Genetic Correlation of miRNA Polymorphisms and STAT3 Signaling Pathway with Recurrent Implantation Failure in the Korean Population
Abstract
:1. Introduction
2. Results
2.1. Clinical Profiles of Study Subjects
2.2. Comparison of Genotype Frequencies of miRNA SNPs
2.3. Combination Analysis
2.4. Variations in Clinical Parameters Based on miRNA Variants
2.5. Stratified Analysis of miRNA SNPs Based on Risk Factors in Patients and Control Subjects
2.6. Synergistic Interaction between miRNA Polymorphisms and Clinical Parameters
3. Discussion
4. Materials and Methods
4.1. Participant Selection and Exclusion Criteria
4.2. Assessment of Homocysteine, Folic Acid, Uric Acid, Blood Urea Nitrogen, Creatinine, and Blood Coagulation Status
4.3. Hormone Assays
4.4. Flow Cytometric Analysis of Immune Cells
4.5. SNP Selection
4.6. Genetic Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M. National policies for infertility support and nursing strategies for patients affected by infertility in South Korea. Korean J. Women Health Nurs. 2021, 27, 1–5. [Google Scholar] [CrossRef]
- Coughlan, C.; Ledger, W.; Wang, Q.; Liu, F.; Demirol, A.; Gurgan, T.; Cutting, R.; Ong, K.; Sallam, H.; Li, T. Recurrent implantation failure: Definition and management. Reprod. Biomed. Online 2014, 28, 14–38. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Gao, W.; Li, D. Recurrent implantation failure: A comprehensive summary from etiology to treatment. Front. Endocrinol. 2023, 13, 1061766. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, T.; Hirota, Y.; Fukui, Y.; Gebril, M.; Kaku, T.; Aikawa, S.; Hirata, T.; Akaeda, S.; Matsuo, M.; Haraguchi, H.; et al. Differential roles of uterine epithelial and stromal STAT3 coordinate uterine receptivity and embryo attachment. Sci. Rep. 2020, 10, 15523. [Google Scholar] [CrossRef] [PubMed]
- Dekel, N.; Gnainsky, Y.; Granot, I.; Mor, G. Inflammation and implantation. Am. J. Reprod. Immunol. 2010, 63, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.; Cardenas, I.; Abrahams, V.; Guller, S. Inflammation and pregnancy: The role of the immune system at the implantation site. Ann. N. Y. Acad. Sci. 2011, 1221, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.; Starosvetsky, E.; Orvis, G.D.; Behringer, R.R.; Bagchi, I.C.; Bagchi, M.K. STAT3 regulates uterine epithelial remodeling and epithelial-stromal crosstalk during implantation. Mol. Endocrinol. 2013, 27, 1996–2012. [Google Scholar] [CrossRef]
- Hillmer, E.J.; Zhang, H.; Li, H.S.; Watowich, S.S. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016, 31, 1–15. [Google Scholar] [CrossRef]
- Ranganathan, K.; Sivasankar, V. MicroRNAs-Biology and clinical applications. J. Oral Maxillofac. Pathol. 2014, 18, 229. [Google Scholar] [CrossRef]
- Djuranovic, S.; Nahvi, A.; Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 2012, 336, 237–240. [Google Scholar] [CrossRef]
- Ardekani, A.M.; Naeini, M.M. The role of microRNAs in human diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161. [Google Scholar]
- Galliano, D.; Pellicer, A. MicroRNA and implantation. Fertil. Steril. 2014, 101, 1531–1544. [Google Scholar] [CrossRef] [PubMed]
- Azizi, E.; Mofarahe, Z.S.; Naji, M. MicroRNAs, small regulatory elements with significant effects on human implantation: A review. J. Assist Reprod. Genet. 2023, 40, 697–717. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, M.; Zhang, N.; Sun, W.; Wang, H.; Wei, W. Mechanism of miR-218-5p in autophagy, apoptosis and oxidative stress in rheumatoid arthritis synovial fibroblasts is mediated by KLF9 and JAK/STAT3 pathways. J. Investig. Med. 2021, 69, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Rokavec, M.; Öner, M.G.; Li, H.; Jackstadt, R.; Jiang, L.; Lodygin, D.; Kaller, M.; Horst, D.; Ziegler, P.K.; Schwitalla, S.; et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Investig. 2014, 124, 1853–1867. [Google Scholar] [CrossRef] [PubMed]
- Guduric-Fuchs, J.; Pedrini, E.; Lechner, J.; Chambers, S.E.; O’Neill, C.L.; Mendes Lopes de Melo, J.; Pathak, V.; Church, R.H.; McKeown, S.; Bojdo, J.; et al. miR-130a activates the VEGFR2/STAT3/HIF1α axis to potentiate the vasoregenerative capacity of endothelial colony-forming cells in hypoxia. Mol. Ther. Nucleic Acids 2021, 23, 968–981. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.Y.; Beaman, K.D.; Gilman-Sachs, A.; Ruiz, J.E.; Schewitz, D.; Beer, A.E. Up-regulated expression of CD56+, CD56+/CD16+, and CD19+ cells in peripheral blood lymphocytes in pregnant women with recurrent pregnancy losses. Am. J. Reprod. Immunol. 1995, 34, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.J.; Kim, J.H.; Kim, K.J.; Ko, E.J.; Lee, J.Y.; Ryu, C.S.; Ha, Y.H.; Kim, Y.R.; Kim, N.K. Genetic Association between Inflammatory-Related Polymorphism in STAT3, IL-1β, IL-6, TNF-α and Idiopathic Recurrent Implantation Failure. Genes 2023, 14, 1588. [Google Scholar] [CrossRef]
- Ko, E.J.; Shin, J.E.; Lee, J.Y.; Ryu, C.S.; Hwang, J.Y.; Kim, Y.R.; Ahn, E.H.; Kim, J.H.; Kim, N.K. Association of Polymorphisms in FSHR, INHA, ESR1, and BMP15 with Recurrent Implantation Failure. Biomedicines 2023, 11, 1374. [Google Scholar] [CrossRef]
- Lee, Y.; Ahn, E.H.; Ryu, C.S.; Kim, J.O.; An, H.J.; Cho, S.H.; Kim, J.H.; Kim, Y.R.; Lee, W.S.; Kim, N.K. Association between microRNA machinery gene polymorphisms and recurrent implantation failure. Exp. Ther. Med. 2020, 19, 3113–3123. [Google Scholar] [CrossRef]
- Ryu, C.S.; Kim, Y.R.; Kim, J.O.; An, H.J.; Cho, S.H.; Ahn, E.H.; Kim, J.H.; Lee, W.S.; Kim, N.K. The association of AGO1 (rs595961G>A, rs636832A>G) and AGO2 (rs11996715C>A, rs2292779C>G, rs4961280C>A) polymorphisms and risk of recurrent implantation failure. Biosci. Rep. 2019, 39, BSR20190342. [Google Scholar] [CrossRef] [PubMed]
- Genest, G.; Banjar, S.; Almasri, W.; Beauchamp, C.; Benoit, J.; Buckett, W.; Dzineku, F.; Gold, P.; Dahan, M.H.; Jamal, W.; et al. Immunomodulation for unexplained recurrent implantation failure: Where are we now? Reproduction 2023, 165, R39–R60. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Goldsmith, L.T.; Taylor, R.N.; Bellet, D.; Taylor, H.S. Inflammation in reproductive disorders. Reprod. Sci. 2009, 16, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Vesce, F.; Battisti, C.; Crudo, M. The inflammatory cytokine imbalance for miscarriage, pregnancy loss and COVID-19 pneumonia. Front. Immunol. 2022, 13, 861245. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, A.P.; Diez, D.; Miranda-Saavedra, D. The IL-10/STAT3-mediated anti-inflammatory response: Recent developments and future challenges. Brief Funct. Genom. 2013, 12, 489–498. [Google Scholar] [CrossRef]
- Wu, X.; Cheng, Y.L.; Matthen, M.; Yoon, A.; Schwartz, G.K.; Bala, S.; Taylor, A.M.; Momen-Heravi, F. Down-regulation of the tumor suppressor miR-34a contributes to head and neck cancer by up-regulating the MET oncogene and modulating tumor immune evasion. J. Exp. Clin. Cancer Res. 2021, 40, 70. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.Y.; Vasilopoulou, E.; Kilby, M.D. The role of the placenta in thyroid hormone delivery to the fetus. Nature Clin. Pract. Endocrinol. Metab. 2009, 5, 45–54. [Google Scholar] [CrossRef]
- Khadilkar, S. Thyroid-stimulating hormone values in pregnancy: Cutoff controversy continues? J. Obstet. Gynecol. India 2019, 69, 389–394. [Google Scholar] [CrossRef]
- Andersen, S.L.; Olsen, J.; Wu, C.S.; Laurberg, P. Spontaneous abortion, stillbirth and hyperthyroidism: A danish population-based study. Eur. Thyroid J. 2014, 3, 164–172. [Google Scholar] [CrossRef]
- Staab, J.; Barth, P.J.; Meyer, T. Cell-type-specific expression of STAT transcription factors in tissue samples from patients with lymphocytic thyroiditis. Endocr. Pathol. 2012, 23, 141–150. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.W.; Wang, Y.Y.; Song, Y.; Zhu, J.; Si, P.C.; Ma, R. Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene 2017, 619, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Li, C.; Xu, X.; Wang, Y.; Li, Y.; Li, X. LncRNA LINC01123 promotes malignancy of ovarian cancer by targeting hsa-miR-516b-5p/VEGFA. Genes Genom. 2023, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Menon, A.; Abd-Aziz, N.; Khalid, K.; Poh, C.L.; Naidu, R. miRNA: A promising therapeutic target in cancer. Int. J. Mol. Sci. 2022, 23, 11502. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Park, H.-S.; Lee, J.-Y.; Ko, E.-J.; Kim, Y.-R.; Cho, H.-Y.; Lee, W.-S.; Ahn, E.-H.; Kim, N.-K. Association Study between Mucin 4 (MUC4) Polymorphisms and Idiopathic Recurrent Pregnancy Loss in a Korean Population. Genes 2022, 13, 937. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, R.; Tan, Y.; Huang, J.; Luo, S. Novel polymorphism of IFI44L associated with the susceptibility and clinical characteristics of systemic lupus erythematosus in a Chinese population. Int. Immunopharmacol. 2023, 117, 109979. [Google Scholar] [CrossRef]
Characteristic | Controls (n = 268) | RIF Patients (n = 161) | p a |
---|---|---|---|
Age (years) | 34.47 ± 2.65 | 34.75 ± 3.25 | 0.191 b |
BMI (kg/m2) | 21.81 ± 3.41 | 21.44 ± 3.21 | 0.402 |
Previous implantation failure (n) | 0 | 5.22 ± 2.38 | N/A |
Live births (n) | 1.23 ± 0.46 | 0 | N/A |
Mean gestational age (weeks) | 40.77 ± 2.20 | 0 | N/A |
PT (s) | 10.56 ± 0.84 | 10.86 ± 2.17 | <0.0001 b |
aPTT (s) | 29.09 ± 3.69 | 29.59 ± 3.41 | 0.224 |
PLT (103/μL) | 239.06 ± 62.59 | 246.47 ± 69.11 | 0.280 b |
Homocysteine (μmol/L) | 6.58 ± 2.24 | 6.75 ± 1.77 | 0.750 |
Folate (mg/mL) | 14.32 ± 8.64 | 14.78 ± 8.08 | 0.848 |
Uric acid (mg/dl) | 3.92 ± 1.00 | 4.01 ± 0.98 | 0.550 |
BUN (mg/dl) | 8.88 ± 2.70 | 10.51 ± 2.87 | <0.0001 |
Creatinine (mg/dl) | 0.64 ± 0.16 | 0.79 ± 0.10 | <0.0001 b |
E2 (Basal) (pg/mL) | 26.48 ± 14.75 | 60.41 ± 114.61 | <0.0001 b |
TSH (mU/L) | 1.60 ± 1.01 | 2.22 ± 1.44 | 0.0003 b |
FSH (mU/L) | 8.30 ± 2.82 | 9.24 ± 4.90 | 0.425 b |
LH (mU/L) | 3.31 ± 1.82 | 4.90 ± 2.42 | <0.0001 b |
Prolactin (ng/mL) | N/A | 13.68 ± 7.16 | N/A |
WBC (103/μL) | 6.88 ± 2.40 | 7.28 ± 2.84 | 0.485 b |
Hgb (g/dl) | 12.56 ± 2.13 | 12.52 ± 1.43 | 0.094 b |
CD3 (pan T) (%) | N/A | 67.39 ± 10.97 | N/A |
CD4 (helper T) (%) | N/A | 35.66 ± 9.33 | N/A |
CD8 (suppressor) (%) | N/A | 28.21 ± 8.02 | N/A |
CD19 (B-cell) (%) | N/A | 11.70 ± 4.79 | N/A |
CD56 (NKcell) (%) | N/A | 17.41 ± 9.04 | N/A |
Genotypes | Controls (n = 268) | IF ≥ 2 (n = 159) | AOR (95% CI) a | p a |
---|---|---|---|---|
miR-218-2 rs11134527 G>A | ||||
AA | 94 (35.1) | 49 (30.8) | 1.000 (reference) | |
AG | 134 (50.0) | 85 (53.5) | 1.22 (0.786–1.893) | 0.376 |
GG | 40 (14.9) | 25 (15.7) | 1.228 (0.666–2.266) | 0.510 |
Dominant (AA vs. AG+GG) | 1.22 (0.801–1.858) | 0.354 | ||
Recessive (AA+AG vs. GG) | 1.069 (0.62–1.841) | 0.811 | ||
HWE p | 0.488 | 0.235 | ||
miR-34a rs2666433 G>A | ||||
GG | 153 (57.1) | 87 (54.7) | 1.000 (reference) | |
GA | 97 (36.2) | 66 (41.5) | 1.208 (0.802–1.82) | 0.365 |
AA | 18 (6.7) | 6 (3.8) | 0.617 (0.235–1.623) | 0.328 |
Dominant (GG vs. GA+AA) | 1.115 (0.75–1.658) | 0.590 | ||
Recessive (GG+GA vs. AA) | 0.555 (0.215–1.432) | 0.223 | ||
HWE p | 0.624 | 0.127 | ||
miR-34a rs6577555 C>A | ||||
CC | 161 (60.1) | 89 (56.0) | 1.000 (reference) | |
CA | 95 (35.4) | 55 (34.6) | 1.042 (0.683–1.59) | 0.848 |
AA | 12 (4.5) | 15 (9.4) | 2.264 (1.007–5.092) | 0.048 |
Dominant (CC vs. CA+AA) | 1.164 (0.781–1.736) | 0.457 | ||
Recessive (CC+CA vs. AA) | 2.164 (0.983–4.767) | 0.055 | ||
HWE p | 0.669 | 0.141 | ||
miR-130a rs731384 G>A | ||||
GG | 202 (75.4) | 122 (76.7) | 1.000 (reference) | |
GA | 63 (23.5) | 34 (21.4) | 0.905 (0.563–1.455) | 0.679 |
AA | 3 (1.1) | 3 (1.9) | 1.657 (0.329–8.348) | 0.540 |
Dominant (GG vs. GA+AA) | 0.94 (0.592–1.492) | 0.791 | ||
Recessive (GG+GA vs. AA) | 1.695 (0.338–8.511) | 0.521 | ||
HWE p | 0.432 | 0.727 |
Genotypes | Controls (n = 268) | IF ≥ 3 (n = 147) | AOR (95% CI) a | p a | IF ≥ 4 (n = 117) | AOR (95% CI) a | p a |
---|---|---|---|---|---|---|---|
miR-218-2 rs11134527 G>A | |||||||
AA | 94 (35.1) | 44 (29.9) | 1.000 (reference) | 34 (29.1) | 1.000 (reference) | ||
AG | 134 (50.0) | 78 (53.1) | 1.253 (0.795–1.975) | 0.331 | 61 (52.1) | 1.287 (0.782–2.117) | 0.322 |
GG | 40 (14.9) | 25 (17.0) | 1.397 (0.749–2.607) | 0.293 | 22 (18.8) | 1.678 (0.856–3.289) | 0.132 |
Dominant (AA vs. AG+GG) | 1.281 (0.83–1.978) | 0.264 | 1.36 (0.846–2.187) | 0.204 | |||
Recessive (AA+AG vs. GG) | 1.182 (0.684–2.044) | 0.549 | 1.348 (0.758–2.398) | 0.310 | |||
HWE p | 0.488 | 0.337 | 0.560 | ||||
miR-34a rs2666433 G>A | |||||||
GG | 153 (57.1) | 81 (55.1) | 1.000 (reference) | 63 (53.9) | 1.000 (reference) | ||
GA | 97 (36.2) | 60 (40.8) | 1.187 (0.779–1.809) | 0.426 | 52 (44.4) | 1.342 (0.856–2.106) | 0.200 |
AA | 18 (6.7) | 6 (4.1) | 0.674 (0.255–1.781) | 0.426 | 2 (1.7) | 0.308 (0.068–1.385) | 0.125 |
Dominant (GG vs. GA+AA) | 1.106 (0.736–1.662) | 0.628 | 1.183 (0.762–1.838) | 0.454 | |||
Recessive (GG+GA vs. AA) | 0.612 (0.237–1.582) | 0.311 | 0.258 (0.059–1.135) | 0.073 | |||
HWE p | 0.624 | 0.209 | 0.017 | ||||
miR-34a rs6577555 C>A | |||||||
CC | 161 (60.1) | 81 (55.1) | 1.000 (reference) | 59 (50.4) | 1.000 (reference) | ||
CA | 95 (35.4) | 51 (34.7) | 1.054 (0.683–1.626) | 0.814 | 45 (38.5) | 1.268 (0.796–2.02) | 0.318 |
AA | 12 (4.5) | 15 (10.2) | 2.406 (1.068–5.419) | 0.034 | 13 (11.1) | 2.783 (1.185–6.536) | 0.019 |
Dominant (CC vs. CA+AA) | 1.195 (0.794–1.8) | 0.393 | 1.418 (0.912–2.205) | 0.121 | |||
Recessive (CC+CA vs. AA) | 2.322 (1.052–5.125) | 0.037 | 2.457 (1.077–5.606) | 0.033 | |||
HWE p | 0.669 | 0.112 | 0.330 | ||||
miR-130a rs731384 G>A | |||||||
GG | 202 (75.4) | 112 (76.2) | 1.000 (reference) | 90 (76.9) | 1.000 (reference) | ||
GA | 63 (23.5) | 32 (21.8) | 0.936 (0.575–1.521) | 0.789 | 24 (20.5) | 0.884 (0.518–1.51) | 0.652 |
AA | 3 (1.1) | 3 (2.0) | 1.814 (0.359–9.163) | 0.471 | 3 (2.6) | 2.283 (0.449–1.598) | 0.320 |
Dominant (GG vs. GA+AA) | 0.977 (0.609–1.566) | 0.921 | 0.949 (0.567–1.589) | 0.843 | |||
Recessive (GG+GA vs. AA) | 1.842 (0.366–9.267) | 0.459 | 2.344 (0.464–1.855) | 0.303 | |||
HWE p | 0.432 | 0.690 | 0.373 |
Allele Combinations | Controls (2n = 536) | Cases (2n = 322) | OR (95% CI) | p |
---|---|---|---|---|
miR-218-2 rs11134527 G>A/miR-34a rs2666433 G>A/miR-34a rs6577555 C>A/miR-130a rs731384 G>A | ||||
A-G-C-G | 154 (28.7) | 85 (26.7) | 1.000 (reference) | |
A-G-C-A | 30 (5.6) | 10 (3.1) | 0.615 (0.286–1.319) | 0.208 |
A-G-A-G | 57 (10.6) | 48 (15.1) | 1.552 (0.972–2.478) | 0.065 |
A-G-A-A | 9 (1.7) | 2 (0.6) | 0.410 (0.086–1.941) | 0.339 |
A-A-C-G | 66 (12.3) | 32 (10.1) | 0.894 (0.542–1.473) | 0.659 |
A-A-C-A | 4 (0.7) | 8 (2.5) | 3.687 (1.078–12.61) | 0.034 |
A-A-A-G | 3 (0.6) | 0 (0.0) | 0.263 (0.013–5.149) | 0.553 |
G-G-C-G | 96 (17.9) | 54 (17.0) | 1.037 (0.676–1.59) | 0.868 |
G-G-C-A | 8 (1.5) | 11 (3.5) | 2.535 (0.981–6.55) | 0.048 |
G-G-A-G | 43 (8.0) | 24 (7.5) | 1.029 (0.584–1.813) | 0.922 |
G-G-A-A | 7 (1.3) | 9 (2.8) | 2.370 (0.852–6.596) | 0.090 |
G-A-C-G | 48 (9.0) | 37 (11.6) | 1.421 (0.857–2.355) | 0.172 |
G-A-C-A | 11 (2.1) | 0 (0.0) | 0.080 (0.005–1.374) | 0.018 |
G-A-A-G | 0 (0.0) | 2 (0.6) | 9.192 (0.436–193.8) | 0.127 |
miR-218-2 rs11134527 G>A/miR-34a rs2666433 G>A/miR-34a rs6577555 C>A | ||||
A-G-C | 182 (34.0) | 92 (28.9) | 1.000 (reference) | |
A-G-A | 65 (12.1) | 51 (16.0) | 1.561 (1.001–2.433) | 0.049 |
A-A-C | 71 (13.2) | 42 (13.2) | 1.177 (0.745–1.857) | 0.485 |
A-A-A | 3 (0.6) | 0 (0.0) | 0.283 (0.014–5.549) | 0.553 |
G-G-C | 105 (19.6) | 67 (21.1) | 1.269 (0.854–1.886) | 0.237 |
G-G-A | 51 (9.5) | 33 (10.4) | 1.287 (0.777–2.132) | 0.326 |
G-A-C | 59 (11.0) | 35 (11.0) | 1.180 (0.725–1.921) | 0.506 |
G-A-A | 0 (0.0) | 2 (0.6) | 9.919 (0.471–208.9) | 0.114 |
miR-218-2 rs11134527 G>A/miR-34a rs2666433 G>A/miR-130a rs731384 G>A | ||||
A-G-G | 207 (38.6) | 132 (41.5) | 1.000 (reference) | |
A-G-A | 40 (7.5) | 13 (4.1) | 0.515 (0.265–0.998) | 0.046 |
A-A-G | 70 (13.1) | 32 (10.1) | 0.724 (0.452–1.16) | 0.178 |
A-A-A | 4 (0.7) | 8 (2.5) | 3.167 (0.935–10.73) | 0.071 |
G-G-G | 140 (26.1) | 78 (24.5) | 0.882 (0.62–1.255) | 0.485 |
G-G-A | 15 (2.8) | 20 (6.3) | 2.111 (1.044–4.269) | 0.034 |
G-A-G | 49 (9.1) | 39 (12.3) | 1.260 (0.785–2.024) | 0.338 |
G-A-A | 11 (2.1) | 0 (0.0) | 0.069 (0.004–1.177) | 0.008 |
Genotype Combinations | Controls (n = 268) | RIF Patients (n = 161) | AOR (95% CI) | p |
---|---|---|---|---|
miR-34a rs6577555 C>A/miR-130a rs731384 G>A | ||||
CC/GG | 121 (45.1) | 69 (42.9) | 1.000 (reference) | |
CC/GA | 38 (14.2) | 19 (11.8) | 0.865 (0.462–1.619) | 0.651 |
CC/AA | 2 (0.7) | 2 (1.2) | 1.745 (0.24–2.692) | 0.583 |
CA/GG | 73 (27.2) | 41 (25.5) | 0.975 (0.6–1.585) | 0.918 |
CA/GA | 22 (8.2) | 15 (9.3) | 1.189 (0.578–2.445) | 0.637 |
CA/AA | 0 (0.0) | 0 (0.0) | N/A | N/A |
AA/GG | 8 (3.0) | 13 (8.1) | 2.881 (1.132–7.332) | 0.026 |
AA/GA | 3 (1.1) | 1 (0.6) | 0.627 (0.063–6.274) | 0.691 |
AA/AA | 1 (0.4) | 1 (0.6) | 1.825 (0.112–9.764) | 0.673 |
Genotype | TSH (mU/L) | FSH (mU/L) | LH (mU/L) | Prolactin (ng/mL) | CD3 (Pan T) | CD4 (Helper T) | CD8 (Suppressor T) | CD19 (B-Cell) |
---|---|---|---|---|---|---|---|---|
mean ± SD | mean ± SD | mean ± SD | mean ± SD | mean ± SD | mean ± SD | mean ± SD | mean ± SD | |
miR-218-2 rs11134527 G>A | ||||||||
AA | 2.52 ± 1.79 | 8.92 ± 5.47 | 4.88 ± 2.67 | 16.09 ± 8.30 | 65.66 ± 8.94 | 36.15 ± 9.80 | 26.08 ± 7.54 | 12.53 ± 4.30 |
AG | 2.08 ± 1.23 | 9.10 ± 3.56 | 4.73 ± 2.31 | 12.72 ± 5.05 | 67.03 ± 12.48 | 34.17 ± 9.21 | 29.88 ± 8.51 | 11.41 ± 5.27 |
GG | 2.15 ± 1.39 | 10.59 ± 7.93 | 5.67 ± 2.26 | 12.59 ± 9.91 | 72.37 ± 6.70 | 40.43 ± 7.36 | 26.15 ± 5.46 | 11.13 ± 3.67 |
p a | 0.339 | 0.325 b | 0.403 | 0.104 b | 0.123 | 0.052 | 0.047 | 0.485 |
miR-34a rs2666433 G>A | ||||||||
GG | 2.38 ± 1.62 | 9.15 ± 3.67 | 4.59 ± 2.02 | 14.95 ± 7.37 | 66.64 ± 9.52 | 35.80 ± 9.20 | 27.63 ± 7.74 | 11.60 ± 5.48 |
GA | 1.88 ± 0.90 | 9.13 ± 5.99 | 5.28 ± 2.71 | 12.27 ± 6.79 | 67.79 ± 12.19 | 35.32 ± 9.26 | 29.03 ± 8.51 | 12.21 ± 3.92 |
AA | 4.62 ± 2.48 | 12.64 ± 8.18 | 5.79 ± 4.95 | 10.01 ± 4.57 | 71.52 ± 14.77 | 36.98 ± 12.57 | 27.48 ± 7.40 | 8.67 ± 2.67 |
p a | 0.012 b | 0.479 | 0.476 b | 0.134 | 0.558 | 0.909 | 0.659 | 0.147 b |
miR-34a rs6577555 C>A | ||||||||
CC | 2.51 ± 1.54 | 9.33 ± 5.31 | 4.87 ± 2.72 | 13.61 ± 6.48 | 68.36 ± 10.09 | 34.48 ± 9.59 | 30.02 ± 7.27 | 10.63 ± 3.64 |
CA | 1.94 ± 1.24 | 8.90 ± 4.47 | 5.17 ± 2.15 | 12.02 ± 6.27 | 65.71 ± 13.12 | 37.13 ± 8.30 | 25.64 ± 8.41 | 13.62 ± 5.49 |
AA | 1.44 ± 0.98 | 9.64 ± 4.19 | 4.41 ± 1.14 | 19.48 ± 11.12 | 67.64 ± 7.96 | 37.00 ± 10.75 | 27.09 ± 8.66 | 11.23 ± 6.01 |
p a | 0.020 | 0.872 | 0.633 | 0.022 | 0.512 | 0.344 | 0.027 | 0.023 b |
miR-130a rs731384 G>A | ||||||||
GG | 2.25 ± 1.52 | 9.40 ± 4.98 | 4.90 ± 2.48 | 14.04 ± 7.71 | 66.93 ± 11.88 | 36.34 ± 9.58 | 27.57 ± 7.95 | 11.81 ± 4.76 |
GA | 2.12 ± 1.19 | 8.70 ± 4.88 | 4.68 ± 2.00 | 12.22 ± 4.57 | 69.54 ± 7.74 | 34.08 ± 8.47 | 30.18 ± 8.28 | 11.83 ± 4.96 |
AA | 2.15 ± 1.25 | 9.02 ± 3.46 | 7.52 ± 4.04 | 13.42 ± 1.65 | 62.33 ± 2.52 | 30.00 ± 7.94 | 29.67 ± 7.64 | 7.67 ± 3.21 |
p a | 0.922 | 0.832 | 0.283 | 0.631 | 0.420 | 0.326 | 0.345 | 0.338 |
Variables | miR-218-2 (rs11134527 G>A) AG+GG | miR-34a (rs2666433 G>A) GA+AA | miR-34a (rs6577555 C>A) CA+AA | miR-130a (rs731384 G>A) GA+AA | ||||
---|---|---|---|---|---|---|---|---|
AOR (95% CI) | p | AOR (95% CI) | p | AOR (95% CI) | p | AOR (95% CI) | p | |
BMI (kg/m2) | ||||||||
<24.2 | 1.141 (0.613–2.124) | 0.677 | 1.691 (0.911–3.138) | 0.096 | 0.814 (0.45–1.474) | 0.498 | 1.485 (0.71–3.104) | 0.293 |
≥24.2 | 2.311 (0.478–1.165) | 0.297 | 0.42 (0.105–1.683) | 0.22 | 2.262 (0.539–9.497) | 0.265 | 0.369 (0.081–1.669) | 0.195 |
PT (s) | ||||||||
<11.7 | 1.341 (0.778–2.312) | 0.29 | 0.83 (0.502–1.373) | 0.468 | 1.731 (1.037–2.892) | 0.036 | 1.089 (0.593–1.999) | 0.784 |
≥11.7 | 0.688 (0.167–2.844) | 0.606 | 2.614 (0.595–1.481) | 0.203 | 0.802 (0.192–3.354) | 0.762 | N/A | N/A |
aPTT (s) | ||||||||
<33 | 1.072 (0.632–1.817) | 0.797 | 0.73 (0.442–1.204) | 0.217 | 1.49 (0.897–2.472) | 0.123 | 1.27 (0.686–2.35) | 0.447 |
≥33 | 1.774 (0.515–6.105) | 0.364 | 3.59 (1.014–12.71) | 0.048 | 1.871 (0.522–6.704) | 0.336 | 0.865 (0.225–3.322) | 0.833 |
PLT (103/μL) | ||||||||
<301 | 1.185 (0.733–1.918) | 0.488 | 1.223 (0.775–1.931) | 0.387 | 1.141 (0.721–1.806) | 0.573 | 0.935 (0.546–1.601) | 0.806 |
≥301 | 1.801 (0.542–5.987) | 0.337 | 0.945 (0.323–2.767) | 0.917 | 1.844 (0.61–5.573) | 0.278 | 0.986 (0.299–3.251) | 0.982 |
Homocysteine (μmol/L) | ||||||||
<8.7 | 0.798 (0.188–3.389) | 0.76 | 1.006 (0.273–3.699) | 0.993 | 0.674 (0.176–2.579) | 0.564 | 3.718 (0.422–2.731) | 0.237 |
≥8.7 | 0 (0–0) | 0.994 | 0.667 (0.029–5.217) | 0.799 | 0.548 (0.022–3.889) | 0.715 | 0.324 (0.011–9.513) | 0.513 |
Folate (mg/mL) | ||||||||
>6.8 | 0.469 (0.11–2.002) | 0.307 | 0.817 (0.248–2.686) | 0.739 | 0.511 (0.148–1.761) | 0.288 | 1.993 (0.365–0.886) | 0.426 |
≤6.8 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Uric acid (mg/dl) | ||||||||
<5 | 1.448 (0.745–2.815) | 0.275 | 1.118 (0.602–2.078) | 0.724 | 2.296 (1.211–4.354) | 0.011 | 1.902 (0.853–4.242) | 0.116 |
≥5 | 1.65 (0.348–7.822) | 0.528 | 0.876 (0.203–3.776) | 0.859 | 1.101 (0.249–4.87) | 0.899 | 0.648 (0.145–2.9) | 0.57 |
BUN (mg/dl) | ||||||||
<12.6 | 1.789 (0.972–3.295) | 0.062 | 1.163 (0.677–1.999) | 0.584 | 1.248 (0.711–2.192) | 0.44 | 1.131 (0.57–2.246) | 0.725 |
≥12.6 | 0.322 (0.077–1.348) | 0.121 | 0.359 (0.081–1.592) | 0.178 | 1.739 (0.401–7.546) | 0.46 | 0.507 (0.117–2.197) | 0.364 |
Creatinine (mg/dl) | ||||||||
<0.9 | 1.445 (0.802–2.605) | 0.221 | 0.959 (0.556–1.652) | 0.879 | 1.545 (0.879–2.716) | 0.13 | 1.589 (0.833–3.031) | 0.16 |
≥0.9 | 0.435 (0.109–1.738) | 0.239 | 1.529 (0.424–5.518) | 0.517 | 0.324 (0.089–1.186) | 0.089 | 0.596 (0.098–3.632) | 0.575 |
E2 (Basal) (pg/mL) | ||||||||
<48.5 | 1.298 (0.706–2.384) | 0.402 | 1.326 (0.74–2.378) | 0.344 | 1.055 (0.59–1.886) | 0.857 | 0.772 (0.41–1.455) | 0.424 |
≥48.5 | 1.907 (0.333–0.922) | 0.469 | 1.512 (0.241–9.467) | 0.659 | 0.513 (0.095–2.758) | 0.436 | 0.37 (0.063–2.171) | 0.271 |
TSH (mU/L) | ||||||||
>0.849 | 0.917 (0.468–1.798) | 0.802 | 1.073 (0.582–1.98) | 0.821 | 1.071 (0.563–2.037) | 0.834 | 1.346 (0.636–2.847) | 0.438 |
≤0.849 | 1.229 (0.229–6.608) | 0.81 | 0.264 (0.046–1.499) | 0.133 | 20.243 (2.836–144.5) | 0.003 | 0.749 (0.112–5.025) | 0.766 |
FSH (mU/L) | ||||||||
<11.41 | 1.373 (0.736–2.56) | 0.319 | 1.548 (0.846–2.831) | 0.157 | 1.013 (0.56–1.833) | 0.965 | 0.818 (0.429–1.561) | 0.542 |
≥11.41 | 0.496 (0.082–2.996) | 0.445 | 0.502 (0.102–2.479) | 0.397 | 1.613 (0.335–7.765) | 0.551 | 0.393 (0.06–2.556) | 0.328 |
LH (mU/L) | ||||||||
<6.48 | 1.176 (0.626–2.21) | 0.615 | 1.095 (0.593–2.021) | 0.772 | 0.978 (0.537–1.784) | 0.943 | 0.713 (0.366–1.389) | 0.32 |
≥6.48 | 2.005 (0.335–2.01) | 0.446 | 1.412 (0.251–7.928) | 0.695 | 0.588 (0.103–3.359) | 0.551 | 0.803 (0.109–5.932) | 0.829 |
WBC (103/μL) | ||||||||
<9.8 | 1.201 (0.726–1.989) | 0.476 | 1.208 (0.75–1.946) | 0.436 | 0.997 (0.613–1.621) | 0.989 | 0.922 (0.53–1.605) | 0.775 |
≥9.8 | 0.822 (0.242–2.796) | 0.754 | 1.321 (0.421–4.148) | 0.633 | 2.951 (0.906–9.615) | 0.073 | 2.364 (0.685–8.158) | 0.174 |
Hgb (g/dl) | ||||||||
>11.2 | 1.192 (0.722–1.968) | 0.492 | 1.183 (0.731–1.912) | 0.494 | 1.154 (0.712–1.87) | 0.56 | 0.827 (0.474–1.445) | 0.505 |
≤11.2 | 1 (0.284–3.527) | 1 | 1.064 (0.333–3.397) | 0.917 | 1.413 (0.441–4.526) | 0.56 | 4.787 (1.212–8.906) | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Ahn, E.H.; Kwon, M.J.; Ryu, C.S.; Ha, Y.H.; Ko, E.J.; Lee, J.Y.; Hwang, J.Y.; Kim, J.H.; Kim, Y.R.; et al. Genetic Correlation of miRNA Polymorphisms and STAT3 Signaling Pathway with Recurrent Implantation Failure in the Korean Population. Int. J. Mol. Sci. 2023, 24, 16794. https://doi.org/10.3390/ijms242316794
Lee JH, Ahn EH, Kwon MJ, Ryu CS, Ha YH, Ko EJ, Lee JY, Hwang JY, Kim JH, Kim YR, et al. Genetic Correlation of miRNA Polymorphisms and STAT3 Signaling Pathway with Recurrent Implantation Failure in the Korean Population. International Journal of Molecular Sciences. 2023; 24(23):16794. https://doi.org/10.3390/ijms242316794
Chicago/Turabian StyleLee, Jung Hun, Eun Hee Ahn, Min Jung Kwon, Chang Su Ryu, Yong Hyun Ha, Eun Ju Ko, Jeong Yong Lee, Ji Young Hwang, Ji Hyang Kim, Young Ran Kim, and et al. 2023. "Genetic Correlation of miRNA Polymorphisms and STAT3 Signaling Pathway with Recurrent Implantation Failure in the Korean Population" International Journal of Molecular Sciences 24, no. 23: 16794. https://doi.org/10.3390/ijms242316794
APA StyleLee, J. H., Ahn, E. H., Kwon, M. J., Ryu, C. S., Ha, Y. H., Ko, E. J., Lee, J. Y., Hwang, J. Y., Kim, J. H., Kim, Y. R., & Kim, N. K. (2023). Genetic Correlation of miRNA Polymorphisms and STAT3 Signaling Pathway with Recurrent Implantation Failure in the Korean Population. International Journal of Molecular Sciences, 24(23), 16794. https://doi.org/10.3390/ijms242316794