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-Invasive Biomarkers in Diagnosis and Treatment. Front. Med. 2021, 8, 615978. [Google Scholar] [CrossRef]
- Bril, F.; Portillo-Sanchez, P.; Liu, I.C.; Kalavalapalli, S.; Dayton, K.; Cusi, K. Clinical and Histologic Characterization of Nonalcoholic Steatohepatitis in African American Patients. Diabetes Care 2018, 41, 187–192. [Google Scholar] [CrossRef]
- Spiewak, T.; Taefi, A.; Patel, S.; Li, C.S.; Chak, E. Racial disparities of Black Americans hospitalized for decompensated liver cirrhosis. BMC Gastroenterol. 2020, 20, 245. [Google Scholar] [CrossRef] [PubMed]
- Rich, N.E.; Oji, S.; Mufti, A.R.; Browning, J.D.; Parikh, N.D.; Odewole, M.; Mayo, H.; Singal, A.G. Racial and Ethnic Disparities in Nonalcoholic Fatty Liver Disease Prevalence, Severity, and Outcomes in the United States: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 198–210.e2. [Google Scholar] [CrossRef] [PubMed]
- Nikolayeva, I.; Bost, P.; Casademont, I.; Duong, V.; Koeth, F.; Prot, M.; Czerwinska, U.; Ly, S.; Bleakley, K.; Cantaert, T.; et al. A Blood RNA Signature Detecting Severe Disease in Young Dengue Patients at Hospital Arrival. J. Infect. Dis. 2018, 217, 1690–1698. [Google Scholar] [CrossRef] [PubMed]
- Shamir, R.; Klein, C.; Amar, D.; Vollstedt, E.-J.; Bonin, M.; Usenovic, M.; Wong, Y.C.; Maver, A.; Poths, S.; Safer, H.; et al. Analysis of blood-based gene expression in idiopathic Parkinson disease. Neurology 2017, 89, 1676–1683. [Google Scholar] [CrossRef] [PubMed]
- Sambarey, A.; Devaprasad, A.; Mohan, A.; Ahmed, A.; Nayak, S.; Swaminathan, S.; D’Souza, G.; Jesuraj, A.; Dhar, C.; Babu, S.; et al. Unbiased Identification of Blood-Based Biomarkers for Pulmonary Tuberculosis by Modeling and Mining Molecular Interaction Networks. EBioMedicine 2017, 15, 112–126. [Google Scholar] [CrossRef]
- Čelešnik, H.; Potočnik, U. Blood-Based mRNA Tests as Emerging Diagnostic Tools for Personalised Medicine in Breast Cancer. Cancers 2023, 15, 1087. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Legood, R.; Sadique, Z.; Dos-Santos-Silva, I.; Yang, L. Cost-effectiveness of risk-based breast cancer screening programme, China. Bull. World Health Organ. 2018, 96, 568–577. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, M.-Y.; Wu, F.; Kang, B.; Liang, J.; Heskia, F.; Shan, Y.-F.; Zhang, X.-X. A blood-based 22-gene expression signature for hepatocellular carcinoma identification. Ann. Transl. Med. 2020, 8, 195. [Google Scholar] [CrossRef]
- Ingenuity Pathway Analysis|QIAGEN Digital Insights. Bioinformatics Software and Services|QIAGEN Digital Insights. Available online: https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/?gclid=CjwKCAjwl6OiBhA2EiwAuUwWZcAVHivk4hOg0XkKn64BNfqEV5x-Yc2LyGthp3AbtdztMxXDuxcYOhoCXU0QAvD_BwE (accessed on 26 April 2023).
- Cotter, T.G.; Rinella, M. Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology 2020, 158, 1851–1864. [Google Scholar] [CrossRef]
- Chikina, M.D.; Gerald, C.P.; Li, X.; Ge, Y.; Pincas, H.; Nair, V.D.; Wong, A.K.; Krishnan, A.; Troyanskaya, O.G.; Raymond, D.; et al. Low-variance RNAs identify Parkinson’s disease molecular signature in blood. Mov. Disord. 2015, 30, 813–821. [Google Scholar] [CrossRef]
- Gross, M.E. Blood-based gene expression profiling in castrate-resistant prostate cancer. BMC Med. 2015, 13, 219. [Google Scholar] [CrossRef]
- Isaksson, H.S.; Sorbe, B.; Nilsson, T.K. Whole blood RNA expression profiles in ovarian cancer patients with or without residual tumors after primary cytoreductive surgery. Oncol. Rep. 2012, 27, 1331–1335. [Google Scholar] [CrossRef]
- Mondal, T.; Loffredo, C.A.; Simhadri, J.; Nunlee-Bland, G.; Korba, B.; Johnson, J.; Cotin, S.; Moses, G.; Quartey, R.; Howell, C.D.; et al. Insights on the pathogenesis of type 2 diabetes as revealed by signature genomic classifiers in an African American population in the Washington, DC area. Diabetes Metab. Res. Rev. 2023, 39, e3589. [Google Scholar] [CrossRef]
- Mondal, T.; Loffredo, C.A.; Trnovec, T.; Murinova, L.P.; Noreen, Z.; Nnanabu, T.; Conka, K.; Drobna, B.; Ghosh, S. Gene expression signatures in PCB-exposed Slovak children in relation to their environmental exposures and socio-physical characteristics. Environ. Sci. Pollut. Res. Int. 2022, 29, 60531–60541. [Google Scholar] [CrossRef]
- Li, C.; Iness, A.; Yoon, J.; Grider, J.R.; Murthy, K.S.; Kellum, J.M.; Kuemmerle, J.F. Noncanonical STAT3 activation regulates excess TGF-β1 and collagen I expression in muscle of stricturing Crohn’s disease. J. Immunol. 2015, 194, 3422–3431. [Google Scholar] [CrossRef]
- Zhao, J.; Qi, Y.F.; Yu, Y.R. STAT3: A key regulator in liver fibrosis. Ann. Hepatol. 2021, 21, 100224. [Google Scholar] [CrossRef]
- Molina, L.; Zhu, J.; Trépo, E.; Bayard, Q.; Amaddeo, G.; Blanc, J.-F.; Calderaro, J.; Ma, X.; Zucman-Rossi, J.; Letouzé, E.; et al. Bi-allelic hydroxymethylbilane synthase inactivation defines a homogenous clinico-molecular subtype of hepatocellular carcinoma. J. Hepatol. 2022, 77, 1038–1046. [Google Scholar] [CrossRef]
- Denechaud, P.-D.; Lopez-Mejia, I.C.; Giralt, A.; Lai, Q.; Blanchet, E.; Delacuisine, B.; Nicolay, B.N.; Dyson, N.J.; Bonner, C.; Pattou, F.; et al. E2F1 mediates sustained lipogenesis and contributes to hepatic steatosis. J. Clin. Investig. 2016, 126, 137–150. [Google Scholar] [CrossRef]
- Yan, Z.; Miao, X.; Zhang, B.; Xie, J. p53 as a double-edged sword in the progression of non-alcoholic fatty liver disease. Life Sci. 2018, 215, 64–72. [Google Scholar] [CrossRef]
- Calligaris, M.; Cuffaro, D.; Bonelli, S.; Spanò, D.P.; Rossello, A.; Nuti, E.; Scilabra, S.D. Strategies to Target ADAM17 in Disease: From its Discovery to the iRhom Revolution. Molecules 2021, 26, 944. [Google Scholar] [CrossRef]
- Choi, E.; Kim, W.; Joo, S.K.; Park, S.; Park, J.H.; Kang, Y.K.; Jin, S.Y.; Chang, M.S. Expression patterns of STAT3, ERK and estrogen-receptor α are associated with development and histologic severity of hepatic steatosis: A retrospective study. Diagn. Pathol. 2018, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, J.; Jung, Y. Potential Therapeutic Application of Estrogen in Gender Disparity of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Cells 2019, 8, 1259. [Google Scholar] [CrossRef] [PubMed]
- Almishri, W.; Swain, L.A.; D’Mello, C.; Le, T.S.; Urbanski, S.J.; Nguyen, H.H. ADAM Metalloproteinase Domain 17 Regulates Cholestasis-Associated Liver Injury and Sickness Behavior Development in Mice. Front. Immunol. 2022, 12, 779119. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Sun, H.; Xue, T.; Gan, C.; Liu, H.; Xie, Y.; Yao, Y.; Ye, T. Liver Fibrosis: Therapeutic Targets and Advances in Drug Therapy. Front. Cell Dev. Biol. 2021, 9, 730176. [Google Scholar] [CrossRef] [PubMed]
- Nair, B.; Nath, L.R. Inevitable role of TGF-β1 in progression of nonalcoholic fatty liver disease. J. Recept. Signal Transduct. Res. 2020, 40, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Dewidar, B.; Meyer, C.; Dooley, S.; Meindl-Beinker, A.N. TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells 2019, 8, 1419. [Google Scholar] [CrossRef] [PubMed]
- Denechaud, P.D.; Fajas, L.; Giralt, A. E2F1, a Novel Regulator of Metabolism. Front. Endocrinol. 2017, 8, 311. [Google Scholar] [CrossRef]
- Stål, P. Liver fibrosis in non-alcoholic fatty liver disease—Diagnostic challenge with prognostic significance. World J. Gastroenterol. 2015, 21, 11077–11087. [Google Scholar] [CrossRef]
- Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018, 25, 104–113. [Google Scholar] [CrossRef]
- Wiering, L.; Subramanian, P.; Hammerich, L. Hepatic Stellate Cells: Dictating Outcome in Nonalcoholic Fatty Liver Disease. Cell. Mol. Gastroenterol. Hepatol. 2023, 15, 1277–1292. [Google Scholar] [CrossRef]
- Chen, F.; Jimenez, R.J.; Sharma, K.; Luu, H.Y.; Hsu, B.Y.; Ravindranathan, A.; Stohr, B.A.; Willenbring, H. Broad Distribution of Hepatocyte Proliferation in Liver Homeostasis and Regeneration. Cell Stem Cell 2020, 26, 27–33.e4. [Google Scholar] [CrossRef] [PubMed]
- Wallace, S.J.; Tacke, F.; Schwabe, R.F.; Henderson, N.C. Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Rep. 2022, 4, 100524. [Google Scholar] [CrossRef] [PubMed]
- Suppli, M.P.; Rigbolt, K.T.G.; Veidal, S.S.; Heebøll, S.; Eriksen, P.L.; Demant, M.; Bagger, J.I.; Nielsen, J.; Oró, D.; Thrane, S.W.; et al. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G462–G472. [Google Scholar] [CrossRef] [PubMed]
- Govaere, O.; Cockell, S.; Tiniakos, D.; Queen, R.; Younes, R.; Vacca, M.; Alexander, L.; Ravaioli, F.; Palmer, J.; Petta, S.; et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci. Transl. Med. 2020, 12, eaba4448. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef] [PubMed]
- MacParland, S.A.; Liu, J.C.; Ma, X.-Z.; Innes, B.T.; Bartczak, A.M.; Gage, B.K.; Manuel, J.; Khuu, N.; Echeverri, J.; Linares, I.; et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 2018, 9, 4383. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, L.; Khatib, S.A.; Chang, C.-W.; Heinrich, S.; Dominguez, D.A.; Forgues, M.; Candia, J.; Hernandez, M.O.; Kelly, M.; et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Hepatol. 2021, 75, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Hernandez, M.O.; Zhao, Y.; Mehta, M.; Tran, B.; Kelly, M.; Rae, Z.; Hernandez, J.M.; Davis, J.L.; Martin, S.P.; et al. Tumor Cell Biodiversity Drives Microenvironmental Reprogramming in Liver Cancer. Cancer Cell 2019, 36, 418–430.e6. [Google Scholar] [CrossRef]
- Cavalcante, L.N.; Porto, J.; Mazo, D.; Longatto-Filho, A.; Stefano, J.T.; Lyra, A.C.; Carrilho, F.J.; Reis, R.M.; Alves, V.A.; Sanyal, A.J.; et al. African genetic ancestry is associated with lower frequency of PNPLA3 G allele in non-alcoholic fatty liver in an admixed population. Ann. Hepatol. 2022, 27, 100728. [Google Scholar] [CrossRef]
- Gopurappilly, R.; Bhonde, R. Transcriptional profiling and functional network analyses of islet-like clusters (ILCs) generated from pancreatic stem cells in vitro. Genomics 2015, 105, 211–219. [Google Scholar] [CrossRef]
- Gene Expression Omnibus, NCBI. Available online: https://www.ncbi.nlm.nih.gov/geo/ (accessed on 26 October 2023).
(A) | |||||
Characteristics | Primary Cohort for Global Gene Expression Study (n = 39) | ||||
MASLD Participants (n = 23) | Non-MASLD Controls * (n = 16) | p-Value | |||
Age (Y) | 48.63 ± 7.51 | 42.60 ± 11.70 | 0.10 | ||
Gender (M/F) | 11/12 | 9/7 | - | ||
BMI (kg/m2) | 29.75.2 ± 6.82 | 30.14 ± 4.77 | 0.78 | ||
HbA1c (%) | 6.35 ± 1.22 | 5.37 ± 0.17 | 0.32 | ||
Hypertension (n) | 13 | 4 | <0.0001 | ||
Had Stroke (n) | 4 | 0 | - | ||
Infrequent Alcohol Consumption (n) ** | 20 | 10 | 0.054 | ||
Smoking (n) | 8 | 4 | 0.75 | ||
(B) | |||||
Characteristics | Primary Cohort for Global Gene Expression Study (n = 8) | Validation Cohort for TLDA Study (n = 31) | |||
MASLD Participants (n = 4) | Non-MASLD Control (n = 4) | MASLD Participants (n = 19) | Non-MASLD Control * (n = 12) | p-Value (Validation Cohort) | |
Age (Y) | 49.00 ± 3.5 | 49.75 ± 8.89 | 48.63 ± 8.1 | 35.9 ± 11.1 | 0.0029 |
Gender (M/F) | 2/2 | 2/2 | 9/10 | 7/5 | - |
BMI (kg/m2) | 32.20 ± 5.4 | 30.92 ± 4.2 | 29.23 ± 7.1 | 30.1 ± 5.5 | 0.73 |
HbA1c (%) | 5.55 ± 0.4 | 5.3 ± 0.1 | 6.48 ± 1.4 | 5.45 ± 0.2 | 0.36 |
Hypertension (n) | 2 | 2 | 11 | 2 | <0.0001 |
Had Stroke (n) | 1 | 0 | 3 | 0 | - |
Infrequent Alcohol Consumption (n) ** | 3 | 3 | 17 | 7 | 0.056 |
Smoking (n) | 2 | 3 | 6 | 1 | 0.86 |
(A) | ||
Top Canonical Pathways * | p-Value | |
Coenzyme A Biosynthesis | 6.27 × 10−3 | |
Calcium Transport I | 7.75 × 10−4 | |
TREM1 Signaling | 1.75 × 10−3 | |
Hepatic Fibrosis Signaling Pathway | 5.09 × 10−3 | |
Estrogen Receptor Signaling | 6.25 × 10−3 | |
(B) | ||
Top Diseases and Bio Functions * | ||
Diseases and Disorders | # Molecules | p-Value Range |
Organismal Injury and Abnormalities | 829 | 2.85 × 10−2–6.03 × 10−6 |
Immunological Disease | 206 | 2.85 × 10−2–6.03 × 10−6 |
Inflammatory Disease | 160 | 2.85 × 10−2–6.03 × 10−6 |
Connective Tissue Disorders | 154 | 2.85 × 10−2–6.03 × 10−6 |
Inflammatory Response | 146 | 2.70 × 10−2–6.03 × 10−6 |
Molecular and Cellular Functions | # Molecules | p-value Range |
Cell Death and Survival | 181 | 2.85 × 10−2–6.29 × 10−4 |
Cell Function and Maintenance | 53 | 2.85 × 10−2–3.21 × 10−4 |
Cell-To-Cell Signaling and Interaction | 53 | 2.85 × 10−2–7.75 × 10−4 |
Cell Morphology | 34 | 2.85 × 10−2–8.15 × 10−4 |
Cellular Compromise | 15 | 2.85 × 10−2–7.75 × 10−4 |
Physiological System Development and Function | # Molecules | p-value Range |
Organ Development | 18 | 2.48 × 10−2–3.63 × 10−4 |
Nervous System Development and Function | 15 | 2.25 × 10−2–8.15 × 10−4 |
Digestive System Development and Function | 10 | 2.02 × 10−2–3.63 × 10−4 |
Hepatic System Development and Function | 10 | 2.02 × 10−2–3.63 × 10−4 |
Behavior | 3 | 2.16 × 10−2–2.16 × 10−3 |
(A) | ||
Top Canonical Pathways * | p-Value | |
Role of Tissue Factor in Cancer | 7.24 × 10−28 | |
Chronic Myeloid Leukemia Signaling | 1.87 × 10−34 | |
Colorectal Cancer Metastasis Signaling | 2.02 × 10−31 | |
Molecular Mechanisms of Cancer | 8.95 × 10−39 | |
Hepatic Fibrosis Signaling Pathway | 5.16 × 10−29 | |
(B) | ||
Top Diseases and Bio Functions * | ||
Diseases and Disorders | # Molecules | p-Value Range |
Organismal Injury and Abnormalities | 82 | 1.52 × 10−12–5.40 × 10−55 |
Cancer | 82 | 1.52 × 10−12–2.51 × 10−38 |
Reproductive System Disease | 79 | 1.88 × 10−13–1.65 × 10−31 |
Hematological Disease | 70 | 1.37 × 10−12–6.21 × 10−31 |
Tumor Morphology | 44 | 1.30 × 10−12–5.91 × 10−38 |
Molecular and Cellular Functions | # Molecules | p-value Range |
Cell Death and Survival | 72 | 1.37 × 10−12–6.07 × 10−61 |
Cellular Development | 69 | 8.57 × 10−13–2.26 × 10−35 |
Cellular Growth and Proliferation | 69 | 8.57 × 10−13–2.26 × 10−35 |
Cell Function and Maintenance | 52 | 1.15 × 10−13–1.47 × 10−32 |
DNA Replication, Recombination, and Repair | 29 | 3.41 × 10−13–8.15 × 10−28 |
Physiological System Development and Function | # Molecules | p-value |
Tissue Development | 62 | 8.57 × 10−13–2.73 × 10−33 |
Organismal Survival | 44 | 2.21 × 10−22–7.36 × 10−29 |
Cardiovascular System Development and Function | 43 | 9.90 × 10−13–2.73 × 10−33 |
Organismal Development | 39 | 8.57× 10−13–2.73 × 10−33 |
Connective Tissue Development and Function | 23 | 5.77 × 10−22–8.95 × 10−25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, T.; Smith, C.I.; Loffredo, C.A.; Quartey, R.; Moses, G.; Howell, C.D.; Korba, B.; Kwabi-Addo, B.; Nunlee-Bland, G.; R. Rucker, L.; et al. Transcriptomics of MASLD Pathobiology in African American Patients in the Washington DC Area †. Int. J. Mol. Sci. 2023, 24, 16654. https://doi.org/10.3390/ijms242316654
Mondal T, Smith CI, Loffredo CA, Quartey R, Moses G, Howell CD, Korba B, Kwabi-Addo B, Nunlee-Bland G, R. Rucker L, et al. Transcriptomics of MASLD Pathobiology in African American Patients in the Washington DC Area †. International Journal of Molecular Sciences. 2023; 24(23):16654. https://doi.org/10.3390/ijms242316654
Chicago/Turabian StyleMondal, Tanmoy, Coleman I. Smith, Christopher A. Loffredo, Ruth Quartey, Gemeyel Moses, Charles D. Howell, Brent Korba, Bernard Kwabi-Addo, Gail Nunlee-Bland, Leanna R. Rucker, and et al. 2023. "Transcriptomics of MASLD Pathobiology in African American Patients in the Washington DC Area †" International Journal of Molecular Sciences 24, no. 23: 16654. https://doi.org/10.3390/ijms242316654
APA StyleMondal, T., Smith, C. I., Loffredo, C. A., Quartey, R., Moses, G., Howell, C. D., Korba, B., Kwabi-Addo, B., Nunlee-Bland, G., R. Rucker, L., Johnson, J., & Ghosh, S. (2023). Transcriptomics of MASLD Pathobiology in African American Patients in the Washington DC Area †. International Journal of Molecular Sciences, 24(23), 16654. https://doi.org/10.3390/ijms242316654