Radiation and Immune Checkpoint Inhibitors: Combination Therapy for Treatment of Hepatocellular Carcinoma
Abstract
:1. Introduction
2. The Hepatic Immune Microenvironment
3. Immunotherapies for Hepatocellular Carcinoma
3.1. Immunotherapies Available for HCC
3.2. Mechanism of Action of Immune Checkpoint Inhibitors
3.3. Combination of Immune Checkpoint Inhibitors
4. Radiotherapy
4.1. Immunological Effect of Radiation Therapy
4.1.1. Effect on the Immune System
4.1.2. Radiation-Induced Liver Disease
4.2. Target Population for Radiation
4.3. Types of Radiation Therapy
4.3.1. Three-Dimensional Conformal Radiation Therapy
4.3.2. Intensity-Modulated Radiation Therapy
4.3.3. Proton Beam Therapy
4.3.4. Stereotactic Body Radiation Therapy
5. Rationale for Combination Therapy
5.1. Rationale for the Potential Synergy between Radiotherapy and Immunotherapy in HCC
5.2. Pre-Clinical Studies on Combination Therapy in HCC
5.3. Timing of Radiotherapy and Immunotherapy Treatment
6. Current Trials
6.1. Clinical Trials for RT Plus ICIs in HCC Patients
6.2. Clinical Trials for RT Plus ICIs Plus TKIs
6.3. Ongoing Trials
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, R.; Bandoh, S.; Roberts, L.R. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Res 2016, 5, F1000. [Google Scholar] [CrossRef]
- Asafo-Agyei, K.O.; Samant, H. Hepatocellular Carcinoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Mittal, S.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma: Consider the population. J. Clin. Gastroenterol. 2013, 47, S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.B.; D’Angelica, M.I.; Abbott, D.E.; Anaya, D.A.; Anders, R.; Are, C.; Bachini, M.; Borad, M.; Brown, D.; Burgoyne, A.; et al. Hepatobiliary Cancers, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 541–565. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, R.; Posa, A.; Mariappan, M.; Spiliopoulos, S. Locoregional treatments for hepatocellular carcinoma: Current evidence and future directions. World J. Gastroenterol. 2019, 25, 4614–4628. [Google Scholar] [CrossRef]
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef]
- Galle, P.R.; Dufour, J.F.; Peck-Radosavljevic, M.; Trojan, J.; Vogel, A. Systemic therapy of advanced hepatocellular carcinoma. Future Oncol. 2021, 17, 1237–1251. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Yu, J.; Green, M.D.; Li, S.; Sun, Y.; Journey, S.N.; Choi, J.E.; Rizvi, S.M.; Qin, A.; Waninger, J.J.; Lang, X.; et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 2021, 27, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Aravalli, R.N. Role of innate immunity in the development of hepatocellular carcinoma. World J. Gastroenterol. 2013, 19, 7500–7514. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, M.; Chawla, Y.K.; Arora, S.K. Immunology of hepatocellular carcinoma. World J. Hepatol. 2015, 7, 2080–2090. [Google Scholar] [CrossRef] [PubMed]
- Spitz, D.R.; Azzam, E.I.; Li, J.J.; Gius, D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer Metastasis Rev. 2004, 23, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, R.; Lin, Z.; Tan, Q.; Huang, Z.; Liang, B. Radiation therapy in the era of immune treatment for hepatocellular carcinoma. Front. Immunol. 2023, 14, 1100079. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Tai, D.; Yip, C.; Choo, S.P.; Chew, V. Combinational Immunotherapy for Hepatocellular Carcinoma: Radiotherapy, Immune Checkpoint Blockade and Beyond. Front. Immunol. 2020, 11, 568759. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Kong, L.; Shi, F.; Zhu, H.; Yu, J. Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. J. Hematol. Oncol. 2018, 11, 104. [Google Scholar] [CrossRef]
- Bieghs, V.; Trautwein, C. The innate immune response during liver inflammation and metabolic disease. Trends Immunol. 2013, 34, 446–452. [Google Scholar] [CrossRef]
- Racanelli, V.; Rehermann, B. The liver as an immunological organ. Hepatology 2006, 43, S54–S62. [Google Scholar] [CrossRef]
- De Re, V.; Rossetto, A.; Rosignoli, A.; Muraro, E.; Racanelli, V.; Tornesello, M.L.; Zompicchiatti, A.; Uzzau, A. Hepatocellular Carcinoma Intrinsic Cell Death Regulates Immune Response and Prognosis. Front. Oncol. 2022, 12, 897703. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xu, D.; Liu, Z.; Shi, M.; Zhao, P.; Fu, B.; Zhang, Z.; Yang, H.; Zhang, H.; Zhou, C. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007, 132, 2328–2339. [Google Scholar] [CrossRef] [PubMed]
- Hoechst, B.; Ormandy, L.A.; Ballmaier, M.; Lehner, F.; Krüger, C.; Manns, M.P.; Greten, T.F.; Korangy, F. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4+ CD25+ Foxp3+ T cells. Gastroenterology 2008, 135, 234–243. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, J.; Bai, Y.; Xu, A.; Cang, S.; Du, C.; Li, Q.; Lu, Y.; Chen, Y.; Guo, Y.; et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): A randomised, open-label, phase 2–3 study. Lancet Oncol. 2021, 22, 977–990. [Google Scholar] [CrossRef] [PubMed]
- Mode, D. AstraZeneca: Imfinzi Plus Imjudo Demonstrated Sustained Overall Survival Benefit in Advanced Liver Cancer with an Unprecedented One in Four Patients Alive at Four Years in HIMALAYA Phase III Trial. Available online: https://mfn.se/cis/a/astrazeneca/astrazeneca-imfinzi-plus-imjudo-demonstrated-sustained-overall-survival-benefit-in-advanced-liver-cancer-with-an-unprecedented-one-in-four-patients-alive-at-four-years-in-himalaya-phase-iii-trial-4799270e (accessed on 7 September 2023).
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef]
- Yau, T.; Kang, Y.K.; Kim, T.Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.M.; Matilla, A.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Psilopatis, I.; Damaskos, C.; Garmpi, A.; Sarantis, P.; Koustas, E.; Antoniou, E.A.; Dimitroulis, D.; Kouraklis, G.; Karamouzis, M.V.; Vrettou, K.; et al. FDA-Approved Monoclonal Antibodies for Unresectable Hepatocellular Carcinoma: What Do We Know So Far? Int. J. Mol. Sci. 2023, 24, 2685. [Google Scholar] [CrossRef]
- Kelley, R.K.; Mollon, P.; Blanc, J.F.; Daniele, B.; Yau, T.; Cheng, A.L.; Valcheva, V.; Marteau, F.; Guerra, I.; Abou-Alfa, G.K. Comparative Efficacy of Cabozantinib and Regorafenib for Advanced Hepatocellular Carcinoma. Adv. Ther. 2020, 37, 2678–2695. [Google Scholar] [CrossRef] [PubMed]
- Ducreux, M.; Abou-Alfa, G.; Ren, Z.; Edeline, J.; Li, Z.; Assenat, E.; Rimassa, L.; Blanc, J.; Ross, P.; Fang, W. O-1 Results from a global phase 2 study of tislelizumab, an investigational PD-1 antibody, in patients with unresectable hepatocellular carcinoma. Ann. Oncol. 2021, 32, S217. [Google Scholar] [CrossRef]
- Qin, S.; Ren, Z.; Meng, Z.; Chen, Z.; Chai, X.; Xiong, J.; Bai, Y.; Yang, L.; Zhu, H.; Fang, W. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: A multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 2020, 21, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Chan, L.; Gu, S.; Bai, Y.; Ren, Z.; Lin, X.; Chen, Z.; Jia, W.; Jin, Y.; Guo, Y. LBA35 Camrelizumab (C) plus rivoceranib (R) vs. sorafenib (S) as first-line therapy for unresectable hepatocellular carcinoma (uHCC): A randomized, phase III trial. Ann. Oncol. 2022, 33, S1401–S1402. [Google Scholar] [CrossRef]
- Zhang, C.S.; Zeng, Z.M.; Zhuo, M.Y.; Luo, J.R.; Zhuang, X.H.; Xu, J.N.; Zeng, J.; Ma, J.; Lin, H.F. Anlotinib Combined With Toripalimab as First-Line Therapy for Unresectable Hepatocellular Carcinoma: A Prospective, Multicenter, Phase II Study. Oncologist 2023, oyad169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion. Adv. Exp. Med. Biol. 2020, 1248, 201–226. [Google Scholar] [CrossRef]
- Pennock, G.K.; Chow, L.Q. The evolving role of immune checkpoint inhibitors in cancer treatment. Oncologist 2015, 20, 812–822. [Google Scholar] [CrossRef]
- Saad, P.; Kasi, A. Ipilimumab; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Walker, L.S.; Sansom, D.M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 2011, 11, 852–863. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, Z.; Wu, W.; Wang, Z.; Zhang, N.; Zhang, L.; Zeng, W.J.; Liu, Z.; Cheng, Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J. Exp. Clin. Cancer Res. 2021, 40, 184. [Google Scholar] [CrossRef]
- Kudo, M. Scientific rationale for combination immunotherapy of hepatocellular carcinoma with anti-PD-1/PD-L1 and anti-CTLA-4 antibodies. Liver Cancer 2019, 8, 413–426. [Google Scholar] [CrossRef]
- Keam, S.J. Tremelimumab: First Approval. Drugs 2023, 83, 93–102. [Google Scholar] [CrossRef]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef]
- Yokosuka, T.; Takamatsu, M.; Kobayashi-Imanishi, W.; Hashimoto-Tane, A.; Azuma, M.; Saito, T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med. 2012, 209, 1201–1217. [Google Scholar] [CrossRef]
- Kudo, M. Scientific Rationale for Combined Immunotherapy with PD-1/PD-L1 Antibodies and VEGF Inhibitors in Advanced Hepatocellular Carcinoma. Cancers 2020, 12, 1089. [Google Scholar] [CrossRef] [PubMed]
- Merle, P.; Blanc, J.F.; Edeline, J.; Le Malicot, K.; Allaire, M.; Assenat, E.; Guarssifi, M.; Bouattour, M.; Péron, J.M.; Laurent-Puig, P.; et al. Ipilimumab with atezolizumab-bevacizumab in patients with advanced hepatocellular carcinoma: The PRODIGE 81-FFCD 2101-TRIPLET-HCC trial. Dig. Liver Dis. 2023, 55, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Hönscheid, P.; Datta, K.; Muders, M.H. Autophagy: Detection, regulation and its role in cancer and therapy response. Int. J. Radiat. Biol. 2014, 90, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity 2014, 41, 843–852. [Google Scholar] [CrossRef]
- Burnette, B.C.; Liang, H.; Lee, Y.; Chlewicki, L.; Khodarev, N.N.; Weichselbaum, R.R.; Fu, Y.X.; Auh, S.L. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 2011, 71, 2488–2496. [Google Scholar] [CrossRef]
- Gresser, I.; Belardelli, F.; Maury, C.; Maunoury, M.T.; Tovey, M.G. Injection of mice with antibody to interferon enhances the growth of transplantable murine tumors. J. Exp. Med. 1983, 158, 2095–2107. [Google Scholar] [CrossRef]
- Chakraborty, M.; Abrams, S.I.; Camphausen, K.; Liu, K.; Scott, T.; Coleman, C.N.; Hodge, J.W. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J. Immunol. 2003, 170, 6338–6347. [Google Scholar] [CrossRef]
- Lugade, A.A.; Moran, J.P.; Gerber, S.A.; Rose, R.C.; Frelinger, J.G.; Lord, E.M. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 2005, 174, 7516–7523. [Google Scholar] [CrossRef] [PubMed]
- Reynders, K.; Illidge, T.; Siva, S.; Chang, J.Y.; De Ruysscher, D. The abscopal effect of local radiotherapy: Using immunotherapy to make a rare event clinically relevant. Cancer Treat. Rev. 2015, 41, 503–510. [Google Scholar] [CrossRef]
- Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 2012, 12, 860–875. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.J.; Seong, J.; Shim, S.J.; Han, K.H. Radiotherapeutic parameters predictive of liver complications induced by liver tumor radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 154–158. [Google Scholar] [CrossRef]
- Kim, J.; Jung, Y. Radiation-induced liver disease: Current understanding and future perspectives. Exp. Mol. Med. 2017, 49, e359. [Google Scholar] [CrossRef] [PubMed]
- Guha, C.; Kavanagh, B.D. Hepatic radiation toxicity: Avoidance and amelioration. Semin. Radiat. Oncol. 2011, 21, 256–263. [Google Scholar] [CrossRef]
- Lawrence, T.S.; Robertson, J.M.; Anscher, M.S.; Jirtle, R.L.; Ensminger, W.D.; Fajardo, L.F. Hepatic toxicity resulting from cancer treatment. Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1237–1248. [Google Scholar] [CrossRef]
- Reed, G.B., Jr.; Cox, A.J., Jr. The human liver after radiation injury. A form of veno-occlusive disease. Am. J. Pathol. 1966, 48, 597–611. [Google Scholar]
- Guha, C.; Sharma, A.; Gupta, S.; Alfieri, A.; Gorla, G.R.; Gagandeep, S.; Sokhi, R.; Roy-Chowdhury, N.; Tanaka, K.E.; Vikram, B.; et al. Amelioration of radiation-induced liver damage in partially hepatectomized rats by hepatocyte transplantation. Cancer Res. 1999, 59, 5871–5874. [Google Scholar]
- Wu, M.C. Progress in diagnosis and treatment of primary liver cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2008, 30, 363–365. [Google Scholar] [PubMed]
- Apisarnthanarax, S.; Barry, A.; Cao, M.; Czito, B.; DeMatteo, R.; Drinane, M.; Hallemeier, C.L.; Koay, E.J.; Lasley, F.; Meyer, J.; et al. External Beam Radiation Therapy for Primary Liver Cancers: An ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2022, 12, 28–51. [Google Scholar] [CrossRef] [PubMed]
- Rim, C.H.; Seong, J. Application of radiotherapy for hepatocellular carcinoma in current clinical practice guidelines. Radiat. Oncol. J. 2016, 34, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.; Winter, K.; Knox, J.; Zhu, A.; Krishnan, S.; Guha, C.; Kachnic, L.; Gillin, M.; Hong, T.; Craig, T. NRG/RTOG 1112: Randomized Phase III Study of Sorafenib vs. Stereotactic Body Radiation Therapy (SBRT) Followed by Sorafenib in Hepatocellular Carcinoma (HCC)(NCT01730937). Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 1057. [Google Scholar] [CrossRef]
- Kalogeridi, M.A.; Zygogianni, A.; Kyrgias, G.; Kouvaris, J.; Chatziioannou, S.; Kelekis, N.; Kouloulias, V. Role of radiotherapy in the management of hepatocellular carcinoma: A systematic review. World J. Hepatol. 2015, 7, 101–112. [Google Scholar] [CrossRef]
- Bang, A.; Dawson, L.A. Radiotherapy for HCC: Ready for prime time? JHEP Rep. 2019, 1, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Emami, B.; Lyman, J.; Brown, A.; Coia, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 109–122. [Google Scholar] [CrossRef]
- Chen, W.; Chiang, C.L.; Dawson, L.A. Efficacy and safety of radiotherapy for primary liver cancer. Chin. Clin. Oncol. 2021, 10, 9. [Google Scholar] [CrossRef]
- Yeung, C.S.Y.; Chiang, C.L.; Wong, N.S.M.; Ha, S.K.; Tsang, K.S.; Ho, C.H.M.; Wang, B.; Lee, V.W.Y.; Chan, M.K.H.; Lee, F.A.S. Palliative Liver Radiotherapy (RT) for Symptomatic Hepatocellular Carcinoma (HCC). Sci. Rep. 2020, 10, 1254. [Google Scholar] [CrossRef]
- Crane, C.H.; Koay, E.J. Solutions that enable ablative radiotherapy for large liver tumors: Fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance. Cancer 2016, 122, 1974–1986. [Google Scholar] [CrossRef]
- Hilal, L.; Reyngold, M.; Wu, A.J.; Araji, A.; Abou-Alfa, G.K.; Jarnagin, W.; Harding, J.J.; Gambarin, M.; El Dika, I.; Brady, P.; et al. Ablative radiation therapy for hepatocellular carcinoma is associated with reduced treatment- and tumor-related liver failure and improved survival. J. Gastrointest. Oncol. 2021, 12, 1743–1752. [Google Scholar] [CrossRef]
- Hu, C.; Deng, C.; Zou, W.; Zhang, G.; Wang, J. The Role of Consolidative Radiotherapy after a Complete Response to Chemotherapy in the Treatment of Diffuse Large B-Cell Lymphoma in the Rituximab Era: Results from a Systematic Review with a Meta-Analysis. Acta Haematol. 2015, 134, 111–118. [Google Scholar] [CrossRef]
- Sugarbaker, P.H. Successful management of microscopic residual disease in large bowel cancer. Cancer Chemother. Pharmacol. 1999, 43, S15–S25. [Google Scholar] [CrossRef] [PubMed]
- Ikai, I.; Arii, S.; Kojiro, M.; Ichida, T.; Makuuchi, M.; Matsuyama, Y.; Nakanuma, Y.; Okita, K.; Omata, M.; Takayasu, K.; et al. Reevaluation of prognostic factors for survival after liver resection in patients with hepatocellular carcinoma in a Japanese nationwide survey. Cancer 2004, 101, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Guo, R.P.; Lin, X.J.; Zhang, Y.Q.; Chen, M.S.; Zhang, C.Q.; Lau, W.Y.; Li, J.Q. Partial hepatectomy with wide versus narrow resection margin for solitary hepatocellular carcinoma: A prospective randomized trial. Ann. Surg. 2007, 245, 36–43. [Google Scholar] [CrossRef]
- Shimada, K.; Sakamoto, Y.; Esaki, M.; Kosuge, T. Role of the width of the surgical margin in a hepatectomy for small hepatocellular carcinomas eligible for percutaneous local ablative therapy. Am. J. Surg. 2008, 195, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wu, J.X.; Cheng, S.H.; Wang, L.M.; Rong, W.Q.; Wu, F.; Wang, S.L.; Jin, J.; Liu, Y.P.; Song, Y.W.; et al. Phase 2 Study of Adjuvant Radiotherapy Following Narrow-Margin Hepatectomy in Patients With HCC. Hepatology 2021, 74, 2595–2604. [Google Scholar] [CrossRef]
- Soni, P.D.; Palta, M. Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma: Current State and Future Opportunities. Dig. Dis. Sci. 2019, 64, 1008–1015. [Google Scholar] [CrossRef]
- Kouloulias, V.; Mosa, E.; Georgakopoulos, J.; Platoni, K.; Brountzos, I.; Zygogianni, A.; Antypas, C.; Kosmidis, P.; Mystakidou, K.; Tolia, M.; et al. Three-dimensional conformal radiotherapy for hepatocellular carcinoma in patients unfit for resection, ablation, or chemotherapy: A retrospective study. Sci. World J. 2013, 2013, 780141. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.H.; Ki, Y.K.; Nam, J.H.; Heo, J.; Woo, H.Y.; Kim, D.W.; Kim, W.T. Three-dimensional conformal radiotherapy for portal vein tumor thrombosis alone in advanced hepatocellular carcinoma. Radiat. Oncol. J. 2014, 32, 170–178. [Google Scholar] [CrossRef]
- Bae, S.H.; Jang, W.I.; Park, H.C. Intensity-modulated radiotherapy for hepatocellular carcinoma: Dosimetric and clinical results. Oncotarget 2017, 8, 59965–59976. [Google Scholar] [CrossRef] [PubMed]
- Galvin, J.M.; De Neve, W. Intensity modulating and other radiation therapy devices for dose painting. J. Clin. Oncol. 2007, 25, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Vlacich, G.; Stavas, M.J.; Pendyala, P.; Chen, S.C.; Shyr, Y.; Cmelak, A.J. A comparative analysis between sequential boost and integrated boost intensity-modulated radiation therapy with concurrent chemotherapy for locally-advanced head and neck cancer. Radiat. Oncol. 2017, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.I.; Lee, I.J.; Han, K.H.; Seong, J. Improved oncologic outcomes with image-guided intensity-modulated radiation therapy using helical tomotherapy in locally advanced hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2014, 140, 1595–1605. [Google Scholar] [CrossRef]
- Yoo, G.S.; Yu, J.I.; Park, H.C. Proton therapy for hepatocellular carcinoma: Current knowledges and future perspectives. World J. Gastroenterol. 2018, 24, 3090–3100. [Google Scholar] [CrossRef] [PubMed]
- Alan Mitteer, R.; Wang, Y.; Shah, J.; Gordon, S.; Fager, M.; Butter, P.P.; Jun Kim, H.; Guardiola-Salmeron, C.; Carabe-Fernandez, A.; Fan, Y. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci. Rep. 2015, 5, 13961. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Loeffler, J.S. Charged particles in radiation oncology. Nat. Rev. Clin. Oncol. 2010, 7, 37–43. [Google Scholar] [CrossRef]
- Ling, T.C.; Kang, J.I.; Bush, D.A.; Slater, J.D.; Yang, G.Y. Proton therapy for hepatocellular carcinoma. Chin. J. Cancer Res. 2012, 24, 361–367. [Google Scholar] [CrossRef]
- Gerweck, L.E.; Kozin, S.V. Relative biological effectiveness of proton beams in clinical therapy. Radiother. Oncol. 1999, 50, 135–142. [Google Scholar] [CrossRef]
- Sanuki, N.; Takeda, A.; Oku, Y.; Mizuno, T.; Aoki, Y.; Eriguchi, T.; Iwabuchi, S.; Kunieda, E. Stereotactic body radiotherapy for small hepatocellular carcinoma: A retrospective outcome analysis in 185 patients. Acta Oncol. 2014, 53, 399–404. [Google Scholar] [CrossRef]
- Matsuo, Y. Stereotactic Body Radiotherapy for Hepatocellular Carcinoma: A Brief Overview. Curr. Oncol. 2023, 30, 2493–2500. [Google Scholar] [CrossRef]
- Goddard, L.C.; Brodin, N.P.; Bodner, W.R.; Garg, M.K.; Tomé, W.A. Comparing photon and proton-based hypofractioned SBRT for prostate cancer accounting for robustness and realistic treatment deliverability. Br. J. Radiol. 2018, 91, 20180010. [Google Scholar] [CrossRef]
- Sanford, N.N.; Pursley, J.; Noe, B.; Yeap, B.Y.; Goyal, L.; Clark, J.W.; Allen, J.N.; Blaszkowsky, L.S.; Ryan, D.P.; Ferrone, C.R.; et al. Protons versus Photons for Unresectable Hepatocellular Carcinoma: Liver Decompensation and Overall Survival. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Kreidieh, M.; Zeidan, Y.H.; Shamseddine, A. The Combination of Stereotactic Body Radiation Therapy and Immunotherapy in Primary Liver Tumors. J. Oncol. 2019, 2019, 4304817. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Z.; Ding, Y.; Huang, F.; Huang, W.; Lan, R.; Chen, R.; Wu, B.; Fu, L.; Yang, Y.; et al. Hypofractionated Irradiation Suppressed the Off-Target Mouse Hepatocarcinoma Growth by Inhibiting Myeloid-Derived Suppressor Cell-Mediated Immune Suppression. Front. Oncol. 2020, 10, 4. [Google Scholar] [CrossRef]
- Wang, D.; An, G.; Xie, S.; Yao, Y.; Feng, G. The clinical and prognostic significance of CD14+HLA-DR−/low myeloid-derived suppressor cells in hepatocellular carcinoma patients receiving radiotherapy. Tumour Biol. 2016, 37, 10427–10433. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.; Zhang, X.; Wang, Y.; Yang, X.; Yang, X.; Chao, J.; Xun, Z.; Xue, J.; Wang, Y.; Sun, H. Radiation Therapy With Combination Therapy of Immune Checkpoint Inhibitors and Antiangiogenic Therapy for Hepatocellular Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2023. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-J.; Kim, J.-H.; Lee, S.J.; Lee, E.-J.; Shin, E.-C.; Seong, J. Radiation improves antitumor effect of immune checkpoint inhibitor in murine hepatocellular carcinoma model. Oncotarget 2017, 8, 41242. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.; Baird, J.R.; Young, K.H.; Cottam, B.; Crittenden, M.R.; Friedman, S.; Gough, M.J.; Newell, P. Programmed cell death-1 blockade enhances response to stereotactic radiation in an orthotopic murine model of hepatocellular carcinoma. Hepatol. Res. 2017, 47, 702–714. [Google Scholar] [CrossRef]
- Yoo, G.S.; Ahn, W.-G.; Kim, S.-Y.; Kang, W.; Choi, C.; Park, H.C. Radiation-induced abscopal effect and its enhancement by programmed cell death 1 blockade in the hepatocellular carcinoma: A murine model study. Clin. Mol. Hepatol. 2021, 27, 144. [Google Scholar] [CrossRef]
- Dovedi, S.J.; Adlard, A.L.; Lipowska-Bhalla, G.; McKenna, C.; Jones, S.; Cheadle, E.J.; Stratford, I.J.; Poon, E.; Morrow, M.; Stewart, R. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014, 74, 5458–5468. [Google Scholar] [CrossRef] [PubMed]
- Sung, W.; Hong, T.S.; Poznansky, M.C.; Paganetti, H.; Grassberger, C. Mathematical modeling to simulate the effect of adding radiation therapy to immunotherapy and application to hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 1055–1062. [Google Scholar] [CrossRef]
- Young, K.H.; Baird, J.R.; Savage, T.; Cottam, B.; Friedman, D.; Bambina, S.; Messenheimer, D.J.; Fox, B.; Newell, P.; Bahjat, K.S. Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy. PLoS ONE 2016, 11, e0157164. [Google Scholar] [CrossRef] [PubMed]
- Manzar, G.S.; De, B.S.; Abana, C.O.; Lee, S.S.; Javle, M.; Kaseb, A.O.; Vauthey, J.N.; Tran Cao, H.S.; Koong, A.C.; Smith, G.L.; et al. Outcomes and Toxicities of Modern Combined Modality Therapy with Atezolizumab Plus Bevacizumab and Radiation Therapy for Hepatocellular Carcinoma. Cancers 2022, 14, 1901. [Google Scholar] [CrossRef] [PubMed]
- Juloori, A.; Katipally, R.R.; Lemons, J.M.; Singh, A.K.; Iyer, R.; Robbins, J.R.; George, B.; Hall, W.A.; Pitroda, S.P.; Arif, F.; et al. Phase 1 Randomized Trial of Stereotactic Body Radiation Therapy Followed by Nivolumab plus Ipilimumab or Nivolumab Alone in Advanced/Unresectable Hepatocellular Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 202–213. [Google Scholar] [CrossRef]
- Chiang, C.L.; Chan, A.C.Y.; Chiu, K.W.H.; Kong, F.S. Combined Stereotactic Body Radiotherapy and Checkpoint Inhibition in Unresectable Hepatocellular Carcinoma: A Potential Synergistic Treatment Strategy. Front. Oncol. 2019, 9, 1157. [Google Scholar] [CrossRef]
- Smith, W.H.; Law, A.S.; Hulkower, M.; McGee, H.M.; Lehrer, E.J.; Schwartz, M.; Taouli, B.; Sung, M.; Buckstein, M. The effect of radiation therapy on the objective response and outcomes with nivolumab for hepatocellular carcinoma. Acta Oncol. 2020, 59, 940–943. [Google Scholar] [CrossRef]
- Smith, W.; McGee, H.; Schwartz, M.; Sung, M.; Rosenzweig, K.; Buckstein, M. The safety of nivolumab in combination with prior or concurrent radiation therapy among patients with hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, E227–E228. [Google Scholar] [CrossRef]
- Chiang, C.L.; Chiu, K.W.; Lee, F.A.; Kong, F.S.; Chan, A.C. Combined Stereotactic Body Radiotherapy and Immunotherapy Versus Transarterial Chemoembolization in Locally Advanced Hepatocellular Carcinoma: A Propensity Score Matching Analysis. Front. Oncol. 2021, 11, 798832. [Google Scholar] [CrossRef]
- Li, J.X.; Su, T.S.; Gong, W.F.; Zhong, J.H.; Yan, L.Y.; Zhang, J.; Li, L.Q.; He, M.L.; Zhang, R.J.; Du, Y.Q.; et al. Combining stereotactic body radiotherapy with camrelizumab for unresectable hepatocellular carcinoma: A single-arm trial. Hepatol. Int. 2022, 16, 1179–1187. [Google Scholar] [CrossRef]
- Su, C.W.; Hou, M.M.; Huang, P.W.; Chou, Y.C.; Huang, B.S.; Tseng, J.H.; Hsu, C.W.; Chang, T.C.; Lin, S.M.; Lin, C.C. Proton beam radiotherapy combined with anti-PD1/PDL1 immune checkpoint inhibitors for advanced hepatocellular carcinoma. Am. J. Cancer Res. 2022, 12, 1606–1620. [Google Scholar] [PubMed]
- Su, K.; Guo, L.; Ma, W.; Wang, J.; Xie, Y.; Rao, M.; Zhang, J.; Li, X.; Wen, L.; Li, B.; et al. PD-1 inhibitors plus anti-angiogenic therapy with or without intensity-modulated radiotherapy for advanced hepatocellular carcinoma: A propensity score matching study. Front. Immunol. 2022, 13, 972503. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, Z.; Liao, W.; Hu, K.; Wang, Z. Combination of Sorafenib, Camrelizumab, Transcatheter Arterial Chemoembolization, and Stereotactic Body Radiation Therapy as a Novel Downstaging Strategy in Advanced Hepatocellular Carcinoma With Portal Vein Tumor Thrombus: A Case Series Study. Front. Oncol. 2021, 11, 650394. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, H.; Fang, W.; Zhang, X.; Luo, H.; Chen, Z.; Yu, J.; Fan, W.; Chi, X.; Peng, Y. Toripalimab in combination with Anlotinib for unresectable hepatocellular carcinoma after SBRT: A prospective, single-arm, single-center clinical study. Front. Oncol. 2023, 13, 1113389. [Google Scholar] [CrossRef] [PubMed]
Immune Checkpoint Inhibitors | Target | Timing and Location in Immunity Cycle [45] | Mechanism of Action [41,45] |
---|---|---|---|
Ipilimumab | CTLA-4 | T cell priming phase in lymph nodes | Anti-CTLA-4 binds to the CTLA-4 receptor on CD4+, CD8+, and regulatory T cells allowing T cell costimulation and activation |
Tremelimumab | |||
Nivolumab | PD-1 | T cell effector phase in peripheral tissues | Anti-PD-1 binds to the PD-1 receptor on T cells, B cells, and myeloid cells, allowing immune detection of tumor cells |
Pembrolizumab | |||
Sintilimab | |||
Tislelizumab | |||
Camrelizumab | |||
Toripalimab | |||
Atezolizumab | PD-L1 | T cell effector phase in peripheral tissues | Anti-PD-L1 binds to PD-L1 on APCs, tumor, and other immune cells, allowing immune detection of tumor cells |
Durvalumab |
Paper | Treatment Arms | Immunotherapeutic Drugs | RT Type | Combination Treatment Sequence | Primary Endpoint |
---|---|---|---|---|---|
Manzar et al. [107] | RT + anti-PD-L1 + anti-VEGF | Atezolizumab, bevacizumab | IMRT or PBT or 3DCRT | Neoadjuvant or adjuvant atezolizumab plus bevacizumab and/or concurrent atezolizumab | mOS: 16.1 months |
Juloori et al. [108] | RT + anti-PD-1 + anti-CTLA-4 vs. RT + anti-PD-1 | Nivolumab, ipilimumab | SBRT | Neoadjuvant RT 2 weeks prior to ICIs | Dose-limiting toxicity occurring within 6 months of RT: 1 patient vs. 1 patient |
Chiang et al. [109] | TACE + RT + anti-PD-1 (4 patients) and RT + anti-PD-1 (1 patient) | Nivolumab | SBRT | TACE: 4 weeks prior to RT + neoadjuvant RT 2 weeks prior to ICI | mPFS: 14.9 months 1-year LCR: 100% 1-year OS rate: 100% |
Smith et al. [110] | Upfront RT + anti-PD-1 vs. Salvage RT + anti-PD-1 | Nivolumab | SBRT (in 47% of cases) | Concurrent or neoadjuvant RT vs. adjuvant RT | ORR: 34.6% vs. 11.1% |
Smith et al. [111] | RT + anti-PD-1 | Nivolumab | SBRT (in 63.2% of cases) | Neoadjuvant vs. concurrent RT | Rate of grade 3+ toxicities: 21.3% vs. 8.1% of patients (p = 0.035) |
Chiang et al. [112] | RT + anti-PD-1 vs. TACE | Nivolumab | SBRT | Neoadjuvant RT 2 weeks prior to ICI | PFS (12 months): 93.3% vs. 16.7% PFS (24 months): 77.8% vs. 2.1% (p < 0.001) |
Li et al. [113] | RT + anti-PD-1 | Camrelizumab | SBRT | Concurrent RT | ORR: 52.4% 23.8% of patients had grade 3 TRAEs No patient had grade 4–5 TRAEs |
Su et al. [114] | RT (curative) + anti-PD-1/PD-L1 monotherapy or combination with anti-VEGF or mTKI or anti-CTLA-4 vs. RT (palliative) + anti-PD-1/PD-L1 monotherapy or combination with anti-VEGF or mTKI or anti-CTLA-4 | Nivolumab or pembrolizumab monotherapy; or nivolumab plus sorafenib or lenvatinib; or bevacizumab plus nivolumab or atezolizumab; or nivolumab plus ipilimumab | PBT | Concurrent RT | 1-year PBT infield tumor control: 90.5% vs. 70.8% 1-year PBT outfield tumor control: 90.9% vs. 69.2% OR: 61.5% vs. 43.8% mPFS: 27.2 vs. 15.9 months |
Su et al. [115] | RT + anti-PD-1 + anti-VEGF vs. anti-PD-1 + anti-VEGF | Unspecified | IMRT | mTKI daily, concurrent RT (within 7 days of 1 at ICI cycle) | ORR: 40% vs. 25% (p = 0.152) mPFS: 8.7 vs. 5.4 months (p = 0.013) mOS: 18.5 vs. 12.6 months (p = 0.043) |
Huang et al. [116] | RT + anti-PD-1 + mTKI + TACE | Camrelizumab, sorafenib | SBRT | mTKI daily and concurrently with ICI, followed by TACE within 2 weeks and RT within 1 month | OR rate: 41.7% DCR: 50% mPFS: 15.7 months mOS: not reached |
Chen et al. [117] | RT + anti-PD-1 + anti-VEGF | Toripalimab, anlotinib | SBRT | RT given in 3 days, followed after a 1-day interval by ICI and anti-VEGF | PFS: 7.4 months |
Ongoing Trial | Treatment Arms | Immunotherapeutic Drug | RT Type | Combination Treatment Sequence | Dosage | Primary Endpoint |
---|---|---|---|---|---|---|
NCT03482102 | RT+ anti-CTLA-4 + anti-PD-L1 | Tremelimumab, durvalumab | NA | Tremelimumab plus durvalumab: up to 4 doses/cycles Durvalumab monotherapy: started on week 16 for up to 8 months given every 4 weeks RT: given only during cycle 2 | NA | Best OR rate |
NCT04611165 | RT + anti-PD-1 | Nivolumab | EBRT | Nivolumab: every 2 weeks EBRT: 2–7 days after first dose of nivolumab | PTV1: 30–50 Gy/10 fx (5 Gy/fx) PTV2: 30 Gy/10 fx (3 Gy/fx) Nivolumab: 3 mg/kg | PFS |
NCT04857684 | RT + anti-PD-L1 + anti-VEGF | Atezolizumab, bevacizumab | SBRT | Neoadjuvant SBRT Atezolizumab: given on day 1 of two 3-week cycles Bevacizumab: 1 time weekly for two 3-week cycles | NA | Proportion of patients with grade 3-4 TRAEs |
NCT04167293 | RT + anti-PD-1 vs. RT | Sintilimab | SBRT via VMAT | SBRT (1–2 weeks) followed by sintilimab 4–6 weeks later (every 3 weeks for up to 1 year) | RT: 30–54 Gy/3–6 fx (prescribed dose) Sintilimab: 200 mg | 24-week PFS rate |
NCT04547452 | RT + anti-PD-1 vs. anti-PD-1 | Sintilimab | SBRT via VMAT | SBRT (1–2 weeks) followed by sintilimab 4–6 weeks later (every 3 weeks for up to 1 year) | RT: 30–54 Gy/3–6 fx (prescribed dose) Sintilimab: 200 mg | 24-week PFS rate |
NCT05185531 | RT + anti-PD-1 | Tislelizumab | SBRT | Concurrent RT (days 1, 3, and 5) plus tislelizumab (days 1 and 22) | RT: 8 Gy/3 fx | Delay to surgery, ORR, pathologic response rate, incidence of TRAEs |
NCT05225116 | RT + anti-PD-1 + mTKI | Sintilimab, lenvatinib | NA | RT: given within 2 weeks Sintilimab: every 3 weeks Lenvatinib: daily starting from day 1 | RT: 300 cGy/10 fx Sintilimab: 200 mg Lenvatinib: 8 mg/day ≤ 60 kg or 12 mg/day ≥ 60 kg | Incidence of grade ≥ 3 TRAEs, number of patients who completed pre-op treatment and proceeded to surgery |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chami, P.; Diab, Y.; Khalil, D.N.; Azhari, H.; Jarnagin, W.R.; Abou-Alfa, G.K.; Harding, J.J.; Hajj, J.; Ma, J.; El Homsi, M.; et al. Radiation and Immune Checkpoint Inhibitors: Combination Therapy for Treatment of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 16773. https://doi.org/10.3390/ijms242316773
Chami P, Diab Y, Khalil DN, Azhari H, Jarnagin WR, Abou-Alfa GK, Harding JJ, Hajj J, Ma J, El Homsi M, et al. Radiation and Immune Checkpoint Inhibitors: Combination Therapy for Treatment of Hepatocellular Carcinoma. International Journal of Molecular Sciences. 2023; 24(23):16773. https://doi.org/10.3390/ijms242316773
Chicago/Turabian StyleChami, Perla, Youssef Diab, Danny N. Khalil, Hassan Azhari, William R. Jarnagin, Ghassan K. Abou-Alfa, James J. Harding, Joseph Hajj, Jennifer Ma, Maria El Homsi, and et al. 2023. "Radiation and Immune Checkpoint Inhibitors: Combination Therapy for Treatment of Hepatocellular Carcinoma" International Journal of Molecular Sciences 24, no. 23: 16773. https://doi.org/10.3390/ijms242316773
APA StyleChami, P., Diab, Y., Khalil, D. N., Azhari, H., Jarnagin, W. R., Abou-Alfa, G. K., Harding, J. J., Hajj, J., Ma, J., El Homsi, M., Reyngold, M., Crane, C., & Hajj, C. (2023). Radiation and Immune Checkpoint Inhibitors: Combination Therapy for Treatment of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 24(23), 16773. https://doi.org/10.3390/ijms242316773