Effects of Low-Load, High-Repetition Resistance Training on Maximum Muscle Strength and Muscle Damage in Elite Weightlifters: A Preliminary Study
Abstract
:1. Introduction
2. Results
2.1. Body Composition and Anabolic Hormones
2.2. Maximal Muscle Strength
2.3. Phosphorylation of AKT and mTOR Protein
2.4. Phosphorylation of p70S6K1, 4EBP1, and eEF2 Protein
2.5. Muscle Damage Markers
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Resistance Training Protocols
4.3. Determination of 1-RM and BMS
4.4. Body Composition
4.5. Muscle Biopsy
4.6. Blood Collection and Biochemical Analyses
4.7. Western Blotting
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garhammer, J.; Takano, B. Training for Weightlifting. Strength Power Sport. 1992, 11, 357–369. [Google Scholar]
- Calhoon, G.; Fry, A.C. Injury Rates and Profiles of Elite Competitive Weightlifters. J. Athl. Train. 1999, 34, 232–238. [Google Scholar]
- Le Meur, Y.; Hausswirth, C.; Natta, F.; Couturier, A.; Bignet, F.; Vidal, P.P. A Multidisciplinary Approach to Overreaching Detection in Endurance Trained Athletes. J. Appl. Physiol. 2013, 114, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, R.; Loenneke, J.P.; Thiebaud, R.S.; Abe, T. Low-Load Bench Press Training to Fatigue Results in Muscle Hypertrophy Similar to High-Load Bench Press Training. Int. J. Clin. Med. 2013, 4, 114–121. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Peterson, M.D.; Ogborn, D.; Contreras, B.; Sonmez, G.T. Effects of Low- vs. High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men. J. Strength Cond. Res. 2015, 29, 2954–2963. [Google Scholar] [CrossRef]
- Martinho, D.V.; Nobari, H.; Faria, A.; Field, A.; Duarte, D.; Sarmento, H. Oral Branched-Chain Amino Acids Supplementation in Athletes: A Systematic Review. Nutrients 2022, 14, 4002. [Google Scholar] [CrossRef]
- Burd, N.A.; Mitchell, C.J.; Churchward-Venne, T.A.; Phillips, S.M. Bigger Weights May Not Beget Bigger Muscles: Evidence from Acute Muscle Protein Synthetic Responses After Resistance Exercise. Appl. Physiol. Nutr. Metab. 2012, 37, 551–554. [Google Scholar] [CrossRef]
- Campos, G.E.; Luecke, T.J.; Wendeln, H.K.; Toma, K.; Hagerman, F.C.; Murray, T.F.; Ragg, K.E.; Ratamess, N.A.; Kraemer, W.J.; Staron, R.S. Muscular Adaptations in Response to Three Different Resistance-Training Regimens: Specificity of Repetition Maximum Training Zones. Eur. J. Appl. Physiol. 2002, 88, 50–60. [Google Scholar] [CrossRef]
- Agergaard, J.; Bülow, J.; Jensen, J.K.; Reitelseder, S.; Drummond, M.J.; Schjerling, P.; Scheike, T.; Serena, A.; Holm, L. Light-Load Resistance Exercise Increases Muscle Protein Synthesis and Hypertrophy Signaling in Elderly Men. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E326–E338. [Google Scholar] [CrossRef]
- Burd, N.A.; Holwerda, A.M.; Selby, K.C.; West, D.W.; Staples, A.W.; Cain, N.E.; Cashaback, J.G.; Potvin, J.R.; Baker, S.K.; Phillips, S.M. Resistance Exercise Volume Affects Myofibrillar Protein Synthesis and Anabolic Signalling Molecule Phosphorylation in Young Men. J. Physiol. 2010, 588, 3119–3130. [Google Scholar] [CrossRef]
- Burd, N.A.; West, D.W.; Staples, A.W.; Atherton, P.J.; Baker, J.M.; Moore, D.R.; Holwerda, A.M.; Parise, G.; Rennie, M.J.; Baker, S.K.; et al. Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More than High-Load Low Volume Resistance Exercise in Young Men. PLoS ONE 2010, 5, e12033. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Kelly, R.P.; Devries, M.C.; Churchward-Venne, T.A.; Phillips, S.M.; Parise, G.; Johnston, A.P. Low-Load Resistance Exercise During Inactivity Is Associated with Greater Fibre Area and Satellite Cell Expression in Older Skeletal Muscle. J. Cachexia Sarcopenia Muscle 2018, 9, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Nóbrega, S.R.; Ugrinowitsch, C.; Pintanel, L.; Barcelos, C.; Libardi, C.A. Effect of Resistance Training to Muscle Failure vs. Volitional Interruption at High- and Low-Intensities on Muscle Mass and Strength. J. Strength Cond. Res. 2018, 32, 162–169. [Google Scholar] [CrossRef]
- Sale, D.G. Neural Adaptation to Resistance Training. Med. Sci. Sports Exerc. 1988, 20, S135–S145. [Google Scholar] [CrossRef] [PubMed]
- Wernbom, M.; Augustsson, J.; Thomeé, R. The Influence of Frequency, Intensity, Volume and Mode of Strength Training on Whole Muscle Cross-Sectional Area in Humans. Sports Med. 2007, 37, 225–264. [Google Scholar] [CrossRef] [PubMed]
- Mangine, G.T.; Hoffman, J.R.; Gonzalez, A.M.; Townsend, J.R.; Wells, A.J.; Jajtner, A.R.; Beyer, K.S.; Boone, C.H.; Miramonti, A.A.; Wang, R.; et al. The Effect of Training Volume and Intensity on Improvements in Muscular Strength and Size in Resistance-Trained Men. Physiol. Rep. 2015, 3, e12472. [Google Scholar] [CrossRef]
- Maughan, R.J.; Watson, J.S.; Weir, J. Relationships Between Muscle Strength and Muscle Cross-Sectional Area in Male Sprinters and Endurance Runners. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 309–318. [Google Scholar] [CrossRef]
- Barnett, A.; Cerin, E.; Reaburn, P.; Hooper, S. The Effects of Training on Performance and Performance-Related States in Individual Elite Athletes: A Dynamic Approach. J. Sports Sci. 2010, 28, 1117–1126. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Hoffman, J.R.; Stout, J.R.; Fukuda, D.H.; Willoughby, D.S. Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise: Implications for Muscle Hypertrophy. Sports Med. 2016, 46, 671–685. [Google Scholar] [CrossRef]
- Schroeder, E.T.; Villanueva, M.; West, D.D.; Phillips, S.M. Are Acute Post-resistance Exercise Increases in Testosterone, Growth Hormone, and IGF-1 Necessary to Stimulate Skeletal Muscle Anabolism and Hypertrophy? Med. Sci. Sports Exerc. 2013, 45, 2044–2051. [Google Scholar] [CrossRef]
- West, D.W.; Burd, N.A.; Tang, J.E.; Moore, D.R.; Staples, A.W.; Holwerda, A.M.; Baker, S.K.; Phillips, S.M. Elevations in Ostensibly Anabolic Hormones with Resistance Exercise Enhance Neither Training-Induced Muscle Hypertrophy nor Strength of the Elbow Flexors. J. Appl. Physiol. 2010, 108, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Hormonal Responses and Adaptations to Resistance Exercise and Training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef] [PubMed]
- West, D.W.; Phillips, S.M. Associations of Exercise-Induced Hormone Profiles and Gains in Strength and Hypertrophy in a Large Cohort After Weight Training. Eur. J. Appl. Physiol. 2012, 112, 2693–2702. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.M.; Hoffman, J.R.; Townsend, J.R.; Jajtner, A.R.; Wells, A.J.; Beyer, K.S.; Willoughby, D.S.; Oliveira, L.P.; Fukuda, D.H.; Fragala, M.S.; et al. Association Between Myosin Heavy Chain Protein Isoforms and Intramuscular Anabolic Signaling Following Resistance Exercise in Trained Men. Physiol. Rep. 2015, 3, e12268. [Google Scholar] [CrossRef] [PubMed]
- McCall, G.E.; Byrnes, W.C.; Fleck, S.J.; Dickinson, A.; Kraemer, W.J. Acute and Chronic Hormonal Responses to Resistance Training Designed to Promote Muscle Hypertrophy. Can. J. Appl. Physiol. 1999, 24, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Bodine, S.C.; Stitt, T.N.; Gonzalez, M.; Kline, W.O.; Stover, G.L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J.C.; Glass, D.J.; et al. Akt/mTOR Pathway Is a Crucial Regulator of Skeletal Muscle Hypertrophy and Can Prevent Muscle Atrophy In Vivo. Nat. Cell Biol. 2001, 3, 1014–1019. [Google Scholar] [CrossRef]
- Ahtiainen, J.P.; Walker, S.; Silvennoinen, M.; Kyröläinen, H.; Nindl, B.C.; Häkkinen, K.; Nyman, K.; Selänne, H.; Hulmi, J.J. Exercise Type and Volume Alter Signaling Pathways Regulating Skeletal Muscle Glucose Uptake and Protein Synthesis. Eur. J. Appl. Physiol. 2015, 115, 1835–1845. [Google Scholar] [CrossRef]
- Ogasawara, R.; Sato, K.; Matsutani, K.; Nakazato, K.; Fujita, S. The Order of Concurrent Endurance and Resistance Exercise Modifies MTOR Signaling and Protein Synthesis in Rat Skeletal Muscle. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1155–E1162. [Google Scholar] [CrossRef]
- Wilkinson, S.B.; Phillips, S.M.; Atherton, P.J.; Patel, R.; Yarasheski, K.E.; Tarnopolsky, M.A.; Rennie, M.J. Differential Effects of Resistance and Endurance Exercise in the Fed State on Signalling Molecule Phosphorylation and Protein Synthesis in Human Muscle. J. Physiol. 2008, 586, 3701–3717. [Google Scholar] [CrossRef]
- Goodman, C.A.; Frey, J.W.; Mabrey, D.M.; Jacobs, B.L.; Lincoln, H.C.; You, J.S.; Hornberger, T.A. The Role of Skeletal Muscle mTOR in the Regulation of Mechanical Load-Induced Growth. J. Physiol. 2011, 589, 5485–5501. [Google Scholar] [CrossRef]
- Ogasawara, R.; Arihara, Y.; Takegaki, J.; Nakazato, K.; Ishii, N. Relationship Between Exercise Volume and Muscle Protein Synthesis in a Rat Model of Resistance Exercise. J. Appl. Physiol. 2017, 123, 710–716. [Google Scholar] [CrossRef]
- Liu, Y.; Vertommen, D.; Rider, M.H.; Lai, Y.C. Mammalian Target of Rapamycin-Independent S6K1 and 4E-BP1 Phosphorylation during Contraction in Rat Skeletal Muscle. Cell. Signal. 2013, 25, 1877–1886. [Google Scholar] [CrossRef]
- Susorov, D.; Zakharov, N.; Shuvalova, E.; Ivanov, A.; Egorova, T.; Shuvalov, A.; Shatsky, I.N.; Alkalaeva, E. Eukaryotic Translation Elongation Factor 2 (eEF2) Catalyzes Reverse Translocation of the Eukaryotic Ribosome. J. Biol. Chem. 2018, 293, 5220–5229. [Google Scholar] [CrossRef] [PubMed]
- West, D.W.; Baehr, L.M.; Marcotte, G.R.; Chason, C.M.; Tolento, L.; Gomes, A.V.; Bodine, S.C.; Baar, K. Acute Resistance Exercise Activates Rapamycin-Sensitive and -Insensitive Mechanisms That Control Translational Activity and Capacity in Skeletal Muscle. J. Physiol. 2016, 594, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gonzalo, R.; Lundberg, T.R.; Tesch, P.A. Acute Molecular Responses in Untrained and Trained Muscle Subjected to Aerobic and Resistance Exercise Training Versus Resistance Training Alone. Acta Physiol. 2013, 209, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Proud, C.G. The mTOR Pathway in the Control of Protein Synthesis. Physiology 2006, 21, 362–369. [Google Scholar] [CrossRef]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhausen, A.; et al. Prevention, Diagnosis, and Treatment of the Overtraining Syndrome: Joint Consensus Statement of the European College of Sport Science and the American College of Sports Medicine. Med. Sci. Sports Exerc. 2013, 45, 186–205. [Google Scholar] [CrossRef] [PubMed]
- Stavrinou, P.S.; Bogdanis, G.C.; Giannaki, C.D.; Terzis, G.; Hadjicharalambous, M. High-Intensity Interval Training Frequency: Cardiometabolic Effects and Quality of Life. Int. J. Sports Med. 2018, 39, 210–217. [Google Scholar] [CrossRef]
- Wang, J.G.; Zhang, Y.; Chen, H.E.; Li, Y.; Cheng, X.G.; Xu, L.; Guo, Z.; Zhao, X.S.; Sato, T.; Cao, Q.Y.; et al. Comparison of Two Bioelectrical Impedance Analysis Devices with Dual Energy X-ray Absorptiometry and Magnetic Resonance Imaging in the Estimation of Body Composition. J. Strength Cond. Res. 2013, 27, 236–243. [Google Scholar] [CrossRef]
- Bauer, P.; Majisik, A.; Mitter, B.; Csapo, R.; Tschan, H.; Hume, P.; Martínez-Rodríguez, A.; Makivic, B. Body Composition of Competitive Bodybuilders: A Systematic Review of Published Data and Recommendations for Future Work. J. Strength Cond. Res. 2023, 37, 726–732. [Google Scholar] [CrossRef]
COMBI (n = 6) | LH (n = 6) | HL (n = 6) | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | |
BW (kg) | 81.4 ± 7.4 | 82.8 ± 7.3 | 92.0 ± 7.2 | 93.0 ± 7.8 | 85.9 ± 6.7 | 87.6 ± 7.2 |
BF (%) | 18.0 ± 1.7 | 17.9 ± 1.8 | 24.0 ± 2.5 | 23.0 ± 2.6 | 19.2 ± 1.7 | 18.6 ± 1.8 |
SMM (kg) | 38.2 ± 3.8 | 39.1 ± 3.6 * | 40.4 ± 2.4 | 41.7 ± 2.4 * | 38.9 ± 3.2 | 39.9 ± 3.4 * |
Insulin(μU/mL) | 10.0 ± 2.7 | 11.6 ± 3.6 | 12.7 ± 1.9 | 13.1 ± 3.3 | 8.7 ± 1.0 | 7.2 ± 0.8 |
IGF-1 (ng/mL) | 231.3 ± 28.7 | 272.5 ± 44.6 | 203.7 ± 11.5 | 215.7 ± 8.2 | 203.8 ± 19.0 | 216.3 ± 28.6 |
GH (ng/mL) | 0.7 ± 0.1 | 1.2 ± 0.2 * | 0.7 ± 0.1 | 1.1 ± 0.1 * | 0.5 ± 0.1 | 0.9 ± 0.2 * |
COMBI (n = 6) | LH (n = 6) | HL (n = 6) | p-Value | |
---|---|---|---|---|
Age (years) | 20.0 ± 1.3 | 20.8 ± 0.8 | 19.8 ± 0.8 | 0.161 |
Experience (years) | 9.83 ± 1.0 | 9.8 ± 1.2 | 8.8 ± 1.2 | 0.277 |
Height (cm) | 171.3 ± 8.2 | 174.5 ± 7.6 | 171.0 ± 9.4 | 0.801 |
BW (kg) | 81.4 ± 18.2 | 92.0 ± 17.6 | 85.9 ± 16.4 | 0.587 |
BF (%) | 18.0 ± 4.3 | 24.0 ± 6.2 | 19.2 ± 4.3 | 0.142 |
SMM (kg) | 38.2 ± 9.3 | 40.4 ± 5.8 | 38.9 ± 8.0 | 0.970 |
1-RM of back squat (kg) | 206.0 ± 35.6 | 219.0 ± 29.7 | 211.7 ± 16.0 | 0.972 |
1-RM of snatch (kg) | 116.7 ± 20.6 | 127.7 ± 8.9 | 125.5 ± 12.2 | 0.430 |
BMS (kg) | 172.8 ± 33.9 | 181.9 ± 27.4 | 173.7 ± 9.3 | 0.619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeom, D.-C.; Hwang, D.-J.; Lee, W.-B.; Cho, J.-Y.; Koo, J.-H. Effects of Low-Load, High-Repetition Resistance Training on Maximum Muscle Strength and Muscle Damage in Elite Weightlifters: A Preliminary Study. Int. J. Mol. Sci. 2023, 24, 17079. https://doi.org/10.3390/ijms242317079
Yeom D-C, Hwang D-J, Lee W-B, Cho J-Y, Koo J-H. Effects of Low-Load, High-Repetition Resistance Training on Maximum Muscle Strength and Muscle Damage in Elite Weightlifters: A Preliminary Study. International Journal of Molecular Sciences. 2023; 24(23):17079. https://doi.org/10.3390/ijms242317079
Chicago/Turabian StyleYeom, Dong-Chul, Dong-Joo Hwang, Woong-Bae Lee, Joon-Yong Cho, and Jung-Hoon Koo. 2023. "Effects of Low-Load, High-Repetition Resistance Training on Maximum Muscle Strength and Muscle Damage in Elite Weightlifters: A Preliminary Study" International Journal of Molecular Sciences 24, no. 23: 17079. https://doi.org/10.3390/ijms242317079
APA StyleYeom, D.-C., Hwang, D.-J., Lee, W.-B., Cho, J.-Y., & Koo, J.-H. (2023). Effects of Low-Load, High-Repetition Resistance Training on Maximum Muscle Strength and Muscle Damage in Elite Weightlifters: A Preliminary Study. International Journal of Molecular Sciences, 24(23), 17079. https://doi.org/10.3390/ijms242317079