Ambroxol-Enhanced Frequency and Amplitude of Beating Cilia Controlled by a Voltage-Gated Ca2+ Channel, Cav1.2, via pHi Increase and [Cl−]i Decrease in the Lung Airway Epithelial Cells of Mice
Abstract
:1. Introduction
2. Results
2.1. ABX-Stimulated Cellular Events
2.1.1. ABX-Stimulated Increases in the CBF and CBA
2.1.2. ABX-Stimulated Increases in [Ca2+]i
2.1.3. ABX-Stimulated Changes in pHi
2.1.4. ABX-Stimulated Cell Shrinkage and a Decrease in [Cl−]i
Video Images of ABX-Stimulated Cell Shrinkage and Enhancement of MQAE Fluorescence in c-LAECs
ABX-Stimulated Decreases in Cell Volume and [Cl−]i
2.2. CO2/HCO3−-Dependent Pathway (pHi Pathway)
2.2.1. Effects of DIDS on the CBF, CBA and pHi
2.2.2. Effects of HCO3-Containing NO3− Solution on CBF, CBA and pHi
2.3. CO2/HCO3−-Independent Pathway (Cl− Pathway)
2.3.1. Effects of NPPB on CBF, CBA and [Cl−]i
2.3.2. Effects of an ANO1 Inhibitor (T16Ainh) on CBF, CBA and [Cl−]i
2.4. Effects of a CO2/HCO3−-Free Cl−-Free NO3− Solution on CBF, CBA and [Cl−]i
2.5. Expression of Anoctamin-1 in c-LAECs
3. Discussion
4. Materials and Methods
4.1. Ethical Approval
4.2. Solutions and Chemicals
4.3. Cell Preparation
4.4. CBF and CBA Measurements
4.5. Measurement of the Cell Volume
4.6. Measurement of pHi, [Cl−]i and [Ca2+]i
4.7. Western Blotting
4.8. Immunofluorescence Examination
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afzelius, B.A. Cilia-related diseases. J. Pathol. 2004, 204, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Button, B.; Cai, L.-H.; Ehre, C.; Kesimer, M.; Hill, D.B.; Sheehan, J.K.; Boucher, R.C.; Rubinstein, M. A periciliary brush promoted the lung health by separating the mucus layer from airway epithelia. Science 2012, 337, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Wanner, A.; Salathe, M.; O’Riordan, T.G. Mucociliary clearance in the airways. Am. J. Respir. Crit. Care Med. 1996, 154, 1868–1902. [Google Scholar] [CrossRef] [PubMed]
- Delmotte, P.; Sanderson, M.J. Ciliary beat frequency is maintained at a maximal rate in the small airways of mouse lung slices. Am. J. Respir. Cell Mol. Biol. 2006, 35, 110–117. [Google Scholar] [CrossRef]
- Ozawa, K.; Tamura, A.; Ikeda, K.; Kawai, E.; Kondo, T.; Fukano, Y.; Nomura, S.; Ishihara, Y.; Masujima, T. Video-microscopy for analysis of molecular dynamics in cells. J. Pharm. Biomed. Anal. 1997, 15, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Saito, D.; Suzuki, C.; Tanaka, S.; Hosogi, S.; Kawaguchi, K.; Asano, S.; Okamoto, S.; Yasuda, M.; Hirano, S.; Inui, T.; et al. Ambroxol-enhanced ciliary beating via voltage-gated Ca2+ channels in mouse airway ciliated cells. Eur. J. Pharmacol. 2023, 941, 175496. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Koga, Y.; Wakasugi, T.; Kitamura, T.; Suzuki, H. TRPA1/M8 agonists upregulate ciliary beating through the pannexin-1 channel in the human nasal mucosa. Mol. Biol. Rep. 2023, 50, 2085–2093. [Google Scholar] [CrossRef]
- Lorenzo, I.M.; Liedtke, W.; Sanderson, M.J.; Valverde, M.A. TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. Proc. Natl. Acad. Sci. USA 2008, 105, 12611–12616. [Google Scholar] [CrossRef]
- Ikeuchi, Y.; Kogiso, H.; Hosogi, S.; Tanaka, S.; Shimamoto, C.; Matsumura, H.; Inui, T.; Marunaka, Y.; Nakahari, T. Carbocisteine stimulated an increase in ciliary bend angle via a decrease in [Cl−]i in mouse airway cilia. Pflügers Arch. Eur. J. Physiol. 2019, 471, 365–380. [Google Scholar] [CrossRef]
- Sutto, Z.; Conner, G.E.; Salathe, M. Regulation of human airway ciliary beat frequency by intracellular pH. J. Physiol. 2004, 560, 519–532. [Google Scholar] [CrossRef]
- Kogiso, H.; Hosogi, S.; Ikeuchi, Y.; Tanaka, S.; Shimamoto, C.; Matsumura, H.; Nakano, T.; Sano, K.; Inui, T.; Marunaka, Y.; et al. A low [Ca2+]i-induced enhancement of cAMP-activated ciliary beating by PDE1A inhibition in mouse airway cilia. Pflügers. Arch. Eur. J. Physiol. 2017, 469, 1215–1227. [Google Scholar] [CrossRef]
- Yasuda, M.; Inui, T.-A.; Hirano, S.; Asano, S.; Okazaki, T.; Inui, T.; Marunaka, Y.; Nakahari, T. Intracellular Cl− regulation of ciliary beating in ciliated human nasal epithelial cells: Frequency and distance of ciliary beating observed by high speed video microscopy. Int. J. Mol. Sci. 2020, 21, 4052. [Google Scholar] [CrossRef] [PubMed]
- Fois, G.; Hobi, N.; Felder, E.; Ziegler, A.; Millavc, P.; Walther, P.; Radermacher, P.; Haller, T.; Dietl, P. A New role for an old drug: Ambroxol triggers lysosomal exocytosis via pH-dependent Ca2+ release from acidic Ca2+ stores. Cell Calcium 2015, 58, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Varelogianni, G.; Hussain, R.; Strid, H.; Oliynyk, I.; Roomans, G.M.; Johannesson, M. The effect of ambroxol on chloride transport, CFTR and ENaC in cystic fibrosis airway epithelial cells. Cell. Biol. Int. 2013, 37, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Brokaw, C.J.; Kamiya, R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil. Cytoskelet. 1987, 8, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, I.R.; Rowe, A.J. Dynein: A protein with adenosine triohosphatase activity from cilia. Science 1965, 149, 424–426. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yamamoto, A.; Yamaguchi, M.; Taniguchi, I.; Nomura, N.; Nakakuki, M.; Kozawa, Y.; Fukuyasu, T.; Higuchi, M.; Niwa, E.; et al. Bicarbonate transport of airway surface epithelia in luminally perfused mice bronchioles. J. Physiol. Sci. 2022, 72, 4. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.D.; Cho, H.; Koo, J.Y.; Tak, M.H.; Cho, Y.; Shim, W.S.; Park, S.P.; Byeongium, J.L.; Kim, B.-M.; Raouf, R.; et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 2008, 455, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Kurahashi, T. Second messenger molecules have a limited spread in olfactory cilia. J. Gen. Physiol. 2018, 150, 1647–1659. [Google Scholar] [CrossRef]
- Lieb, T.; Frei, C.W.; Frohock, J.I.; Bookman, R.J.; Salathe, M. Prolonged increase in ciliary beat frequency after short-term purinergic stimulation in human airway epithelial cells. J. Physiol. 2002, 538, 633–646. [Google Scholar] [CrossRef]
- Keskes, L.; Giroux-Widemann, V.; Serres, C.; Pignot-Paintrand, I.; Jouannet, P.; Feneux, D. The reactivation of demembranated human spermatozoa lacking outer dynein arms is independent of pH. Mol. Reprod. Dev. 1998, 49, 416–425. [Google Scholar] [CrossRef]
- Nakajima, A.; Morita, M.; Takemura, A.; Kamimura, S.; Okuno, M. Increase in intracellular pH induces phosphorylation of axonemal proteins for activation of flagellar motility in starfish sperm. J. Exp. Biol. 2005, 208, 4411–4418. [Google Scholar] [CrossRef] [PubMed]
- Kreindler, J.L.; Peters, K.W.; Frizzell, R.A.; Bridges, R.J. Identification and membrane locarization of electrogenic sodium bicarbonate cotranspoters in Calu-3 Cells. Biochem. Biophys. Acta. 2006, 1762, 704–710. [Google Scholar] [PubMed]
- Barbar, E.; Kleinman, B.; Imhoff, D.; Li, M.; Hays, T.S.; Hare, M. Dimerization and folding of LC8, a highly conserved light chain of cytoplasmic dynein. Biochemistry 2001, 40, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Treharne, K.J.; Marshall, L.J.; Mehta, A. A novel chloride-dependent GTP-utilizing protein kinase in plasma membranes from human respiratory epithelium. Am. J. Physiol. -Lung Cell. Mol. Physiol. 1994, 267, L592–L601. [Google Scholar] [CrossRef] [PubMed]
- Bazúa-Valenti, S.; Gamba, G. Revisiting the NaCl cotransporter regulation by with-no-lysine kinases. Am. J. Physiol. Cell Physiol. 2015, 308, C779–C791. [Google Scholar] [CrossRef]
- Chen, J.C.; Lo, Y.F.; Lin, Y.W.; Lin, S.H.; Huang, C.L.; Cheng, C.J. WNK4 kinase is a physiological intracellular chloride sensor. Proc. Natl. Acad. Sci. USA 2019, 116, 4502–4507. [Google Scholar] [CrossRef] [PubMed]
- Piala, A.T.; Moon, T.M.; Akella, R.; He, H.; Cobb, M.H.; Goldsmith, F.J. Chloride sensing by WNK1 inhibition of autophosphorylation. Sci. Signal. 2014, 7, ra41. [Google Scholar] [CrossRef]
- Terker, A.S.; Zhang, C.; Erspamer, K.J.; Gamba, G.; Yang, C.L.; Ellison, D.H. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int. 2016, 89, 127–134. [Google Scholar] [CrossRef]
- Farfel, Z.; Mayan, H.; Yaacov, Y.; Mouallem, M.; Shaharabany, M.; Pauzner, R.; Kerem, E.; Wilschanski, M. WNK4 regulates airway Na+ transport: Study of familial hyperkalaemia and hypertension. Eur. J. Clin. Investig. 2005, 35, 410–415. [Google Scholar] [CrossRef]
- Ring, A.M.; Cheng, S.X.; Leng, Q.; Kahle, K.T.; Rinehart, J.; Lalioti, M.D.; Volkman, H.M.; Wilson, F.H.; Hebert, S.C.; Lifton, R.P. WNK4 regulates activity of the epithelial Na+ chanel in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2007, 104, 4020–4024. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-L.; Liu, X.; Paliege, A.; Zhu, X.; Bachmann, S.; Dawson, D.C.; Ellison, D.H. WNK1 and WNK4 modulate CFTR activity. Biochem. Biophys. Res. Commun. 2007, 353, 535–540. [Google Scholar] [CrossRef]
- Hengl, T.; Kaneko, H.; Dauner, K.; Vocke, K.; Frings, S.; Möhrlen, F. Molecular components of signal amplification in olfactory sensory cilia. Proc. Natl. Acad. Sci. USA 2010, 107, 6052–6057. [Google Scholar] [CrossRef] [PubMed]
- Hadchouel, J.; Ellison, D.H.; Gamba, G. Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases. Annu. Rev. Physiol. 2016, 78, 367–389. [Google Scholar] [CrossRef]
- Weiser, T.; Wilson, N. Inhibition of tetrodotoxin (TTX)-resistant and TTX-sensitive neuronal Na+ channels by the secretolytic ambroxol. Mol. Pharmacol. 2002, 62, 433–438. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakahari, T.; Suzuki, C.; Kawaguchi, K.; Hosogi, S.; Tanaka, S.; Asano, S.; Inui, T.; Marunaka, Y. Ambroxol-Enhanced Frequency and Amplitude of Beating Cilia Controlled by a Voltage-Gated Ca2+ Channel, Cav1.2, via pHi Increase and [Cl−]i Decrease in the Lung Airway Epithelial Cells of Mice. Int. J. Mol. Sci. 2023, 24, 16976. https://doi.org/10.3390/ijms242316976
Nakahari T, Suzuki C, Kawaguchi K, Hosogi S, Tanaka S, Asano S, Inui T, Marunaka Y. Ambroxol-Enhanced Frequency and Amplitude of Beating Cilia Controlled by a Voltage-Gated Ca2+ Channel, Cav1.2, via pHi Increase and [Cl−]i Decrease in the Lung Airway Epithelial Cells of Mice. International Journal of Molecular Sciences. 2023; 24(23):16976. https://doi.org/10.3390/ijms242316976
Chicago/Turabian StyleNakahari, Takashi, Chihiro Suzuki, Kotoku Kawaguchi, Shigekuni Hosogi, Saori Tanaka, Shinji Asano, Toshio Inui, and Yoshinori Marunaka. 2023. "Ambroxol-Enhanced Frequency and Amplitude of Beating Cilia Controlled by a Voltage-Gated Ca2+ Channel, Cav1.2, via pHi Increase and [Cl−]i Decrease in the Lung Airway Epithelial Cells of Mice" International Journal of Molecular Sciences 24, no. 23: 16976. https://doi.org/10.3390/ijms242316976
APA StyleNakahari, T., Suzuki, C., Kawaguchi, K., Hosogi, S., Tanaka, S., Asano, S., Inui, T., & Marunaka, Y. (2023). Ambroxol-Enhanced Frequency and Amplitude of Beating Cilia Controlled by a Voltage-Gated Ca2+ Channel, Cav1.2, via pHi Increase and [Cl−]i Decrease in the Lung Airway Epithelial Cells of Mice. International Journal of Molecular Sciences, 24(23), 16976. https://doi.org/10.3390/ijms242316976