Soluble CD137: A Potential Prognostic Biomarker in Critically Ill Patients
Abstract
:1. Introduction
2. Results
2.1. Plasma sCD137 of SIRS/Sepsis Patients
2.2. Plasma sCD137 Levels of the SIRS/Sepsis Patients in Relation to Underlying Diseases and SARS-CoV-2 Infection
2.3. Plasma sCD137 Levels in Relation to Interventions and Vasopressor Therapy
2.4. Plasma sCD137 and Inflammation Markers
2.5. Plasma sCD137 in Gram-Negative and Gram-Positive Bacterial Infections
2.6. Plasma sCD137 and Survival
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Analysis of sCD137 and Interleukin-6
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biron, B.M.; Ayala, A.; Lomas-Neira, J.L. Biomarkers for Sepsis: What Is and What Might Be? Biomark. Insights 2015, 10, 7–17. [Google Scholar] [CrossRef]
- Jarczak, D.; Kluge, S.; Nierhaus, A. Sepsis-Pathophysiology and Therapeutic Concepts. Front. Med. 2021, 8, 628302. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Opal, S. Immunotherapy for sepsis—A new approach against an ancient foe. N. Engl. J. Med. 2010, 363, 87–89. [Google Scholar] [CrossRef]
- Finfer, S.; Venkatesh, B.; Hotchkiss, R.S.; Sasson, S.C. Lymphopenia in sepsis-an acquired immunodeficiency? Immunol. Cell Biol. 2023, 101, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Luu, K.; Shao, Z.; Schwarz, H. The relevance of soluble CD137 in the regulation of immune responses and for immunotherapeutic intervention. J. Leukoc. Biol. 2020, 107, 731–738. [Google Scholar] [CrossRef]
- Thum, E.; Shao, Z.; Schwarz, H. CD137, implications in immunity and potential for therapy. Front Biosci. (Landmark Ed.) 2009, 14, 4173–4188. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, L. Immunobiology of cancer therapies targeting CD137 and B7-H1/PD-1 cosignal pathways. Curr. Top. Microbiol. Immunol. 2011, 344, 245–267. [Google Scholar] [CrossRef] [PubMed]
- Stoll, A.; Bruns, H.; Fuchs, M.; Volkl, S.; Nimmerjahn, F.; Kunz, M.; Peipp, M.; Mackensen, A.; Mougiakakos, D. CD137 (4-1BB) stimulation leads to metabolic and functional reprogramming of human monocytes/macrophages enhancing their tumoricidal activity. Leukemia 2021, 35, 3482–3496. [Google Scholar] [CrossRef]
- Wong, H.Y.; Prasad, A.; Gan, S.U.; Chua, J.J.E.; Schwarz, H. Identification of CD137-Expressing B Cells in Multiple Sclerosis Which Secrete IL-6 Upon Engagement by CD137 Ligand. Front. Immunol. 2020, 11, 571964. [Google Scholar] [CrossRef]
- Lee, S.C.; Ju, S.A.; Pack, H.N.; Heo, S.K.; Suh, J.H.; Park, S.M.; Choi, B.K.; Kwon, B.S.; Kim, B.S. 4-1BB (CD137) is required for rapid clearance of Listeria monocytogenes infection. Infect. Immun. 2005, 73, 5144–5151. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Nguyen, T.H.; Ju, S.A.; Lee, Y.S.; Han, S.H.; Lee, S.C.; Kwon, B.S.; Yu, R.; Kim, G.Y.; Lee, B.J.; et al. CD137 expressed on neutrophils plays dual roles in antibacterial responses against Gram-positive and Gram-negative bacterial infections. Infect. Immun. 2013, 81, 2168–2177. [Google Scholar] [CrossRef]
- Vinay, D.S.; Choi, B.K.; Bae, J.S.; Kim, W.Y.; Gebhardt, B.M.; Kwon, B.S. CD137-deficient mice have reduced NK/NKT cell numbers and function, are resistant to lipopolysaccharide-induced shock syndromes, and have lower IL-4 responses. J. Immunol. 2004, 173, 4218–4229. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Ahn, J.J.; Jeon, J.; Ra, S.; Jegal, Y.; Choi, S.; Chung, S.; Cho, H.; Kwon, B. Cd137 (4-1bb)-Fc Facilitates Recovery Of Opportunistic Acinetobacter Peumonia In Immunosuppressive Phage Sepsis. Am. J. Respir. Crit. Care Med. 2013, 187, A1314. [Google Scholar]
- Michel, J.; Schwarz, H. Expression of soluble CD137 correlates with activation-induced cell death of lymphocytes. Cytokine 2000, 12, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.; Leitzke, S.; Ahrens, B.; Sperrhacke, M.; Bhakdi, S.; Reiss, K. Role of ADAM10 and ADAM17 in Regulating CD137 Function. Int. J. Mol. Sci. 2021, 22, 2730. [Google Scholar] [CrossRef] [PubMed]
- Setareh, M.; Schwarz, H.; Lotz, M. A mRNA variant encoding a soluble form of 4-1BB, a member of the murine NGF/TNF receptor family. Gene 1995, 164, 311–315. [Google Scholar] [CrossRef]
- Kachapati, K.; Bednar, K.J.; Adams, D.E.; Wu, Y.; Mittler, R.S.; Jordan, M.B.; Hinerman, J.M.; Herr, A.B.; Ridgway, W.M. Recombinant soluble CD137 prevents type one diabetes in nonobese diabetic mice. J. Autoimmun. 2013, 47, 94–103. [Google Scholar] [CrossRef]
- Weigand, K.; Peschel, G.; Grimm, J.; Luu, K.; Schacherer, D.; Wiest, R.; Muller, M.; Schwarz, H.; Buechler, C. Soluble CD137 is a novel serum marker of liver cirrhosis in patients with hepatitis C and alcohol-associated disease etiology. Eur. J. Immunol. 2022, 52, 633–645. [Google Scholar] [CrossRef]
- Martin, M.D.; Badovinac, V.P.; Griffith, T.S. CD4 T Cell Responses and the Sepsis-Induced Immunoparalysis State. Front Immunol. 2020, 11, 1364. [Google Scholar] [CrossRef]
- Patera, A.C.; Drewry, A.M.; Chang, K.; Beiter, E.R.; Osborne, D.; Hotchkiss, R.S. Frontline Science: Defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1. J. Leukoc. Biol. 2016, 100, 1239–1254. [Google Scholar] [CrossRef]
- Karakike, E.; Giamarellos-Bourboulis, E.J.; Kyprianou, M.; Fleischmann-Struzek, C.; Pletz, M.W.; Netea, M.G.; Reinhart, K.; Kyriazopoulou, E. Coronavirus Disease 2019 as Cause of Viral Sepsis: A Systematic Review and Meta-Analysis. Crit. Care Med. 2021, 49, 2042–2057. [Google Scholar] [CrossRef]
- Marques, M.O.; Abdo, A.; Silva, P.B.; Silva Junior, A.; Alves, L.B.O.; Costa, J.V.G.; Martin, J.; Bachour, P.; Baiocchi, O.C.G. Soluble CD137 as a potential biomarker for severe COVID-19. Immunol. Lett. 2022, 248, 119–122. [Google Scholar] [CrossRef]
- Freeman, Z.T.; Nirschl, T.R.; Hovelson, D.H.; Johnston, R.J.; Engelhardt, J.J.; Selby, M.J.; Kochel, C.M.; Lan, R.Y.; Zhai, J.; Ghasemzadeh, A.; et al. A conserved intratumoral regulatory T cell signature identifies 4-1BB as a pan-cancer target. J. Clin. Investig. 2020, 130, 1405–1416. [Google Scholar] [CrossRef]
- Shao, Z.; Schaffler, A.; Hamer, O.; Dickopf, J.; Goetz, A.; Landfried, K.; Voelk, M.; Kopp, A.; Herfarth, H.; Karrasch, T.; et al. Admission levels of soluble CD137 are increased in patients with acute pancreatitis and are associated with subsequent complications. Exp. Mol. Pathol. 2012, 92, 1–6. [Google Scholar] [CrossRef]
- Strnad, P.; Tacke, F.; Koch, A.; Trautwein, C. Liver—Guardian, modifier and target of sepsis. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 55–66. [Google Scholar] [CrossRef]
- Pose, E.; Coll, M.; Martinez-Sanchez, C.; Zeng, Z.; Surewaard, B.G.J.; Catala, C.; Velasco-de Andres, M.; Lozano, J.J.; Arino, S.; Fuster, D.; et al. Programmed Death Ligand 1 Is Overexpressed in Liver Macrophages in Chronic Liver Diseases, and Its Blockade Improves the Antibacterial Activity Against Infections. Hepatology 2021, 74, 296–311. [Google Scholar] [CrossRef]
- Wu, C.C.; Lan, H.M.; Han, S.T.; Chaou, C.H.; Yeh, C.F.; Liu, S.H.; Li, C.H.; Blaney, G.N., 3rd; Liu, Z.Y.; Chen, K.F. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: A systematic review and meta-analysis. Ann. Intensive Care 2017, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Agnello, L.; Giglio, R.V.; Bivona, G.; Scazzone, C.; Gambino, C.M.; Iacona, A.; Ciaccio, A.M.; Lo Sasso, B.; Ciaccio, M. The Value of a Complete Blood Count (CBC) for Sepsis Diagnosis and Prognosis. Diagnostics 2021, 11, 1881. [Google Scholar] [CrossRef] [PubMed]
- Dongming, L.; Zuxun, L.; Liangjie, X.; Biao, W.; Ping, Y. Enhanced levels of soluble and membrane-bound CD137 levels in patients with acute coronary syndromes. Clin. Chim. Acta 2010, 411, 406–410. [Google Scholar] [CrossRef]
- Pan, Y.J.; Chen, R.; Xu, Y.; Xia, H.; Xu, C.; Yuan, W. [Association between CD137 and ischemia-reperfusion injury in patients with acute ST-segment elevation myocardial infarction]. Zhonghua Xin Xue Guan Bing Za Zhi 2021, 49, 1198–1205. [Google Scholar] [PubMed]
- Castell, J.V.; Gomez-Lechon, M.J.; David, M.; Andus, T.; Geiger, T.; Trullenque, R.; Fabra, R.; Heinrich, P.C. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989, 242, 237–239. [Google Scholar] [CrossRef]
- Pieri, G.; Agarwal, B.; Burroughs, A.K. C-reactive protein and bacterial infection in cirrhosis. Ann. Gastroenterol. 2014, 27, 113–120. [Google Scholar]
- Dong, R.; Wan, B.; Lin, S.; Wang, M.; Huang, J.; Wu, Y.; Wu, Y.; Zhang, N.; Zhu, Y. Procalcitonin and Liver Disease: A Literature Review. J. Clin. Transl. Hepatol. 2019, 7, 51–55. [Google Scholar] [CrossRef]
- Glez-Vaz, J.; Azpilikueta, A.; Olivera, I.; Cirella, A.; Teijeira, A.; Ochoa, M.C.; Alvarez, M.; Eguren-Santamaria, I.; Luri-Rey, C.; Rodriguez-Ruiz, M.E.; et al. Soluble CD137 as a dynamic biomarker to monitor agonist CD137 immunotherapies. J. Immunother. Cancer 2022, 10, e003532. [Google Scholar] [CrossRef]
- Zizzari, I.G.; Di Filippo, A.; Botticelli, A.; Strigari, L.; Pernazza, A.; Rullo, E.; Pignataro, M.G.; Ugolini, A.; Scirocchi, F.; Di Pietro, F.R.; et al. Circulating CD137+ T Cells Correlate with Improved Response to Anti-PD1 Immunotherapy in Patients with Cancer. Clin. Cancer Res. 2022, 28, 1027–1037. [Google Scholar] [CrossRef]
- Yan, J.; Wang, C.; Chen, R.; Yang, H. Clinical implications of elevated serum soluble CD137 levels in patients with acute coronary syndrome. Clinics 2013, 68, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, C.; Rui, Z.; Tang, W.; Xu, Y.; Tao, X.; Zhao, Q.; Tong, X. A comprehensive profiling of soluble immune checkpoints from the sera of patients with non-small cell lung cancer. J. Clin. Lab. Anal. 2022, 36, e24224. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C. Sepsis, sepsis syndrome, and the systemic inflammatory response syndrome (SIRS). Gulliver in Laputa. JAMA 1995, 273, 155–156. [Google Scholar] [CrossRef]
Parameters | Whole Cohort | COVID-19 Patients | Cirrhosis Patients | Controls |
---|---|---|---|---|
Males/Females | 106/47 | 15/8 | 21/9 | 11/11 |
Age (years) | 59 (21–93) | 62 (29–80) | 57 (31–75) | 58 (40–67) |
C-reactive Protein mg/L | 156 (12–697) §§§ | 129 (44–472) | 83 (12–236) §§§ | not determined |
Procalcitonin ng/mL | 1.16 (0.05–270.00) * | 0.57 (0.08–65.40) * | 1.20 (0.10–65.18) | not determined |
SIRS/Sepsis/Septic Shock | 39/37/77 ** | 0/3/20 ** | 10/6/14 | not determined |
IL-6 pg/mL | 88.9 (0–5701.7) 145%%% | 48.6 (5.6–1810.2) 21%%% | 129.4 (14.05–2546.6) 21 | 6.5 (0–48.3) 21%%% |
Ferritin ng/mL | not determined | 970 (200–17,846) | not determined | not determined |
Leukocytes n × 109/L | 10.24 (0.06–1586.00) | 8.64 (2.78–18.47) | 10.32 (2.51–1586.00) | not determined |
Neutrophils n/nL | 7.69 (0.01–70.20) | 6.83 (0.14–48.40) | 7.85 (1.46–25.25) | not determined |
Basophils n/nL | 0.04 (0–0.90) | 0.03 (0–0.60) | 0.04 (0–0.42) | not determined |
Eosinophils n/nL | 0.13 (0–8.80) | 0.04 (0–8.80) | 0.14 (0.01–2.89) | not determined |
Monocytes n/nL | 0.79 (0–45.00) | 0.64 (0–10.90) | 1.00 (0.41–3.29) | not determined |
Lymphocytes n/nL | 0.96 (0.08 –28.60) | 0.70 (0.16 –28.60) | 0.79 (0.16–5.74) | not determined |
Immature Granulocytes n/nL | 0.12 (0–6.19) | 0.24 (0–3.84) | 0.11 (0.01–1.18) | not determined |
Intervention/Drug | No | Yes | p-Value |
---|---|---|---|
Dialysis | 77.6 (0–826.5) pg/mL | 113.5 (0–895.1) pg/mL | 0.100 |
Ventilation | 86.6 (0–733.2) pg/mL | 89.4 (0–895.1) pg/mL | 0.855 |
Catecholamine | 78.4 (0–733.2) pg/mL | 89.4 (0–895.1) pg/mL | 0.873 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Räth, U.; Mester, P.; Schwarz, H.; Schmid, S.; Müller, M.; Buechler, C.; Pavel, V. Soluble CD137: A Potential Prognostic Biomarker in Critically Ill Patients. Int. J. Mol. Sci. 2023, 24, 17518. https://doi.org/10.3390/ijms242417518
Räth U, Mester P, Schwarz H, Schmid S, Müller M, Buechler C, Pavel V. Soluble CD137: A Potential Prognostic Biomarker in Critically Ill Patients. International Journal of Molecular Sciences. 2023; 24(24):17518. https://doi.org/10.3390/ijms242417518
Chicago/Turabian StyleRäth, Ulrich, Patricia Mester, Herbert Schwarz, Stephan Schmid, Martina Müller, Christa Buechler, and Vlad Pavel. 2023. "Soluble CD137: A Potential Prognostic Biomarker in Critically Ill Patients" International Journal of Molecular Sciences 24, no. 24: 17518. https://doi.org/10.3390/ijms242417518
APA StyleRäth, U., Mester, P., Schwarz, H., Schmid, S., Müller, M., Buechler, C., & Pavel, V. (2023). Soluble CD137: A Potential Prognostic Biomarker in Critically Ill Patients. International Journal of Molecular Sciences, 24(24), 17518. https://doi.org/10.3390/ijms242417518